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Abstract

Ivanov 8.V. Longitudinal Diffusion of a Proton Bunch under External Noise (Wide-Band Noise):
IHEP Preprint 93-14. - Protvino, 1993. - p. 31, refs.: 6.

The paper is an extension to the former Preprint IHEP 92-43 with the same title. It presents
the diffusion coefficient for a bunched beam subjected to a wide-band noise of accelerating
voltage in a proton synchrotron. The noise wide-oand performance infers its spectrum to stretch
over many revolution frequency harmonics, i.e., a possibility of an arbitrary ratio of the noise
correlation time to the beam revolution period, which turns out essential to treat the noise-
induced diffusion in large rings — UNK, LHC, SSC.
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This paper is, essentially, an extension to Preprint [1] with the same title.
Occurring in quadrature, amplitude and phase noises of accelerating voltage
build up a convenient model for tr eating beam dynamics. The approach of ref. {1
allows one to continue these studies — this time under arbitrary relationship
between noise correlation time and beam revolution period. Such an analysis
shows the results of refs.[1,2,3,4] 1o be valid for a relatively low-frequency and
narrow-band noise whose correlation time exceeds substantially the revolution
period. Hence, these results may not be applicable to proton synchrotrons with
large orbit perimeters (UNK, LHC, SSC). On the contrary, the present paper
offers expressions which hold in the latter case, as well.

1. Status*of the Problem

Longitudinal dynamics of a proton bunch subjected to external RF-noise is
governed by a diffusion equation. Write down the latter in the form obtained
in ref.[1] -

HF)T,t) _ 0 {F)(J, 1)
—u t)————| . 1
ot ~aJ D(7:1) 0T M

Here ¢ is time; J is action variable.whose value at separatrix is Jeep; F' is particle
distribution function.. The angular brackets (...} are the equation symbol for
statistical average over noise ensemble. The subscript ‘0’ denotes mathematical
average over phase 9, the canonical conjugate of 7. The angle-action variables
(¢, J) are introduced in the longitudinal phase-plane (9,9 = dv¥/dt), where
¥ ~ © — wst is azimuth in a co-rotating frame; © is a generalized azimuth
around the ring as measured in the laboratory frame in the direction of the beam
motion; ws is the angular velocity of a reference particle synchronous to the
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nominal value of the acceleration frequency. The origin ¥ = 0 of the coordinate
¥ is put on the unperturbed reference particle of the bunch in question.
The diffusion coefficient, say, inside separatrix (J < Jup) reads [1]

2 2 o o
P(J,t) = %(— Qq' ) > m? > kJ)Imki;](j) (2)

qVewsings ) m=Zeo k,ky=—00

X 2 T(A%(t)A%‘;(t — 7)) exp (imQs(J)7) dr

Here, the quantity (p has the mea,nmg of a circular frequency of small-amplitude,
oscillations in a potential well U(¥) with U(9) —
main RF harmonic number; Ve is the nominal value of accelerating voltage
amplitude; ¢, is the stable phase angle (¢, > 0 below transition with the
synchronous energy gain being eVex, cos ¢s); Qs(J) = dip/dt is the frequency of
non-linear synchrotron oscillations. .

Fuanctions I, (J) are the expansion coefficients of a plane wave mto series
over multipole oscillations:

+7

I

I (T)

The beam is subJected te a 1andom voltage AV(9,1) |AV(19 t)| < Vmt
treated in the co-rotating frame. Due to periodicity AV(ﬁ t) = AV (9 + 2m7,t)

it can be Fourier series decomposed: .
AV@,t) = -3 AVi(t) exp(ik9), - @)
. k=—00
. 2’ ~
AVi(t) = 2i /Avw,t) exp(—ikd) do. - 5)

lefusmn coefﬁc1ent (2) depends on time: mnelatlons of mndom amplitudes
AVi(2).

Egs.(1), (2) are quite genera.l in nature. To get them, one only employs
a perturbation theory and an assumption on the bunch being both stationary
and matched at the initial instant of time ¢t = 0, AV(d,t < 0) = 0. The latter
realizes the so-called random phase typ? of approzimation for initial phases of
the synchrotron oscillations. Beam-induced self-fields are neglected.

In addition, the following agreements on repr esentative time scales of the
problem at issue are involved:

/

192/23519—>0,qlsthe‘

- / ay exp(iw(a, Woimp), @)

g

Hereof, a structural pecullarlty of D(J ), as expressed in terms of modulating
currents z«)(t) ¢' # 0, is revealed. Function T}, (w) always remains inside the
weight and amplitude factors. It cannot be taken out of the brackets and thus

‘treated as a factor which merely filters the noise spectrum. The exception

is that (mfrequent) case when T,(w) features a complex—conjugate symmetry
w.r.t. frequency ¢'w,: .

T,.(q'w, + w) = Tr(qd'ws — w). ‘ | (114)

)

As far as stationary noise ja(t) is concerned, this condition is met 1dent1ca,lly
due to ¢' = 0, and such a peculiarity of D(.7) does not occur.
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employ egs.(105), (106). Equate factors before 2mé(w — wi). Thereby get the
expressions for eq.(104) in terms of the random currents:

PG e (A9 — ) - o
= Tn(w * qlws) m(w tq ws) QSzcrs:)(w) exp (:ti(¢$,<) - ¢$z<:))) 3

PSO (W) exp (#i(el) +¢)) = O (0s)
=To(w £ qws) T, (v F q'ws) st,f:)(w) exp (ii(qﬁ(o + ¢$,C‘))) .

(For instance, it becomes clear hereof that the noise voltage spectrum cannot
be wider than the bandwidth of accelerating devices. Consequently, correlation
time 7, of modulation noises v{¢)(t) is sure not to be less than a ﬁIhng time of
the gaps.) :

Insertion of eqs.(107), (108) into the formulae of Sections 3,4 provides a
complete solution'to the problem in question. Despite unwieldy appearance of
€qs.(107), (108), the formal changes of D(J) are not so intricate. We just list

the modifications which emerge on passing to the ‘current-wise’ representation. °

First of all, the spectral matrices of noises and the carrier phases, if there
are any, are replaced everywhere:

PEY(w) — fo,f‘)(w); P =P (109)
A new factor emerges in eq. (44):
Grjery — Gh; kg In ((k +q")ws + m%(T)) . (110)

Eq.(46), being rewritten for Q¢!)(w), is complemented by a requirement of
wide-band performance, in the scale of synchrotron frequency €, of function
To(w):

Eq.(48) is entered by factor (110) which is, naturally, rewritten so as to obcy
appromma.non (111):

Gn;k:!:q’ - Gn;k:tq’ Tn((k * ql)ws) - (112)
Finally, iﬁ the unbunched-beam Hnﬁﬁ, eq.(54) is altered by
Gajty — Grksy Tn (kw(J) + ‘1119,(:7)) s . (113)

while eqgs.(56), (57) suffer the same but for ¢’ = 0.
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T, (kwy + mQ(T)) & T (kws). (11’

a) fluctuations of accelerating voltage are assumed to be fast,
Tav K Taif; ; (6)
b) bunch evolution is pursued d}ll‘ing the intervals of time ¢ 'wl}ich are
Tav L t S Tape ' (7)

In both of these inequalities time constant 74 is a rate measure of a slow, sys-
tematic dilution of (Fy)(.J,t) under the noise (diffusion life-time of the bunch),

‘while Tay is (auto)correlation time of random voltage AV (9,t). (The calcula-

tions to follow would indicate that 74 £ is reciprocal of the noise spectral power
intensity. Therefore eq.(6) requires the voltage fluctuations to be, rigorously
spea.kmg, both fast and weak.) A

A particular expression for the diffusion coefficient depends upon the way
of involving the noise source AV (?,¢) into the consideration. Two approaches
to this question can be followed: ‘

1. The furthér treatment in ref.[1], as well as the one imrefs.[2,3,4], _proceeds
from a conjecture that voltage AV (9,t) is given in the co-moving frame directly,

in which it reads
27 ‘
g (19 + 7) . (8)

Here g(9) is a determinate function; v(t) is a stochastic process with a zero
average, (v(t)) =0.

The assumption on noise v(t) to be a \vedldy stationary one cancels the
explicit t-time dependence in D(7,t) at once. As 1ef.[1] shows, further choice
of functions g(¥), v(t) in the form of

AV(d, f)— v )(/(0) g(¥)'=

9 () = cos(qi) + @), ’U(‘:)(t) = AVeu(t); (9)

gOW) =sin(gd + @), () =Veud(ty  (10)
and their substitution into eq.(2) yields the well-known results of refs.[2,3,4] for

amplitude (a) and phabe (¢) noises of accelerating voltage, respectively. Nev-

ertheless, the acceptability of representation (8) still requires a more thorough

investigation.

2. Ref.[1] hints at a more general route to calculate diffusion coefficient (2),
as well. It takes into account that the noise voltage is, in fact, driven in the
laboratory frame in which it acquires the form of a periodically-unstationary
— or, possibly, of a stationary —— stochastic process AV(0,t). Due to this



reason D(J,t) from eq.(2) turns out to be a periodic, function of time, 27/w;

being a period, which is extremely unsultable for the calculations. It is obvi- -

ous, however, that nothing crucial should be encountered in course of a single
turn. What is necessary (and justifiable physically) is to average eq.(1) over a
~ turn, This procedure would allow one to retain the slow motion only. The lat-
ter is caused by the non-averaging to zero term of D(7,t) which brings about
a systematic effect and is denoted by D(J) later on. An additive correction
proportional to the time average of a product between the fast varying pa:rts of
" D(J,t) and (Fo)(J, ) is neglected because of its small value expected (the sec-
ond order of magnitude in the fast motion). The bunch distribution smoothed
.over a turn period is denoted by the former equation symbol (Fo)(7,t). This
function is-now supposed to be a slowly varying one in the time scale of 27 /ws:
' 2 ' . \ 1
‘-'-’_s <L Tdif- ‘ . . ( )
On these conditions being met the formal modification of eq.(1) after its aver-
aging over t would result in a mere substitution of D(J,t) by D(J).
Quantitative verification of such a procedure is not a simple matter. Rather,
we apply to indirect evidences, such as rederivation of the results known by.now.
These are the diffusion equation of a bunch subjected to low-frequency narrow-
band amplitude or phase noises of accelerating voltage (refer to Section 7), and
the noise-induced diffusion over momenta in an unbunched beam (refer to the
end of Section 4).

It is the second of the afore-said approaches which is followed throughout .

the present paper. In particular, it is shown thereby that representation of the
random voltage by eqs.(8), (9), (10), as studied in refs[1,2,3,4], is acceptable

only for a relatively low-frequency and narrow-band noise v(t). Its correlation

time 7, must comply with limitations

27 . l
— L Ty & Tiif ’ (12)

Ws

which may grow into a crucial constraint. Indeed, the natural noise perfor-
mances, with 7, included, are imposed solely by technical features of the RF-
system. These cannot be affected strongly by, say, the ring size. However, as
the orbit perimeters grow (UNK, LHC, SSC) the revolution frequencies wy do
decrease. Relationships like 7, ~ 27 Jws or even 1, & 27wy become feasible.
Thereby the Lh.s. of inequality (12) can well be violated, results of refs.[1,2,3,4]
thus becoming insufficient. . v

- In what follows, mqre general formulae for the diffusion coefficient under
the accelerating voltage noises are arrived at. These hold true not only within

\

‘

while the quadrature one — that of p_hase: ‘
WO=5Las®, (o

», ’ ‘
Ad(t) = [ Auje(t)dty, (M) « 25,
of the feeder current. :

.Suppression of the carrier by adopting ¢ = 0 results in a particular case of
noise current ja(t) = ¢ i{(t) cos ¢ which is stationary w.r.t. the laboratory
frame. C ‘

Transfer-function (97) converts current (98) into the noise voltage‘

ua(t) =3 v,(f)(t)’ cos(q'wyt - )] (102)
0 c .

across the n-th gap. It is the form in which u,(t) enters the framework of -
e.(24) used to represent the random electric field on the orbit o

Perform the Fourief transformation in time of eqs.(98), (102). On applying
to definition (97), one establishes the relation between the Fourier transforms
of random envelopes v, i{¢)(t): o

v(w) exp(igld) = To(w % ) i0(w) exp(ig?). (103)

Now, ‘let us refer to Sections 3,4. Notice that each and every equation for

- D(J) given there involves items of four types. These are proportional to

n

PiP(w) exp (£i(¢) - p8)) , - PEO(w) exp (4i(o® +¢)),  (104)

and all should be expressed in terms of the spectrum of the random currents.
This procedure can easily be carried out. | ‘ ’

Really, a ‘weak’ stationarity of random envelopes v, iff)(t) whose avérages are
(v19(t)) = (#)(t)) = 0 implies their Fourier transforms to be delta-correlated:

‘ ,(v:({:)(w) 11.5.‘,"‘(91)’) = 27 P (w) 8w — wy);. (105)
(D@ i) = 27 QW) (w - wy). (106)

Here P{)(w) denote the spectral matrices of madulation noises of voltage (28),
while Qs,‘:,ﬁ‘) (w) are those for the noises of current.

Rewrite eq.(103) as a pair of identities with an arbitrary choice of signs in
cach of them. Take the relevant indices to be either n,{ or ny,(y, réspectively.
Perform complex conjugation in the latter case, and inter-multiply the expres-

. :siéns thus obtgiggd. Carry out a statistical averaging of their product where
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as flowing through, say, a coupling device between the feeder and the n-th gap.
(Reflected-wave current does not enter into defipition (96).)

Phase ¢,-of the current is'not obliged to coincide with phase’ @n of the
(overall) voltage (15). It occurs this way due to two factors:

a) A complex transfer-function Ty(¢'ws) = T (—¢'ws) from the feeder current
to a component of the gap voltage thereby excited. . -

b) A phasor diagram of voltages as maintained to compensate beam loading
of the accelerating gap. .

On taking both these factors into account, one can define amplitude I, and
- phase ¢, of current (96). It is a standard RF-engineering calculation. Com-
monly, it is carried out while setting up an operating point for the accelerhting
system. To save the paper length, its discussion is skipped here. All the more
that it would have fallen beyond the context of the diffusion problem under
study.
~ Noises in RF-feeding circuitry ongma,te random additive perturbation Jn(t)
to current (96). It drives noise voltage u,(t) across the n-th gap (19). A feeder,
a coupler and a gap constitute a linear and stationary circuit. Hence, the
relation between j,(t) and un(t) is linear aud time-invariant:

Un(w) = To(w) ju(w).. ) (97) .

Th(=w)

Here u, ju(w) = u, ji(—w) are the Fourier transforms of u, ju(t). Tn(w) =
denotes the relevant transfer-function dimensioned as an elec’tri_c resistance,
with eq.(97) being its formal definition. .

Due to apparent reasons, consider a random-modulated current wlnch has
a genera.l form of

]\'r{(t) = ZC? iﬁo(t) COS(q wst — 4{). (98)

Here { denotes some index a.ga.in Carrier phase ¢{¢) is, rigorously speaking,

other than ¢,. Currents i) (t), (i)(t)) = 0 are stochastic processes which are

(mutually) stationary w.r.t. the laboratory frame. . ‘
The particular option of indices { = ¢/, s’ and phases

T

H =y, $ =03 . (99):

9?

.
allows one to interpret eq (98) as a decomposition of j,(t) into sum of its inphase
(¢ = ¢) and quadrature (( = ') components w.r.t. the reference signal (96)
As usual, the 1nphase component 1epresents the noise of amplitude:

0= AL, ()
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the range given by eq.(12), but well beybnd it:

2r - 2m

— ~ 7y, L' Thif, Ty € — <L Tiif. (13)

Wy Ws
Note, that up to an order of magnitude T,Awy ~ 2, where Aw,, is the noise
spectrum width. Hence, eq.(13) entails that either Awy ~ ws or Aw, > ws. It
is in this very,sense that the noise is referred to as ‘wide-band’ in the paper.

2. Accelerating Field and Its Noises

Features peculiar to a random electric field present on the orbit of a syn-
chrotron are, to a large extent, imposed by its accelerating systemn. We proceed
from its brief description.

Main Field E(O,t)

Let the accelerating system be specified by three parameters: ¢, V., ¢!
That is, it should maintain the synchronous-to-beam propagating wave of volt-
age, ' ' ' , t
V(9,1t) = Ve cos(q'?d + ¢}) (14)

which is stationary in the co-rotating frame. The prime, as attached to

q', V., ., shows that we are rot restricting ourselves to the main accelerating

system whose parameters are ¢, Vext, 0s. To the same extent one may bear in
mind an (auxiliary) RF-system driven at a radio-frequency of ¢'ws - a higher har-
monic of the (main) frequency qus of acceleration. (Assimption ¢'/g =1,2,...
might be withdrawn but this would result in unnecessary complications.)
Technically, wave (14) is imposed via excitation of N > 1 accelerating de-
vices (gaps). Label them with numbers n =1,2,..., N in an arbitrary order.
Put down the longitudinal electric field ag:cbrding to ref.[5]
. i w ,
E(©,t) =+ Z Ga(©)V, cos(g'wst — pn). (15)
Here L is the ring length V, and ¢, are the amplitude and phase of the voltage
across the n-th gap; ¢'ws = Wi is the nominal value of the. radio-frequency.

Functions G,(0) = Ga(© + 27) depend upon the way of field localization
around the orbit. They can be Fourier senes decomposed:

Gu(®) = 5 Guaemiie), (16



1 \2x ] . - l
Gut = ;= [ Ga(©) exp(—ikO) dO. -
2m } e ‘ ‘
Expansion coefficients Gyt = G, (or, to be more exact, their moduli) can be
-interpreted as transit-time factors at frequencies kws. Suffice it to require

2r - ' ‘
2L7r J1Ga(©)]d0=1. ) (18)
.0 .

Whereof |G,.;k|'y$ 1, the equality sign standing for an inﬁnitelﬁnﬁ.rrow gap. No .

~ other restrictions on G,(©) are imposed.

Required shape (14) of the synchronous wave can always be attained by -

a due adjustment of amplitudes V, and phases ¢, of the gap voltages. For
‘the time being, their practical choice is not important. A few alternatives are
possible. One of them — it minimizes the RF-power consumption. and, hence,
is a preferable one — is introduced later on, when a concrete model of the
accelerating system is put forward (refer to Section 5, eqs.(58), (59)). '
" Reduction of the lumped field given by eq.(15) to the distiibuted one of
synchronous waves (14) yields standard (‘smoothed’) equations of longitudi-
nal dynamics, ref.[5]. Next step to take may well be the use of the perturbed
equations which are deduced from the same model (14) of resonant interaction:
Really, noise given by eqs.(9), (10) emerges as a random amplitude or phase

variation suffered by wave (14). (Or, possibly, as a sum over such perturbations .

sufficient to represent function g(7) from eq.(8) through its Fourier serics de-
composition.) In this case the required statistical features of the noise (namely,
its stationarity and existence of the spectral power density) have to he taken
for granted in the co-moving coordinate frame directly. )

A more straightforward approach which is pursued later on proceeds from
the noise as driven in the laboratory frame. '

Random Field AE(O,t)

Due to the RF-system noises a random electric ficld AE(©,t) appears on
the orbit. By analogy with eq.(15) put it as ,
‘ N | v |
Ga(@)uu(t) . (19)
] ] .

n=1

AE(®,1) =%

where u,(¢) is the noise voltage across the n-th gap. The same gap also bears

the main oscillation ~ cos(q'wst — ¢,). Take it as the rcference onc. Then,

0

b
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) : o Appendix 1
Noises of Current in RF-Feeders -

Noises of acceleratiqg voltage are excited by those of RF-drive current in
the gap feeders. The latter noises are more logical to-deal with while specifying

_ the noise tolerances on a practical, RF-engineering level. Expressions for D(J)

in terms of such random currents can be readily established. Suffice it to insert
into the above formulae the particular expressions for the spectral matrices of
noise voltages — their representation in terms of current noises and relevant:
transfer-functions. ' >

To excite voltage (15), the external RF-generator drives a forward wave of
current in t}le gap feeder. Let this wave be presented by a current

, « I cos(g'wgt — ¢n), ‘ (96)

27



The unbunched-beam limit co_r‘responds to
, i
2Vext sin <Ps

» r ! 1 l
DT> T = 2 (B ) POWIY X @
One can readily verify that weight (79), (89) and amplitude (80), (91) func-
tions for the two narrow-band approximations just studied are inter-related:

IWE(T30) + VOTi=0) = WD)+ WD), (99

AO(T) = A(T) +AD(T). , (94)

The same relation holds for the rightmost numeucal factors of asymptotic
eqs.(85), (92): 4¢) = 2(®).4 209,

Though seeming formal at a first glance, these equalities rely on a firm
physical basis. Really, let spectrum P€)(w) of noise u(t) be symmetrical w.r.t.
frequencies w = +¢'ws: )

PO (qwy + Q) = P (q'ws - Q), - (95)

whereof it follows that P,p&)(Q) = P ,p&) ( ). ( (By its definition, the band-
pass white noise is precisely of this type.) Due to egs.(32), (33), (36), (37),
the effect exerted by stationary noise u(t) whose spectrum is of eq.(95)-type
is equivalent to a superposition of amplitude and phase noises v(#)(t) of ac-
celerating voltage, these being uncorrelated and having the same spectrum —
P@(Q) = PW(Q) = PENQ). This statement immediately entails equalities
(93), (94). These are but a particular manifestation of the géneral features of
D(J) discussed at the end of Section 2.

Both, the applicability range and the practical significance of eqs.(87)-(92)
is by no means less than that of the extensively-used expressions.(84)-(83).
Nevertheless, the problem of bunch diffusion under effect of stationary noise
un(t) — even in a simplified, narrow-band approximation (86) — has not yet
drawn a proper attention. (On the contrary, the noise- induced diffusion of
an unbunched beam was studied for such a ploblem statement from the very
beginning, ref.[5].)

Author thanks Drs. V.I. Balbekov and G.G. Gurov for many discussions on

the subject matter of the paper.
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imposing no restrictions to generality, voltage u,(t) can be expanded into a
sum of its inphase (~ cos) and quadrature (~ sin) components:

un(t) = W) cos(qluit — pa) — v (1) sin(gwit — pn) =

T #0) COS(qw t- el T (20
(=c¢c,s .

T . .
) =0n, ¢ =0pn— - (21) |

2

For brevity, use is made of notation T¢ later on. -

Formally, decomposition by eq.(20) is of an absolutely general nature. It
involves no extra suggestions on the features of u,(t), ref.[6]. Commonly, one
‘goes over to it for convenience. For instance, under certain limitations imposed
on the spectrum of u,(t), amphtudes v{)(t) may turn out to be slowly varying
functions of time.

But.let us have another look at this decomposition now. Here we study
stochastic processes. Their further analysis is impossible without an assumption
on the noise stationarity w.r.t. the laboratory frame. Which of the random
voltages, u,(t) or v€)(t) exhibits this behavior? (This question is not a senseless
one at all. The stationarity of u,(t) entails that of v{¥)(t). Vice versa is not

* always the case.).Technical realization of RF-systems allows both alternatives:

On the one hand, the RF-systems incorporate a low-level driving and shap-
ing circuitry: a master generator of reference oscillations, an amplitude modula-
tor and a phase-shifter. Physical concept of their operation, including the effect
of noises, relies on mixing the carrying and modulating signals, a small phase
modulation of the reference signal being reducible to an amplitude modulation
of the quadrature oscillation in a first approximation. For this reason the hard-
ware maintains not the voltage u,(t) as such, but rather the random-modulated
(in amplitude) oscillations: the inphase and quadrature ones as in the r.h.s. of
eq.(20). Either may be driven in a relatively independent way. Given a sus-
tained operation mode under permangnt external conditions, envelopes v¢)(t)

are stationary w.r.t. the laboratory frame, and their spectral intensity exists.

The statistical features of voltages Un (t) across the gaps are derivable from those
of v{)(t).
On the other hand, there exist intrinsic noises of the RF-power amplifier: a

" shot noise of the anode current direct component in the tube, a stray ripple in

the tube power supply, etc. These drive stationary gap voltages un(t) directly.
Decompositign by eqgs.(20), (21) is still allowable. But the statistical features
of v{¥)(t) are now secondary, and derivable from those of u,(t). Any amplifier
cascade is a frequency-selective circuit. Hence, it makes sense to anticipate the
spectrum of, noise u,() to tend to localize in the vicinity of w = %¢'w,, and to



have a relatively narrow bandW1dtlg there (in the scale of vradlo-frequency q'ws). .

‘The narrower is the noise bandwidth, the slower varying functlons of time are

the realizations of random amplitudes ‘U(O(t)

Thus due to the technical reasons solely we would draw a distinction
between the two types of external stationary noises of accelerating voltage.
Namely, these are: (i) amplitude-modulating noises v)(t) carried by oscilla-
tions cos(g'wst—p{)); and (ii) noises u,(t) without explicit-carrier as maintained

by the hardware. (In what follows the latter noises are revealed to be a subset

of the former ones.) Therefore, envelopes v{)(t) in eq. (20) are allowed to orig-
inate from different sources. But this keeps intact the physical content h1dden
in eqs.(20), (21) which is a rather simple one.

Indeed, let AE(O,t) emerge from a random variation of the main field (15).
Let restrict ourselves to a linear approximation in noises AV, (t) Apy(t). Then,
the inphase (¢ = c) component (20) corresponds to the noises of amplitude

o9(t) = AVa(t), o (22)

while the quadrature one (¢ = s) — to that of phase (pr ov1ded a small deviation
ofrthe latter) ,
v (8) = Vaba(t), (23)

R
Bp(t) = [ Awy(ty)dtr, (A < 2m,

It follows hereof that indices ¢ = ¢, s of the inphase and quadrature components

of perturbation may well be substituted by indices { = a, ¢ of the amplitude-

and phase noises of accelerating voltage, respectively. Anyway, it would have
adequately reflected the physmal nature of the effect inflicted by these pertur-
bations. \

Random Field Model

In a full accord with the afore-said let us study the diffusion of particles
" subjected to a random field ,

N
B(®,0) = 7 £ £Gu(0)v O(t)cos(gwnt - o). (24)
n=1 < : )
This model’s genera.hty resides in the following.

First of all, a particular meaning of ¢, features of random functlon v9O(¢)
and the value of (determinate) carrier phase ¢¢) would not be specified without

(21) is possible but is not necessary. However, in the latter case envelopes v(¢)(t)
would be slowly varying functions in the time scale of 27 /w,. ‘

Substitute eq.(64) into the formulae of Section 6. The use of model (86)
reduces the sum over k to two items with k = +¢'. Two series over m ,Jj are
thus retained whose members have the definite symmetry properties allowing
one to resort to a single summation. By acting a.long the same lines as in
denvmg eq. (82) one gets ‘

D7) = (—‘33——) £ POmUNWTidy 6

qzvext sin Ps j=—00
m = j, / (j < sjse‘p) )

. .
m= Z%Signﬁl + 25, (j 2 jsep" M= a, I‘pSI = g) .

‘Spectral power density P¢)(Q) of noise ‘seen’ by the beam is given here by .

ro@= (Voo e

Both, the origin and the meaning of all the co-factors are obvious from the
above consideration. What is essential, spectrum P¢)(Q) is no longer obliged
to be an even function of frequency Q. Welght functions W%)(J;¢') acquire
the 51mple form of

WENTd) = l LN (89)

Introductlon of a model of band—pass whzte noise u(t) is possible. Its spectral
power density P¢)(w) is constant within a range of a few harmonics of the syn-
chrotron frequency nedr w = *q'w,, while having a bandwidth which does not
exceed the revolution frequency w, > . Hence, functions P )(2) should now
comply with eq.(83). Envelopes v ©)(t) of such a noise, if these are introduced,
would be fast functions in the time scale of 27/(, and slowly varying ones in
the scale of 27 /ws. The diffusion coefficient for the band-pass white noise u(t)
reads

D(C‘)( J)

1 o2\ y
0 (9] (¢] k
2 ( 2Vt Sin g ) P (0)\A (), (%)

\A(F’)(J) = 2; W,(,f)(J q)= qu/; (é%’*’/’))z (91)

25



Given ¢ = ¢ and ¢, = ¢, €qs.(79)-(84) grow into results of ref.[1}. Two in
the role of an amplitude function for ¢’ # 0 in eq.(85), as well, corresponds to the

unbunched-beam limit which was discussed in ref.[1]. (In a particular casc of a -

storage mode when |ps| = 7/2, eqs.(79), (80) along with the diffusion coefficient
~ are amenable to analytical calculations in terms of the elliptic functions.)
Hereof, the role of inequality (77) is revealed completely. It is the applica-
bility range for the results of ref.[1] and, hence, for those of carlier refs.[2,3,4].
Quite obvious are the following two qualitative implicatious of eq.(76) which
simplify the physical picture involved.
Firstly, there appears a possibility to treat the accelerating system as a

single infinitely-narrow gap, spectral power density across which being given by

eq.(81 -

' (Sezondly, one may come back to a model of a noise that is statlonmy w.r.t.
the co-moving frame, in which model the beam is affected by perturbations of
synchronous wave (14) whose pattern is v€(t) cos(¢'? + ¢©)). It follows from
the fact that the results of the present Section were cssentially obtained in
.tef.[1] in frames of that very approach. (Here v)(1).is a random function of

" time given by its spectral powe1 density (81). Phase ¢©) is defined through
¢q.(63). On taking ¢’ = ¢ and ¢ = @s, one gets the former noise representation
by eqgs.(9), (10).)

As is clear from the a.fme-sald the w1thd1awal of conjecture (77) in favor of

Ty ~ 27 [ws or T, K 27 Jws — bcmg essential for proton synchmtlons with the

large orbit perimeters (UNK, LHC, SSC) — is not a trivial onc at all. It is not

" only a quite expectable sum over the noises at revolution frequency harmonics

that appears. Under certain conditions (of eq.(66)-typc) an account should be
taken of locations of the accelerating gaps around the ring.

Y

Higﬁ-ﬁequency Noise u(t)

Studies of stationary noise u(t) with a low- frecquency spectrum like that
given by eq.(76) are not of a major interest. More instructive is a case of high-
frequency noise u(t) whose spectrum is localized ncar frequencies w = +q'w,:

4 ], . d .‘ 1 !
PO ke, + Q) = 568,-¢ PO(=0) + 58k POQ). (86),

Here, function p)(Q) occupies a lower-frequency domain inside a bandwidth -

of Aw, € w,. Generally, p<)(Q) # p©?(—Q). For definiteness, this noise is
labeled by index { = (. To a certain extent, it is a complementary counterpart
of the case just studied. The transfer to representation of u(t) iven by egs. (20)

2

necessity. Thereby we involve into the scope of eq.(24) any random-modulated
oscillations with their carrier phases shifted w.r.t. the reference one:

w(t) = S0 cosldont = o), ) £ on. (25)

Such signals may intentioenally be driven by an external noise generator. These
can readily be studied without a recourse to their decompositions given by
egs.(20), (21).

Secondly, the framework of eq.(24) embeds a pa.rtlcula,r case of stationary
noise un(t) as well. It can be approached not only through a trivial substitution»
4 =0, T v (t) cos ) = u,(t). Outlined at the end of this Section is another
route which is not so much suitable for the practical calculations as the former
one though being essential in principle.

Let modulating voltages v{)(t), (v¥)(t)) = 0in eq.( 24) be (wea.kly) sta-
tionary and stationarily-correlated real-valued stochastic processes given in the

‘laboratory frame. By definition, their cross-correlation functions do not depend

upon the current instant of time ¢

@O (- 1) = (v i) (26)
and exhibit an obvious symmetry
(v v)ff,f," (=7) = (o) $(r) (27)

with n,n; = 1,2,...,N. These define functional matrices of cross-correlations
between the gap noises. (Each is dimensioned as N x N. According to eq.(27),
not all of the matrices are independent.) From the viewpoint of a correlative
theory, matrices (26) entirely describe the statistical features of the external
noise in the time domain.

The noise properties in the frequency domain are given by (complex) spectral
matrices. Their elements, the (mutual) spectral power densmes are the Founer
transforms of cross-couelatlons (26):

[~ ) :
Piw) = [ (o) (r) expiwr) dr (28)
—0o
withn,n; =1,2,..., N. Due to real-valueness and symmetry (27) of the cross-
correlations, matnx elements P{$)(w) acquire the property of

nn

P,Sﬁf"( ) ((Cl)(w) = (Cl()( ). (29)



Main-djégonal elements P&¢)(w) are real-valuéd and symmetrical functions of

frequency w. These can be interpreted physically as (double-sided) spectral
- power densities of stationary noises v{9)(t). Due to evenness of auto-correlation
function (v v)$9(7) = (v v)§)(—7), the double-sided Fourier cosine transfor-
mation, rather than that of eq.(28), is commonly applied to calculate P9 (w).

Quite transparent are the physical reasons that force us to resort to eqs.(19),
(20), (24) which are put down in the laboratory frame. Particular samples of
random voltages v)(t) are, by no means, obliged to be slowly varying func-
tions in the time scale of 27 /w,. That is, the frequency spectrum of random-
modulated oscillations v()(¢) cos(q'wst — ¢{¢)) may well contain harmonics of
the revolution frequency other than ¢'. It is due to these harmonics that the
new synchronous-to-beam propagating waves of voltage appear on the orbit.

They affect the beam systematically at harmonic numbers other than ¢'. Their

phases being uncorrelated, the new waves involved sum up incoherently, and
do not build up any determinate spatlal pattern (like the ‘one given by function
9(®) from eq.(8)). : :

Of course, these effects can hardly be studied whenever the noises are in-

troduced by egs.(8), (9), (10) in the co-moving frame directly, in terms of |

synchronous wave perturbations (14). Such an approach allows one to treat
stochastic processes that are slowly varying in the time scale of 2m/w,. The

latter is apparent from general physical reasons, and is conﬁ1 med by the calcu-

latlons which follow.

Statlonary Noises u,(t) and AFE(©,1)

‘Due to multlphca.tlon of stationary mgnals v{9(t) by harmonic carrier os-
cillations at frequency ¢'ws in eq.(24), stochastic processes u,(t) and AE(O,t)
are almost sure to be periodically-unstationary, their moments bemg penodlc
functions of t. ‘

The only exception is the case when inphase and quadrature amplitudes.

v{>*)(t) show quite definite statistical features, ref.[6]: :

Wo)$(r) = (vu))(r) = Cmy (1), @0

(o)l (1) = = (v V)57 = =S, (7). N €)Y

Or otherwise, in terms of the spectral matrices, ’
PG (w) = P2(w) = Con, (1), (32)
P{(w) = —~Pi(w) = =Sun(w) (33)
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b

Let us put coefficients (N2%,N), along with |G |2 from eq.(78), into the
definition of effective spectral power dénsity P (). of. noise v(9(¢) as ‘seen’ by

- the beam .

S |
0@ = (Y@, Po@=ro-a. 6y

Factor N? or N should again be taken aécordmg to the context as established

by eqs.(66) or (67), 1espect1vely Factor |Gyl < 1 accounts for the transit-time

cffects at frequency q'ws.
As a result, eqs.(68), (43) and (50) convert into

Q’Z
. . m=j, (jsjsep)a

m= 2]’ (\7 Z Jsepv M= q, k"sl = g) .

By adhering to constraints (76) and (72) simultaneously, one arrives at a’
yiodel of the so-called (low-pass) white noise v(©(t). It has the spectral power
density which is.constant throughout a range of a few synchrotron frequency
harmomcs, its bandwidth, however, not cheedmg the revolution frequency
ws > Qe
P«)(O): lQI S 'm|Qs§

0, 19] 2 w. (83)

7»(0@); {

" Realizations v©(t) of such a noise are both, fast functions in the time scale

of 2m/Q, and slowly varying ones in the scale of 27 /w,. On inserting eqs.(76)
and (83) into eq.(73), one gets the diffusion coefficient for the (low-pass) white
noise: ~ ‘

Q?

.0 ©) Ng
e LY/ S

- 1
DO(T) = 3 (
Eq.(75) yields for the uubunched-beam limit

Q’Z

1
D(O(:.] g Jsep) = 2 ((ﬂVext sin g

) PO (¢9'(T)) x 2(1 + bq0 cos 2<p©). {85)

(Notice, due to evenness of P¢)(Q), there is no dependence on the sign of ¢’
here.) -

23



Possibility of further simplifications to yield the results of refs.[1,2,3,4] for
the amplitude and phase noises of accelerating voltage emerges from a rather
stringent conjecture.on the spectrum shape of noise v(©(t).

7. Narrow-Band Noises

Low-Frequency Noise v(9)(t)

Let the spectrum of (modulation) noise v©)(t) be localized in a lower-
frequency domain within a narrow bandwidth:

PO, +2) = 810 7O(@), (76)

where P(Q) = p(( (—9) is a low-frequency function whose bandwidth at base
is subject to constraint Aw, < ws. Therefore, correlation time 7, of noise o9 t)
should exceed the revolution period, 7, > 2m/ws, which implies realizations
v€)(t) to be slowly varying in the time scale of 27/w;. Combine the latter
inequality with the initial conjecture (6) where 7oy = 7, is taken. The result is
eq.(12) which was discussed formerly in Section 1:

2w —
— L 1 K Thif. (77)
8 ‘

Due to assumption (76), the only term with & = 0 should be retained.in all
the formulae of the preceding Section, which has the following consequences:

Firstly, [fol*> = 1, and the diffusion coefficient under noise (66) fanls to

depend on gap coordinates Oj.
Secondly, it can be easily established that functions V\/,,,k( J) and AP(7)
from eqgs.(71), (74) factorize when k =0,

W) =GP WOT),  AP(T) =GP - A9T).  (18)

Here, the following notations are used

WO = !,,,,,(J)exp (+ip®) - Lo exp(=ig O s (79)
A7) = Z WE(J) = - (80)

]‘—-00

= 5 / i (250 ’p)) o 07.)+59)
™
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where C,Spn,(w) = C,Snn,(—w)* are the Fourier transforms of the r.hs. of
eqs.(30), (31).

Under these conditions one gets noises up(t) and AE(G t) which are sta-
tionary w.r.t. the laboratory frame. Really, multiply un(t) by un,(t — 7) both
taken in the form of their expansions (20). Average the result statistically. Due
to egs.(30), (31), all the.oscillatory (at frequency 2¢'ws) functions of current
time t would cancel each othér, which would exclusively retain the dependence
on 7. Cross-correlation function of gap voltages un(t) converts into -

(@a(®) un,(t = 7)) = Cun, (1) cos(q'ws'r — Appn,) = :
— Spn,(7) sin(q'ws™ — Appn,), (34)
A‘Prml = ©n— Pn,.

’

Which, in itself, is an evidence for the stationarity of u,(t) and AE(6,t).
Like any other stationary noise, ua(t) can be described by its spectral matrix -
Ppn,(w). By applying the Fourier transformation to identity (34) one gets

1 A : .
Ppny(w) = —(Cnnx("-’ + ql%)e_'A%"‘ + Copy (w = qlws)eﬂA%"‘) +

2
b 5 (Som o+ e — S aerion). (39)

Functions C, Spn, (7) may be referred, to as the inphase and quadrature am-
plitudes of expansion (34) of the cross-correlation: Thus, they are not indepen-

dent at all. Indeed, by a mere inspection one concludes that eq.(35) is solvable
for C, Snn; (w):

Con, (W) = ( ,,,,l(w + glwg)e B¢ 4 P,.,,l(w -q w )e+‘A“"“‘1) (36)
San (W) = §(P"": (w+ qws)e_'A"""l — Popy(w — ¢ ws)e+'A%nl)' (37)

In this route we express spectral matrices (32), (33) of random amplitudes

“v{©*)(t) through spectrum Py, (w) of stationary noises u,(t) across the gaps.

Now, they are voltages u,(t) which can be treated as the primary noise sources,

- while'v{9)(t) and their features by eqs.(30)-(33) turn out to be the secondary

ones. The possibility itself of such an inversion is closely related to the afore-
said generality of decomposition.by egs.(20), (21). The latter is apphcable toa
stationary noise u,(t) as well.

However, in this case an admission of oscillation cos(q'wst — ¢n) to be the”
reference one is not predetermined physically. (Provided, of course, we are not

11
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going to treat egs.(20)—(23) along with egs.(32), (33) as a way of expanding

stationary noise u,(t) into sum over the amplitude and phase noises of accel--

erating voltage.) Any frequency from the spectrum of u,h(t) can be taken as
a reference one. Moreover,.even such a choice is not obligatory if we are not
lnsisting on envelopes v(o(t) to be slowly varying functions of time. Thus, the
- presence of parameters ¢' and ¢, seems to be redundant as only the final results
- are concerned. And it happens precisely this way ultimately.
Indeed, it was noticed earlier that there existed a more direct way to attack
stationary noise u,(t). Eqs.(20), (21) show that this approximation can be
approached, e.g., by putting

vv(:)(t) = un(t); Cc)(‘*’) Paa(w) - (38)

into the ultimate formulae. From this viewpoint, the stationarity of noise un(t)
is but a particular manifestation of its periodical non-stationarity — with the
relevant period tending to infinity.

C=c5 ¢=p.=0

From this it follows that the diffusion coefficient of particles in random -

field (24) would show quite an unexpected feature. Namely, the insertion of
particular spectral matrices (32), (33), (36), (37), with ¢' and ¢, embraced
_explicitly, must yield the same result as the use of eq.(38) with ¢’ = ¢, = 0.
At a first glance, such a structure of the diffusion coefficient is not self-evident.
Still, the expressions for D(7) obtained later do exhibit such a behavior.

All this offers a key to a physical interpretation of dynamical effect inflicted
by stationary noise u,(t) of accelerating voltage. It acts as a superposition of
the inphasé and quadrature — otherwise, of the amplitude and phase — noises

v{**)(t) which have quite definite statistical features as given by eqs. (32), (33) ;

(36) (37). -

3. Diffusion inside Buckets

Random electric field (24) originates azimuthal ‘(a.long ) voltage harmonics

whose amplitudes are
AVk(t) = E ZG,, " v(o(t) exp(zkwst) cos(q' wst — 99(0) © - (39)

Therefore, the cross-correlation functlons entering diffusion coefficient (2) ac-
quire the form of

12

This factor has an out of-phase interference nature. It.takes mto account a
possible incoherence of an effect exerted on beam by the spectral components
of noise at frequencies (k = 'q")w,, the reason of the incoherence residing in a
non-optimal (for the Iatter frequencies) phase-lock of fields in the accelerating
W gaps.
i . Emergence of N? as of an (upper) factor i in eq.(68) is quite understandable.
Given eq.(66), a near-to-coherent summation ~ N of the random voltages across

b - the gaps occurs. Hence, spectral power density of the noise ‘seen’ by the beam

~ may increase 5 N2, which is contrasted to an increase ~ N in case of eq.(67)
for the uncorrelated random voltages.

Eq.(68) also embraces weight factors W{)(J ) which equal

W(O(J) m4q mkk-:l;j)

. 1&@ Gy exp(_,-g,(o) _

Gryg exp(+ig©) + - (1)

Eqsentially, it is the absolute. value squared of V,(,") (J ) from eq.(44), the latter
function being expressed in terms ol gap form-function G(0), eq. (60).

-Given a noise with a slowly varying (in the flequencv scale of Qy < wy)
spectral power density

, PO (kws +mQu(T)) s PO (hus), (12
eqs.(tl?) (48) convert into . -
© 1 @\ = (N Ifl ’
290 =3 (mirm) Z (N )P A o,

A7) = 3 W) = %7 (84"9(‘7 ¢)) x (1)

Jj=—oc0 —

Gk+ql exp(+zq'19(J ¢)+up(4)) + Gk — exp( iq ﬂ(y ¢) 2(,0(0)'

Fmally, in the unbunched beam limit it follows from eq.(54) that

© 1V os (v
5 DT > s7sep) ( Vet Slﬂ%) kgoo N X (75)
, X [P“’(kw(J) +¢7(9)) [Grag '+ PORAT) = ¢9(7)) [Gayl? +
g o 4 P(()(kw(j))]@k]2.26q'0cos2<p(o]-
21



Statistical Interplay between Gaps

To simplify the matters, let the noise spectral power density be the same for
each of V¥ gaps. It is the level of cross-correlation between the random voltages
across the gaps which is taken to be the only subject to distinction in extent.
Two qualitatively opposite conjectures are possible which yield quite simple
results. Namely,

1. Absolute gap-to-gap cross-correlation of noises:

P,sg{(w)=P(0(w). - (66)

Such a noise source may be introduced by low-level driving and shaping circuits
of the RF-system (a master oscillator, amplitude and phase modulators) which
are shared by all accelerating gaps.

9. Complete statistical gap-to-gap independence (uncorrelation) of noises:

P (w) = PO() b, : (67)

Such features may be appropriate to noises driven by the RF-power amphfiels
which are coupled each to a certain accelerating gap.
Both these assumptions are studied concurrently.

6. Wide-Band Noise

Insert eq.(65) followed by eqs.(66) or (67) into eqgs.(42), (44). Sum up over
n to get

T
2Vexs 81D 05

DY 3) 1 (

% PO(ku, + m(T)) W),

Either of factors, N2|fi|2 or N should be taken according-to the assumption
studied, the one given by eqs.(66) or (67), respectively.
Function |fi|2

kj=-00

2

0< Al = |5 z exp(-ik0,)| <

depends upon locations of the gaps along the ring. For example, their regular

. layout ©,, ~ AB - n gives

in?(FAON/2) _
fil? = ]%?m- (70)

20

02 )2 S (N21l\{kl2,)x | (68)

(69)

-‘.\\

-

N ! .
Y 2 GuaGop, (v 0)$8)(7) x (40) °

"'nl:l C)(l
x cos(g'wst — p©) cos(g'ws(t — 7) — p{) x
x exp(i(k — k1)wst) exp(ikiwsT).

(AVA() AV (t - 7)) =

v
Thereby, a periodically-unstationary stochastic process is encountered in the co-
moving frame, as well. Fortunately, being time-averaged over a period of 27 /ws;
its correlations show a property of the moments pertaining to a stationary '
stochastic process. Perform such an averaging in eq.(40) to get

142

j dty (AVi(t)) AV (t — L

N = ¥ GG x ()

nni=1(G 4
(U U)S.,(;&)(T) [6hL exp(z(k +q )wsT - l((p(c) ¢£:€1))) +
+8, k+2g exp(i(k + ¢ )wsT — () © 4 9,((1))) +

+... ((! —b—q’\ (p_._(ip)

witk. 6;,x denoting the Kronecker’s delta-symbol. Non-vanishing contribution
to sum (41) is borné by those of its items which comply with the conditions of
frequency resonance: (k — ky)ws = 0,+2¢'w;.

Insert eq.(41) into eq.(2). Straightforward calculations, unwieldy though
they are, provide the diffusion coefficient (or, to be more precise — its system-
atic part D(J)) in the form of -

D(J) = 1(_ o ’ ) 49
= 2\ Vegsing,) * o (42)
. N ’

x 2% Y P (ku, + m(T)) VORI VER(T).

n,m=1(,( kj=—co
Inside separatrix, the label m of multipole coincides with the summpation
index j:
m=j, (J<L Jsep)- (43)

Such a notation is employed intentionally. Its eonvenience will be confirmed
later, refer to eq.(50).

Factors V,(,f,),,k(J ) specify the efficiency of the bunch perturbation excitation
at the m-th multipole as caused by spectral components of noise v{¢)(t) at

13
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frequency w =~ kw,:

V=T (BN ey @
+ 'Ill:iMGn;k—q’ exp('—isos."))-
These functions depend on both, the carrier frequency ¢'w, and its phase ¢{¢)
. w.r.t. the bunched beam. The presence of expa.nsioh coefficients I, ;,,» which
décompose plane waves ~ exp(i(k=£¢')J) into series over multipoles ~ exp(imi))
is quite explainable. Multiplication of signal v{)(¢) by high-frequency harmonic
 oscillation cos(q'wst— () translates spectral components of voltage v{9)(t) from
frequency w =~ kw, into a region of (higher) frequencies w =~ (k % ¢')ws. From
which these as such affect the beam by driving the multipole oscillations of
the bunches. Quantities Gp;+y are the transit-time factors at the relévant
frequencies (of interaction). '
Apart from noise correlation time 7, ~ 7aoy, beam revolution period 27 /w;,
and time constant 745 of the bunch diffusion (refer to Section 1), the problem

in question has one more representative tiine scale which is imposed by unper- -

turbed motion of particles in the external accelerating field. It is the period
of synchrotron oscillations 27/Q, with 2 ~ Q denoting some typical value of
synchrotron frequency. Seo far no restrictions were nnposed on a relationship
between 7, and 27 /). Never thelcss a quite universal way to snnphfy general
eq.(42) may follow from this.

‘Let realizations of noise v{¢)(t) be fast functions in the time scale of the
synchrotron oscillation period:

2 .
Ty <K ﬁs. . (45)
(Com\;nonly }s < ws, and the above assumption may turn actual for wide-band
noise (13).) :
In which case P(“‘)(w) should vary insignificantly tluoughout any interval
of frequency w ~ Qs € ws. Thus, take

nny nn,

and factor this quantity out of the sum over m, j in eq:(42). The scries of the

weight functions thus retained is summable (reducible to quadmtuws) The

result is the diffusion coefficient:

D(7) = ‘( %) s Sen

2Vex'. sin Ps) nm=1{( k=—oc0

2 AL(T), @)
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PO (g + m@y(T)) ~ PO () (46)

-
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i
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To stud}; noise u,(t) which is stationary w.r.t. the laboratory frame take
=0, ¢f=¢9(=0). ()

(Identity ¢ = 0 is not an essential one. Its dismissal would only alter instan-
taneous values of noise uq(t) ~ cos ¢(©), and its spectral intensity ~ cos? p(€).)

Uncorrelated Noises { = a,¢

Let us follow the interpretation of the inphase and quadrature components
of the random perturbation as offered by egs.(21), (22), (23). Replace the
noise type indices ( = c, s by those ( = a,¢ attributed to the amplitude and
phase noises of accelerating voltage. Consider noises { = a, ¢ to be statistically
independent (or, to be more correct, uncorrelated):

PiVw) = PRW) & - , (65)

Thus, components { = a,¢ would enter D(J) additivelys D = Ec_.,pD(o
The objective of calculations is a component D(c)(J ). It stands for a noise of
type ¢ = a,y depending on a particular phase option in eq. (63) (Subsequent
summation over { = a,¢ is implied, but is not commonly carried out.) The -
expression for D(O(J ) copes with a transition to stationary noise u,,(t) as well.
It can be performed via substitution (64).

- Rigorously speaking, assumption (65) is a concession to a customary ap-
proach of refs.[2,3,4]. To justify it, one might recall that the beam dynamics
still remains the subject matter under study. Noises ( = a, ¢ of the accelerating

- voltage do occur in quadrature, and build up a basic (‘mutually-orthogonal’)

set of the external perturbations. To a certain extént, beam responses to these
two types of perturbation diverge to the utmost in their features. It is for this
very .reason that these are themselves of interest.

As from a practical standpoint, the situation seems to be somewhat different.
A question arises regarding technical feasibility of eq.(65). A more natural and .
technically imposed system of basic perturbations appears to be that of the

‘amplitude and phase noises of the forward wave of current in the feeder of

accelerating gap. Their cross-uncorrelated performance, being quite plausible
practically, does not necessarily results in eq.(65). The latter is an exclusion *

rather than a rule. Expressions for D(.7) in terms of these random currents are
obtained in the Appendix.

19



Acceleratmg System Model

For definiteness, let the-co-rotating frame be introduced as ¥ = © — wt
(1 e. the reference particle ¥ = 0 of the bunch in questlon traverses the origin
© = 0 of the generalized azimuth at the moment of time ¢ = 0, and after
each revolution period of 27/w, further on). Substitute decomposition (16)
into eq.(15) and transfer to the co-moving frame. The required form (14) of the
synchronous wave can be obtained by, say, the following choice of amplitudes
V, and phases ¢, of the gap voltages:

C . Z |Z IGN q‘l ext.’ ) (58)

¢n = @, — argGny (mod2m). (59)

The last of these expressions specifies a way of phase-locking of fields in the
gaps, which depends on their locations along the ring. While the first one
entails that the lowest level of RF-power is consumed to drive the required
amplitude V/,, of the accelerating voltage: the, RF-powe1 to feed the n-th gap
is~ V2 Itis the last argument that makes conditions (58), (59) optimal, and
these are commonly realized in practice.

Consider the field geometry to be identical in all the a.ccelemtmg, g,aps (In
many cases it does not conflict with the reality.) Then, the entire distinction be-
tween functions G,,(©), eq.(16) for the different gaps is 1educed to an azimuthal
shift of their common form-function G(©):

G,(0) =G(0 -0y, ) (60) -

where ©, is the coordinate of, say, the n-th gap center. Hereof, harmonics G«
(17) can be presented in the form of '

G,,,k = G} exp(—ik©,). o (61)

Without a loss of generahty, from now on we require coefficients Gi,, to be
real-valued, i.e., having arg Gy = 0.

Insert eq. (61) into phase-lock identity (59) Then, by a.pplymg to definitions -

(21), one determines carrier phases ¢ for both, the inphase and quadrature
noises v{)(t):

¢#0, =90+ (6., | (62)
T
=p, =g-3 (63)
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where As,c,fl’),,(J ) is the equation symbol for amplitude function:

" 1 0¢I( T,
= £ WOV [ av (220 )) (48)

[G,. krg Xp(+HiqO(T ) + i) +GCrp_g exp(—ig (T, $) — isoﬁf))]x

x[ Lo (n—rnl,(—+cl)] .

A(C(x) .(J) =

rm,,
-

4. Diﬁ'ﬁsion beyond Stationary Buckets

Let us remind the principal guide-lines to extend the diffusion equa.tlon
to beam halo region, ref.[1]. ‘Only a storage operatlon mode is involved, i.e.,
lgs| = 7/2. Angle-action variables (4, J) of finite orbital motion of untrapped
‘particle are introduced. Choice of ¢'/q = 1,2, ... results in coincidence of the
diffusion coefficients inside all the beam buckets. Therefore, on injecting M = ¢
identical bunches, the beam halo would be built up uniformly w.r.t. phase ¢. (In
other words, the random phase type of approzimation for the orbital motion is’
realized.) Consequently, particle dynamics in the halo region may be ultimately.
reduced to a single closed equation — the diffusion one along coordinate 7.

Further, periodicity (with a period of the main RF) of the orbital motion
allows one to transform (%, .J) to scaled variables (¢, 7). The latter are de-
fined within the one RF-period, near the separatrix at issue, and manifest the
following behavior:

1. At J = Jeep 80 over contmuously into ¥, J and dy/dt =
synchrotron oscillations of trapped particles.

2. In case of J > Jep (unbunched-beam approximation) passage is per-
formed to the limit:

Qy(J) of the

Y- Qsigm?’, J - %9—‘, Q(T) — qw] (49)

As aresult, the dlffusmn coefficient along coordinate J, J > Je, is obtained
which resembles outwardly eqs.(42), (44) or (47), (48). All the formal difference
is reducible to the following three modifications:

1. Instead of eq.(43), use should be made of an ana.logue for the multipole
index m beyond sepa.ratnx

k. ) . '
m= 2Es1gm9 + 2§, (J > Jeepy M =1q, |os| = ;—) . (50)

15



2. Functions I(J) inside weight factors (44) grow into a continuation of '

eq.(3) beyond separatrix:
w(9) = 2 [ db expliki(T,9) — imd), (51)
0 \

9T, % +7)

o '
9T, %) + 7"s1gmv', T 2 Juep-
/ :
3. Amplitude factors (48) get the new limits of integration over phase:

2"/ dp - —/*’d«/» - (52)~

Up to these reservations, we are not going to dlstmgmsh between cases
J £ Jep and T > Joeps M = g, |995| = 7r/2 a.ltogethe1 (Naturally, save the
unbunched-beam limit to follow.)
Unbunched-Beam Limit

Wide-band performance (in the frequency scale of w,) of noise v{©)(¢) inflicts,
though wWeakly so, an asymmetry to diffusion coefficient D(.J) as J > Jpep. Now
it starts to depend on where the particles move, in the upper (¢ > 0) or in the
lower (¥ < 0) half-planes of phase-plane (¥, ¥'). (Such a possibility can first be
- noticed as early as from eq.(50).)

The most apparent illustration to this effect can be gained by passing to the
limit (49) of unbunched beam in which case functions (51) do degenerate:

Be) bt (D)

Substitution of these values into eqs.(42), (44) yields

D(J > JSGP) q2vext S g

nm=1¢(. k_-oo
X | PEOk(T) + ¢9'(T)) GritrgGryiy exp(+i(pd) — &) +
+PE (ko (T) = ¢F(T)) Gy Gray exp(=ileil) — o)) +

nn;
+ P (ku(J)) Gn anl ik 26,70 008(97«) ) |,
where w(J) denotes the angular velocity of the off-set particles:

w(J)=w,+19’(J);' -
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(—"2—)2 > z:'f:.x (54) -

H)=Lgimr. (55

=g

LJ:

Given ¢' # 0, eq.(54) retains-its dependence on carrier-phase differences

(0 = p&V)) only, i.e., on the cross-lock in phase of fields across the accelerating

gaps. Then' phase-lock w.r.t. an unbunched beam is inessential (and, moreover,
is not well defined at all). .

leen q’ 0, one goes over to a particular case of noise u,.(t) that is station-
ary w.r.t. the laboratory frame, in whlch case eq.(54) is subject to a noticeable
sunplxﬁcatxon

2 ’ .
- D(T > Jup) = 1(“—3) Sy R - (56)

Wet SINQs ) nmimt {41 kamoo
x 4 P,S‘;,f"(kw(])) GG cos @) cos ‘ngll)-

Emergence of factor cos p{¢! cos 2{¢) is quite explainable. It takes into account
that voltage u,(t) = ¢ v{¥)(t) cos 99(0 is, in fact, applied to the gap as ¢’ = 0.
While spectral matrix P("f’)( ) is related to amplitudes v{S)(t) solely.

" For example, consider one gap (n = N = 1) and a single stationary noise
source (say, ¢ = 1): ’ ’

P(«l)( P«)( ) 6nny 8¢y s 97$|()' = 0. l

nn,
As a result get from eq. (56)
* QJ 2w © 9 ’
2| — : . ' .
D(J > jsep) & ((I?vc\l, sin 975) k=z—:°° Pn (LW(J)) IGn,kl . (57)

Convert J into a new independent variable ApL/2r with Ap Being the devi-
ation of momentum from the reference one. Consequently, find out the above

expression to-coincide with the diffusion coefficient which was obtained in 1ef 5]

in treatment of the so-called stochastic acceleration technique.

-

5. Simpliﬁcations

~ General expressions for D(J) are too complicated. More particular results
are of practical interest. Major possibility of getting them is to involve a few

physically justifiable assumptions on the structure of cross-correlation matri-

ces (26) or, equivalently, of spectral matrices (28). A simplified model of the

accelerating system is required, as well.

Let us introduce these suuphﬁcatmns one-by-one Wlth all the suitable com-
ments accompanying.



