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Abstract 

I'.-anov S. V. Longitudinal Diffusion of a Proton Bunch under External Noise (Wide- Band Noise): 
IHEP Preprint 93-14. - Protvino, 1993. - p. 31, refs.: 6. 

The paper is an extension to the former Preprint IHEP 92-43 with the same title. It presents 
the diffusion coefficient for a bunched beam subjected to a wide-band noise of accelerating 
voltage in a proton synchrotron. The noise wide-oand performance infers its spectrum to stretch 
over many revolution frequency harmonics, i.e., a possibility of an arbitrary ratio of the noise 
correlation time to the beam revolution period, which turns out essential to treat the noise­
induced diffusion in large rings - UNK, LHC, SSC. 

AHHOTaIUU! 

l'1BanoB C.B. IIpo.uoJIhH3,jI .uH¢¢Y3HjI crycTKa npOTOHOB no.u .uei1:cTBHeM BHenIHero IlJyMa (IIIH­
POKOIIOJIOCHhIH illyM): IIperrpHHT H<t>B8 93-14. - l1pOTBHHO, 1993. - 31 c., 6H6JIHOrp.: 6. 

Pa.6oTa jIBJIjIeTCjI rrpo.uomKeHBeM nperrpI1HTa H<t>B8 92-43 c TeM )Ke Ha3BaHlleM. B Hell 
IIj)JJBe.ueH K03¢¢llUHeHT .uH¢(py3Hn .umI crpyIIIUIpoBaHHoro rryqKa B YCJIOBH~X lUUp0'KOno.lI.oc,/w­

20 IlJyMa YCKop~Homero Harrp~)KeHn~ B npOToHHOM CHHXpOTpOHe. IIIupO'lwno.Jtoc,/wcmb IlJyMa 
03HaqaeT, 'ITO ero crreKTp OXBaThIBaeT Mhoro rapMOHHK qaCTOThI 06pameHH~, T.e. B03MO)l(­
nOCTh rrpOH3BOJIhHOrO COOTHOIlJeHn~ Me)K.uy BpeMeHeM KOppeJl~UHH IlJyMa H rrepllo.uoM o6pame­
HII~  IIyqKa. IIocJle.uHee Ba)l{HO .uJI~ ('mamBa IlJyMOBoH .uH¢qJY3I1H B 60JlhillHX KOJIhuaX - YHK, 
LIIC, SSC. 
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This paper is, essentially, an extension to Preprint [1] with the same title. 
Occurring in quadrature, aIilplitude and phase noises of .ac~elerating  voltage 
build up a convenient model for treating beam dYl~amics.  The approach of ref. [1 ] 
allows one to continue these studies ~ this time under arbitrary relationship 
between noise cOl'l'elation time and beam revolution period. Such an analysis 
shows the results ofrefs.[1,2,3,4] to be valid for a relatively low-frequency and 
narrow-band noise whose correlation time exceeds substantially the revolution 
period. Hence, these results may not be applicable to proton synchrotrons with 
large orbit perimeters (UNK, LHC, SSe). On the contrary, the present paper 
offers expressions which hold in the latter case, as well. 

1. Status' of the Problem 

Longitudinal dynamics of a proton bunch subjected to external RF-noise is 
governed by a diffusion equation. Write down the latter in the form obtained 
ill ref. [1 ] 

a(F~)(..1,t) = ~ (D(..1 t)O(FQ)(J,t)). (1)at 8..1 '. 8..1 

Here t is time; ..1 is action variable.whose value at separatrix is .:lsep; F is particle 
distribution function., The angular brackets (... ) are the equation symbol for 
statistical average over noise ensemble. The subscript '0' denotes mathematicai 
a.verage over phase 'IjJ, the canonical conjugate of J. The angle-action variables 
C~),J)  are introduced in the longitudinal phase-plane ('1J,'IJ' == d'IJ/dt)~ where)f 

i 'IJ '" (3 - wst is azimuth in a co-rotating fra1D;e; (3 is a generalized azimuth 
, ' 

around the ring as measured i.n the laboratory frame in the direction of the beam 

/-
Illotion; Ws is the angular velocity of a reference particle synchronous to the 

" 

• 
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nominal value of the acceleration frequency. The origin tJ = 0 of the coordinate 
tJ is put on the unperturbed reference particle of the bunch in question. 

The diffusion coefficient, say, inside separatrix (:J ~ :Jsep) rea4S, [1] 

1 ( O~, )2 f 2 f I:nk(:J) I mk1 (:J)D(:J, t) (2)= 2' qV~:<t sin ips m=-oo m k,k
1
=-00 k k1 X 

00 

x 2 J(!iVJ:(t)~V~(t  - T)} exp(imOs(:J)T)dT. 
o 

Here, the quantity 0 0 has the meaning of a circular frequency of small-amplitude 
oscillati~ns  in a potential well U( tJ) with' U( tJ) --+ tJ2/2 as tJ --+ 0; q is the' 
main RF, harmonic number; ~xt  is the nominal value...of accelerating voltage 
amplitude; ips is the stable phase angle (<Ps > 0 below transition with th~  

synchronous energy gain beinge~xt  cos <Ps); Os(:J) '= d'IjJ/dt is the frequency of 
non-linear 'synchrotron oscillations. . I , 

FUnctions 1:n'k(:J) are the expansion coefficients of a plane wave into series 
over multipole oscillations: 

,1 +?r 

~:nk(:J) = 211" J d1/' exp(ik?J(:J, 'IjJ) - im'IjJ), (3) 
-?r 

1?(:J, '1/) + 211") tJ(:J, tP), :J ~ Jsep. 

The beam is subjected tc a random voltage ~V(19,t),  I~V(tJ,t)1  ~  ~xt  

treated in the co-rotating frame..Due to periodicity ~V( tJ, t) = ~V(tJ + 211", t) 
it can be Fourier series decomposed: . 

00

~V(tJ,t)  '2: ~Vk(t) exp(iktJ), (4) 
k=-oo 
1 2?r . 

~Vk(t)  = - J ~V(tJ,t)  exp(-ikrJ)dtJ.
211" 0 

(5) 

Diffusion coefficient (2) dependr;; on time correlations of random amplitudes 
LlVk(t). 

Eqs.(1), (2) are quite general in natUre. To get them, one 'only employs 
a perturbation theory and an assumption on the bunch being both stationary 
and matched at the initial instant of time t = 0, ~V(1?, t ~ 0) = O. The latter 
realizes the so-called randompha.se typ'e' oj approximation for initial phases of 
the synchrotron oscillations. Bealn-induce~ self-fields are neglected. 

Hereof, a st~uctural  peculiarity of\D(:J) , as expressed i~ terms of modulating 
currents i~()(t),  q' =F 0, is revealed. Function Tn(w) always remains inside the 
weight and amplitude factors. It cannot b~  taken' out of the brackets and thus 

,treated as a factor which merely filt~rs  the noise spectrum. The exception 
is that (infrequent) case when Tn(w) features a complex-conjugate symmetry 

~,  w.l'.t. frequency q'ws: 

Tn(q'ws +w) =T:(q'ws - w). (114)
t 
) 

As far as stationary noise in(t) is concerned, this condition is met identically 
due to q' = 0, and such a peculiarity of D(:J) does not occ'uf. 

I 

" 

'. 
In addition, the following agreements 011 represellt~tive time scales of the 

...problem at issueareillvolved: \ 

/ 
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employ eqs.(105), (106). Equate factors before 2m5(w - WI)' Thereby get the a) fluctuations of accelerating volt~ge  are assu~ed  to be fast, 

eXpressions for eq.(104) in terms of the random currents: 
T~V  <: Tdif; • (6) 

p~~~l)(W)  exp (±i(<p~()  - <p~\l»))  = (107) 
b) bunch evolution is pursued during the intervals of time t 'which are 

=Tn(w ± q'ws)T:l(w ± q'ws) Q~(~:)(w) exp (±i(</>~() - </>~~l))); , 
p~~~d(w)  exp (±i(<p~()  + <p~~d))  = 

=Tn(w ± q'ws) T:l(w =f q'ws ) Q~~ld(w) exp (±i(</>~()  + </>~\l))) . 

I 

(108) 

(For ins.tance, it becomes clear hereof that the noise voltage spectnlm cannot 
be wider than the bandwidth of accelerating devices. Consequently, correlation 
time Tv of modulation noises v~()(t)  is sure not to be less th.an a filling tim.e of 
the gaps.) " 

Insertion of eqs.(107), (108) i~to the formulae of Sections 3,4 provides a 

complete solution'to the problem in question. Despite unwieldy appearance of 
eqs.(107), (108), the formal changes of D(.1) are not so intricate. We just list 
the modifications which emerge on passing to the 'current-wise' representation.. 

First of all, the spectral matrices of noises and the carrier phases, if there 

are any, are replaced everyw~ere:  

p«(d(w) --+ Q«((d(w)'
nnl nnl' 

<p~()  --+</>~().  (109) 

A new factor emerges in eq.(44): 

Gn;k~ql  --+ Gn;k±ql Tn ((k ±,q')ws + mOs(.1)) . (110) 

(111)•Tn (kws + mOs(.1)) ~ Tn (kws ). 

Eq.(46), being rewritten for Q~'rf:)(w),  is complemented by a requirement of 
wide-band performance, in the scale of synchrotron frequency"Os, of function 
Tn(w): . 

Eq.(48) is entered by factor (110) which is, natui'ally, rewritten so as to obey 

approxi~ation  (111): 

Gn;Hql --+ Gn;Hql Tn ((k ± q')ws). 
. . (112) 

Finally, in the unbunched-beam limit, eq.(54) is altered by 

Gn;k±q' --+ Gn;Hql Tn (kw(.1) *q'-a' (.1)) , (113) 

,f, 
while eqs.(56), (57) suffer the same but for q' = o. I~  

T~V <: t ;5 Tdif. (7) 

In both of these inequalities time constant Tdif is a rate measure of a slow, sys­
tematic dilution of (Fo}(.1, t) under the noise (diffusion life-time of the bunch), 

'while T~V  is (auto)correlation time of random voltage ~F(1?,  t). (The calcula­
tions to follow would 'indicate that Tdif is reciprocal of the noise spectral power 
int.ensity. Therefore eq.(6) requires the voltage fluctuations to be, rigorously 
speaking", both fast and weak.) 

A particular expression for the diffusion coefficient depends upon the way 
of involving the noise source ~lr  CO, t) into the consideration. Two approa.ches 
t.o this questiqn can be followed: 

1. The furtlier treatment in ref.[l], as well as the ol~e  in'refs.[2,3,4],proceeds 
from a conjecture that voltage ~  '1'(0, t) is given in the co-moving frame directly, 
ill \vhich it reads 

~V(1?,  t) = vet) y(-O) , g(1?) 0= 9 (d+ 2;) . . (8) 

H/\re g( -a) is a determinat.e fU1H:tioll; l'( t) is a stochastic process with a zero 
average, (v(t)) = O. 

The assumption on noise vet) to be a 'weakli stationary one cancels the 
explicit t-time dependence in D(.:!, t) at once. As ~·ef.[l] shmvs, further choice 
of functions g( 1)), v(t),in the form of 

g(a)(d) = cos(qlJ + CPs), v1a)(t) = ~~xt(t); (9) 

g(<;)(1)) = sin(q'O -J-·cps)' v(y)(t) = l/~xt~cp(t); (10) 

and their substit.ution int.o eq.(2) yields the well-known results of refs.[2,3,4] for 
amplitude (a) and phase ('P) noises of accelerating voltage, respectively. Nev­
ertheless, the acceptability of representation (8) still requires a more thorough 
investigation. . 

2. Ref.[l] hints at a more general route to calculate diffusion coefficient (2), 
as well. It takes into ac~unt  that the noise voltage is, in fact, driven in the 

laboratory frame in which it acc1l1ires the form of a periodically-unstationary 
- or, possibly, of a stationary _.- st.ochastic pro<:ess ~ F( 8, t). Due to this 

30 3
 



\
 
reason D(.J, t) fi'om eq.(2) turns out to be a periodic, function oftime, ,211"/ws
 

beitlg a period, which is extremely unsultable for the calculations. It is obvi­

ous, however, that nothing cnlcial should be encountered i~  course of a single
 
turn. What is necessary (and justifiable physically) is to average eq.(l) over a
 
turn. This. procedure would allow one to retain the slow motion only. The lat­

ter i~  caused by the .non-averaging to zero term of D(.J, t) which -brings about
 ~ 

a systematic effect and is denoted by D(.J) later on. An additive correction 
proportiona~  to the time average of a product be~ween  the fast varying p&-ts of 

(.D(.J, t), and (Fo)(.J, t) is neglected because"of its small value expected (the sec­

ond order of magnitude in the fast motion). The bunch distribution smoothed
 
·over a turn period is denoted by the fonner equation symbol (Fo)(.J, t). 'rhis
 
fuhctio'n is now supposed to be a slowly varying one in the time scale of 211"/ws ;
 

211"-< Tdif. (11)
Ws 

On these conditions being met the formal modification ofeq.(l) after its.aver­
aging over t would. result in a mere substitution of D(.J, t) by D(.J). 

Quantitaiiv:e veriflcation of such a proc0dtire is not a simple matter. Rather,
 
we apply to indirect evidences, such as redcrivation of the results known by. now.
 
These are the diffusion equation of a bunch subjected to low-frequency narrow­

band amplitude or phase noises of accelerating voltage (refer to Section 7),and
 
the noise-induced diffusion over momenta in an unbunched beam (refer to the
 
end of Section 4).
 

, It is the second of the afore-said approaches which is followed throughout
 
the present paper., In particulai', it is shown thereby that representation of the
 
random voltage by eqs.(8), (9), (10), as studied in refs:[1,2,3,4], is acceptC\ble
 
only for a'relatively low-frequency and narrow-band noise vet). Its correlation
 
time Tv must comply with limitations
 

211" 
- < Tv < Tdif' (12)
Ws 

which may grow into a crucial constraint. Indeed, the natural noise perfor­

mances, with Tv included, are imposed solely by technical features of the RF­

system. These cannot be affected strongly by, say, the ring size. However, as
 
the orbit perimeters grow (UNK, LHC, SSC) the revolutiQn frequencies We do
 
decrease. Relationships like Tv 211"/Ws or,even Tv' < 211"/ Ws become feasible.
 rv 

Thereby the 1.h.s. of inequality (12) can well be violated, results of refs.[1,2,3,4] Ii 
I 

thus becoming insufficient.. / 

\ , In what follows, mQre general formulae for the diffusi01~  coefficient under 
...the accele~'ating  voltage noises are arrived at. These hold true not only within 

while the quadrature one - that of phase: 

i~")(t) = I n6.¢n(t), (iOl) 

~¢(t) = I' 6.wd(tI) dtl, (6.if>,2)1/2 <: 2i", 

of the feeder current. 

Suppression of the carrier by adopting q' =0 results in a particular case of 
noise current in(t) =L( i~()(t)  cos ¢~() wh1ch is stationary w.r.t. the laboratory 
frame. 

Transfer-function '(97) converts current (98) into the noise voltage 

un(t) = Lv~()(ty cos(q'wst ~ <p~(») 

.( 
(102) 

across the n-th gap. It is the form in which un'(t) enters the framework of 
eq.(24) used to represent t.he random electric field on the orbit. 

Perform the Fouriei.' transformation in time of eqs.(98) , (102). On applying 
to definition'(97), one establishes the relation between the Four~er  transforms, 
of random envelopes v, i!~)(t): 

v~()(w)  exp(±i<p~(»)  =Tn(w ± q'ws ) i~()(w) exp(±i¢~(!). (103) 

Now, -let us refer to Sections 3,4. Notice that each and every equation for 
D(.J) ~iven  tJIere involves items of four types. These are proportional to 

p~~~d(w)  exp (±i(<p~() - <p~~d)),. p~~~d(~) exp (±i(<p~() + <p~~d)), (104) 

and an should be expressed in terms of the spectrum of the random cunents. 
This procedure can easily be carried out. , . 

Really, a 'weak'stationarity of random envelopes v, i~()(t) whose averages are 
(v~()(t))  =, (i~()(t)}  = 0 implies their Fourier transforms to be delta-correlated: 

(vi()(w) v~~d·(WI)) = 211" p~~~d(w) 6(w - WI);, (105) 
(i~()(w) i~~d·(wd) = 211"Q~<;ld(w)  6(w - wI). (106) 

Here P~~~l) (w) denote the spectral'matrices of modulation noises of voltage (28), 
while Q~~d(w) are those for the noises of cun-ent. 

1 , , 

Rewrite eq.(103) as a pair of identities with an arbitrary choice of signs in 
each of them. Take the relevant indices to be either 11., ( or nil (It respectively. 
Pet:form cpmplexconjugation in the latter case; and inter-multiply the expres­
sions thus obtained. Carry out a statistical averaging of their product where 
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as flowing through, say, a coupling device between the feeder and,the n-th gap. the range given by'eq.(12), but well beyond it: 

(Reflected-wave current does not enter into defipition (96).) 
Phase <Pn' of the· current is' not obliged to coincide with phase' <Pn 

(overall) voltage (15). It occurs this way due to two factors: 
of the 

27r 
-

Ws 
'"V Tv «. Tdif' Tv « -

Ws 

27r « Tdif· (13) 

a) Acomplex t,ransfer-function Tn(q'ws) = T~( -q'ws) from the feeder current 
ifI Note, that up to an order of magnitude TtrD.wv'"V 27r, where D.wv is the noise 

to a component of the gap voltage thereby excited. . . -"':,t spectrum width. Hence, eq.(13) entails that either 6.wv '"V Ws or 6.wv :> Ws ' It 
b) A phasor diagram of voltages as maintained to compensate beam loading 

of. the accelerating gap. 
On taking both these factors into account; one can define amplitude In and 

phase <Pn of current (96). It is a standard RF-engineering calculation. Com­

, 
2. Accelerating Field and Its Noises 

is in this very"sense that the noise is r~ferred to as 'wide-band' in the paper. 

monly, it is carried out while setting up an operating point for the accelerh.ting Features peculiar to a random electric field present on the orbit of a syn­
system. To save the paper length, its discussion is, skipped here. All the more chrotron are, to a large extent, imposed by its accelerating system. We proceed 
that it would have fallen beyond the context of~he  diffusion problem under from its brief descriptiE>n. 
study. 

Noises in RF-feeding-circuitry originate' random, additive p"erturbation in(t)" 
to current (96). It drives noise voltage un(t) across the,n-th gap (19). A feeder, 
a coupler and a gap constitute a linear and stationary circuit. Hence, the 
relation between in(t) and un(t) is lineal' and time-invariant: 

Un(W) = Tn(w) in(w)., (97) . 
. 

Hereu,jn(w) = u,j~(-w)  aretheFouriertransformsofu,in(t). Tn(w) = T;(-w) 
denotes the relevant transfer-function di~ensioned  as an electri~  resistance, 
with eq.(97) being its formal definition. . 

Due to apparent reasons, consider a random-modulated current whjch has 
a general form of 

j~(t) 

, 
= L i~<)(t)  cos(q'wst ­

< 
¢~~).  (98) 

Here ( denotes some. index again. Carrier phase ¢~f)  is, rigorously speaking, 
other than <Pn. Currents i~O(t),  (i~<)(t»)  = 0 are stochastic processes which are 
(mutually) stationa.IJVw.r.t. the laboratory frame. 

The particular option of indices ( = d, s' and phases (15) 

..+,(c') = 
'f'n 

..+, 
If/n, 

..+,(8') =..+, _ 
'f'n If/n 

~ 

2 ' (99) . Here L is the ring length; Vn and <pn are the amplitude and phaSe of the voltage, 
• across the n-th gap; q'ws = w~r  is the nominal value of the\radio-frequency. 

allows one to interpret eq.(98) as a decomposition of in(t) into sum of its inphase 
«( = d) and quadrature «( = s') components w.r.t. the reference signal (96). i 

Functions Gn (8) = Gn (8 + 27r) depend upon the way of field localization 
around the orbit. They can be Fourier series decomposed: 

As usual, the inphase compqnent represents the noise of amplitude: 

* 
i~')(t) =D.In(t), (100) ~ ~t.  

Gn (8) '= 
00 ,

L Gn ;k exp(ik8), 
k=-oo 

(16) 
;Ii 
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1 \2:11' References­
Gn;k = '2- f G n(8) exp(-ik8) d8. (17) 

1r 0 . • 

Expansion c<;>efficients Gn;k = G~i-k (or, to be more exact, their moduli) can be
 
. interpreted as transit-time factors at frequencies kws• Suffice it to require
 n 

1 2ll' ..- f JGn(e)1 de = 1. (18)
21t' 0 \	 It 

Whereof IGn;kl ~ 1, the equality sign standing for an infinitely-narrow gap. No
 
other restrictions on Gn(E:» are imposed.
 

Required shape (14) of the synchronous wave call always be attained by
 
a· due adjustment of amplitudes Vn and phases 9n of the gap voltages. For
 

. the time being, their practical choice is not import.ant.. A few alternatives are
 
possible. One of them - it minimizes the RF-powel' consumption an(~,  hence~ 
 

is a preferable one- is introduced later on, when a concrete model of the
 
accelerating system is pttt forward (refer to Section 5~  eqs.(58), (59)).
 

Reduction of the lumped field given by eq.( 15) to the disti'ibuted one of
 
synchronous waves (14) yields standard ('smoothed') equations of longitudi­

nal dynamics, reI.[5). Next step to take may well be the use of the perturbed
 
equations which are deduced from the same model (14) of resonallt'illteraction:
 
Really, noise given by eqs.(9), (10) emerges as a random amplitude or phase
 
variation suffered by wave (14). (Or, possibly, as a sum over such perturbations.
 
sufficient to represent function g(iJ) from eq.(8} through its Fourier series de,..
 
composjtion.) In this case the required statistical features of the noif)e (namely,
 
its stationarity and exis~ence  of the spectral power d('llsity) have to he taken
 
for granted in the f:o-moving coordinate frame directly.
 

A more straightforward approach which i~  pursued later on proceeds. from
 
the'noise as driven in the laboratory, frame.
 

Random Field 6.E(e, t) 
Due to the RF-system noises a random electric field ~E(e,  t) app<-«rs on
 

the orbit. By analogy with eq.(15) putit as '
 

6.E(8, t) = -L 
1 

L
N 

Gn (8) 'lt1l (t) (19) 
11=1 . • 

where un(t) is the noise voltage across the ',i-th gap. The same gap also bears 
the main oscillation cos(q'wst - CPn)' Take it. as the reference one. Then, l' 

f'V 

". 
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Appendix 1 
Noises of Current in RF-Feeders 

Noises of accelerating voltage are excited by those of RF-drive current in 
the gap feeders. Th~  latter noises are more logical to'd~al  with while specifying 
the noise tolerances on a practical; RF-engineering level. Expressions for D(.J) 
in terms of stich random currents can be readily established. Suffice it to insert 
into the above formulae the particular expressions for the spectral matrices of 
noise voltages - their representation in terms of current noises and relevant 
transfer-functions. . 

To excite voltage (15),.the external RF-generator drives a forward wave of 
current in t~e  gap feeder. Let this wave be presented l;>y a current 

In cos(q'w.t - ¢n),	 (96) 
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~  

The unbunched-beam limit corresponds to 

D«/)(.J::>.Jse ) =! ( O~.,  )2'P«I) (q'{)'(:J)) x 4. (92) 
p 2 q2Vext SID <Pa . 

One can readily verify that weight (79), (89) and amplitude (80), (91) func­ ~ 

tions for the two narrow-band approximations just studied are inter-related: 

~W~I)(:J;  q') + ~W~f>(.J; -q') = W!:)(:J) + W!:Jc:J), (93) 

.A«I)(.J) = A(a)(.J) +·A(Y')(.J). (94) 

The same relation holds for the rightmost numerical factors of asymptotic 
eqs.(85), (92): 4«1) = 2(a) + 2(Y'). 

Though.. seeming formal at a first glance, these equalities rely on a finn 
physical basis. Really, let spectrum p«')(w) of noise' u( t) be symmetrical w.r.t. 
frequencies w '= ±q'Ws: . 

p«')(±q'ws + 0) = p((')(±q'ws - 0), (95) 

whereof it follows that p,p«')(O) == p,p«')( 
"-

-0.). (By its qefillition, the band-

pass white noise is precisely of this type.) Due to eqs.(32), (33), (36), (37), 
the effect exert,ed by stationary noise u(t) whose spectrum is of eq.(95)-type 
is equivalent to a superposition of amplitude and phase noises v(a,If)(t) of ac­
celerating voltage, these being uncorrelatecl and having the same spectrum ­
p(a)(o) = p(<p>CO) = p«')(!1). This statement immediately eiltails equalities 
(93), (94). These are but a particular manifestation of the general features of 
D(.J) discussed at the end of Section 2.. 

Both, the applicability range and the practical significa:nce of eqs.(87)-(92) 
is by no means less than that of the extensively-used expressions ,(84)-(85). 
Nevertheless, the problem of bUllch diffusion under effect of stationary noise 
un(t) -- even in a simplified, narrow-band approximation (86) - has not yet 
drawn a proper attention. (On the contrary; the noise-induced diffusion of 
an unbunched beam was studied for such a problem statement from the vcry 
beginning, ref.[5].) 

Author thanks Drs. V.I. Balbekov and G.G. Gurov for many discussiOlls on j, 

the subject matter of the paper. 

~-

imposing no restrictions to generality, voltJtge un( t) can be expanded into a, 

SUIP of its inphase (f'V cos) and quadrature (f'V sin) components: 
, \ 

Un(t) = v~c\t) cos(q'wst- <Pn) - V~8)(t) sin(q'w~t - <Pn) = 
L v~()(t)  cos(q'wst - <p~()); (20) 

(=c,s /' 

(c) _ (8) - _ ~ . (21)<Pn - <Pn, <Pn - <Pn 2' 

For brevity, use is made of notation L( later on. 
Formally, decomposition by eq.(20) is of an absolutely general nat~lfe.  It 

involves no extra suggestiqns, on the features of Un(t), ref.[6]. Commonly, one 
'goes over to it for convenience. For instance, under certain limitations imposed 
011 the spectrum of un(t), amplitudes v~()(t)  may t.urn out to be slowly varying 
functions of time. 

But .let us have another look at this Clecomposition now. Here we study 
stochastic processes. Their further analysis is impOSSIble without an assumption 
011 the noise stationarity w.r.t. the laboratory frame. Which of the random 
voltages, un(t) or v~()(t)  exhibits this behavior? (This questi'>D is not a senseless 
one at all. The stationarity of un(t) entails that of v~O(t). Vice versa is not 
always the case.). Technical realization of RF-systems allows both altern~tives:  

On the one hand, the RF-systems incorporate a low-level driving and shap­
ing circuitry: a master generator of reference oscillations, an amplitude modula­
tor and a phase-shifter. Physical concept of their operation, including the effect 
of noises, relies on mixing the carrying and modulating signals, a small phase 
modulation of the reference signal being reducible to an amplitude modulation 
of the quadrature oscillation in a first approximation. For this reason the hard­
ware maintains not the voltage 'Un(t) as such, but rather the random-modulated 
(in amplitude) oscillations: the inphase and quadrature ones as in the r.h.s. of 
eq.(20). Either may be driven in a relatively independent way. Given a. sus­
tained operation mode under perman~nt  external conditions, envelopes v~()(t)  

·ai·e stationary w.r.t. the laboratory frame, and their spectral intensity exists. 
The statistical features of voltages un(t) across the gaps are derivable from those 
of v)\() ( t). : 

On the other hand, there exist intrinsic noises of the RF-power amplifier: a 
shot noise of the anode current direct component in the tube, a stray ripple in 
the tube power supply, etc. These drive stationary gap voltages un(t) directly. 
Decomposition by eqs.(20), (21)is still allowable. But the statistical features 
of v~()(t) are now secondary, and derivable from those of un(t). Any amplifier 
cascade is a frequency-selective circuit. Henc~,  it makes sense to anticipate the 
spectrum o~  noise Un(t) to tend to localize in the vi~inity  of w = ±q'ws , and to 

, . 

. 26 7 ~ 



have a relatively narrow bandwidtlJ: there (in th.e scale of radio-frequency q'ws)' 

The narrower is the noise ,.bamdwidth, the slower varying functions of time are 
the realizations of random aInplitudes v~()(t).  ­

Thus due to the technical reasons solely we would draw a distinction 
between the two types of external stationaru noises of accelerating voltage. 
Namely, these are: (i) amplitude-modulating noises v~()(t)  carried by oscilla­
tions cos(q'wst-Ip~())j  and (ii) noises un{t) without explicit-carrier as maintained 
by the hardware. (In what follows the latter noises are revealed to be a subset 
of the former ones.) Therefore, envelopesv~()(t)in  eq.(20) are allowed to orig­
inate from different sources. But this keeps intac~ the physical content hidden 
in eqs.(20), (21) which is a rather simple one. 

Indeed, let ~E(E>,  t) emerge from a random variation ofthe main field (15). 
Let restrict ourselves to a linear approximation in noises ~Vn ( t), ~lpn( t). Then, 
the inphase (( = c) cotnponent (20) corresponds to the noises of amplitude 

v~C)(t) =:= ~Vn(t),	 (22) 

while the quadrature one «( = s) - to that I)f phase (provided a small deviation 
ofIthe latter) 

V~8)(t) = If,1~lpn(t),  (23) 
t ' 

~tp(t)  = J ~w;r(td  dt}, (~<p2)1/2 ~ 211", \ 

It follows hereof that indices ( = C, s of theinphase and quadrature components 
of perturbation may well be substituted by indices ( = a, <p of the ,amplitude' 
and phase noises 6f accelerating voltage, respectively. Anyway, it would have 
adequately reflected the physical nature of the effect" inflicted by these pertur­
bations. 

Random Field Model 

In a full accord with the afore-said let us study the diffusion of particles 
, subjected to a random field 

1 N \ 
~E(E>,  t) = -L E E Gn(E» vi()(t) cos(q'wst - Ip~()). (24) 

n=l ( 

This model's generality resides in the following. 
First of all) a particular meaning of L() features of random function ,v~()  (t) 

and the value of (determinate) carrier phase <p~() would not be specified without 

(21) is possible but is not necessary. However, in the latter case envelopes v()(t) 
would be slowly varying functions in the time scale of 211"!ws • 

Substitute eq.(64) into the formulae of Section 6. The use of'model (86) 
reduces the sum over k to two items with k = ±q'. Two series over m,j are 
thus retained whose memhers have the definite symmetry properties allowing 

.~	 o~e  to resort to a single summation. By acting along the same lines as in 
deriying eq.(82) One gets . 

~ 

D(')(.J) = ~'(  2 05. )2 E p(t)(mOs(.J)) w~t)(J;  q')j (87)
2 q ~xt sm CPs j=-oo • 

m = j, (.J '5 ~ep) ; 

m =2fSigll1J' + 2j,' (.1 ~ .Jeep, M = i:], lips I= i) ~ 

.Spectral power density P(')(O) of noise 'seen' by the beam is given here by, 

2p((')(f!) = (N2~..I}((')(f!) la..1 ,� ,(88) 

Both, the origin and the meaning of all the co-factors are obvious from. the 
above consideration. What is essential, spectlumP(')(O) is no longer obliged 
to be an even function of frequency O. Weight functions W~')(.Jj  q') acquire 
the simple form of 

2 2 
W!£t)(.J; q') = ~; II~q,(.J)12; (89) 

Introduction' of a model of band-pass white noi~e u(t) is possible. Its spectral 
power densityP(')(w) is constant within a range of a fe~ harmonics of the syn­
chrotron frequency nearw = ±q'ws , while having a bandwidth which does not 
'exceed the revolution frequency Ws -:»' Os' Hence,ful1ction~P(')(O) should now 
comply with eq.(83). Envelopes v()(t) of such a noise, if these'are introduced, 
would be fast functions in the time scale of 211"/Os,-and slowly, varying ones in 
the scale of 211"/ws• The diffusion coefficient for the band-pass white noise u(t) 
reads 

21 ( 0 )2 -�
(90)D(')(.J) = - 0. p(')(O) A(i)(.J) 

2 q2Vext Slll\ps , ',Il 

A(')(.J)� = . f 'w,~t)(Jj q') =.2.- 7d1jJ (f}q{)(.J, 1jJ))' 2 (91)
1=-00 211" -lI' f}1jJ 

~ 
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Given q' =q and Ip~  = eps, eqs.(79)-(84) grow into results of ref.[1]. Two in 
t.he role of an am~litudefunction for q' 1= 0 in eq.(85), as well, corresponds t.o the 
llnbunched-beam limit which was discussed in ref.[l]. (In a particular case of a 
storage mode when Ilpsl = rr/2, eqs.(79), (80) along with the diffusion coefficient 

. are amenable to analytical calculations in terms of the elliptic functions.) , 
Hereof, the r~le  of inequality (77) is revealed completely. It is the applica­

bility range for the results of ref.[l] and, hence, for those of earlier refs.[2,3,4]. 
Quite obvious are the following two qualitative implications of eq.(76) which 

simplify the physical picture involved. 
Firstly, there appears a possibility to treat the accelerating system as a 

single infinitely-narrow gap, spectral power density across which being given by· 
eqo(81). . , 

Secondly, one may come back to a model of a noise that 1S stationary W.Lt. 
the co-moving frame, in which model the beam is affected by perturbati~ns of 
synchronous wave (14) whose pa.ttern is v«)(t) COS(q'tJ + epee»). It follows from 
t.he fact that the results of the present Section were essentially obtained ill 

\ioef.[l] in frames of that very approach. (Here v«()(t), is a random fuuction of 
• time given by its spectral power density (81).� Phase ep«) is defined through 

eq.(63). On taking q' ::;::: q and <r'~  = <r's, oue gets the former lloise representation 
by eqs.(9), (10).) . 

As is clear from the afore-said, the withdrawal of c'onjecture (77) in favor of 
Tv '" 2rr/w or Tv -< 2rr/ws' - being essential for proton synchrotrons with t.hes 

large orbit perimeters (UNK, LHC, SSC) - is not a trivial one at all. It is not 
only a quite expectable sum over the noises at revolution frequency harmonics 
that appears. Under cert~in  conditions (of eq.(66)-type) an account should be 
taken of locations of the accelerat.ing gaps around the ring. 

/ 

High-Frequency Noise 1t(t) 

Studies of stationa.ry noise u(t) with a low-frequency spectrum like that 
giYen by eq.(76) are not ofamajor interest. ivlore instrnctive is a case of high­
frequency noise u(t) whose spectrum is localized 'ncar frequencies w =±q'ws: 

P«'}(kws + 0) = ~bk,~q'  p«') (~O) +~bkql  ]1«')(0). (86~ 

Here, function p«')(O) occupies a lower-frequency domain inside a bandwidth 
of ~wv -< W

S
' Generally, ]1(')(0) =F p«') (-0). For definiteness, this noise is 

labeled by index ( = ('. To a certain extent~!t  is a complementary counterpart. 
of the case just st.udied. The transfer to represent.ation of u(t) given by eqs.(20), 

necessity. Thereby we involve into the" scope of eq.(24) any random-modulated 
oscillations with their carrier phases shifted w.r.t. the reference one: 

Un(t) = Ev~()(t) cos(q'wst - Ip~(}), Ip~() =F Ipn' (25) 
( 

l� ~ 

Such signals may intentionally be driven by an external noise generator. These 
can readily be studied without a recourse to their decompositions given by 

( eqs.(20), (21). , 
Secondly, the framework of eq.(24) embeds a particular case of stationary 

noise un ( t) as well. It can be approached not only through a trivial substitution' 
,q' =0, E, v~'}(t)  cos <p~() =un(t). Outlined at the end of this Section is another 
route which is not so much suitable for the practical calculations as the former 
one though being essential in principle. " , 

Let modulating voltages v~()(t),  (v~()(t))=  0 in eq.(24) be, ('weaklY') sta­
tionary and stationarily-correlated real-valued stochastic processes given in the 

. laboratory frame. By definition, their cross-correlation functions do not ~epend  

upon the current instant of time t 

(v~(}(t) vi~d(t - T)) == (v v)~(~:)( T)� (26) 

and exhibit a~  obvious symmetry 

(v v)~',f:)( ~T) = (v V)~~l£)( T)� (27) 

with n, nl = 1,2, ... ,N. These define functional matrices of cross-correlations 
between the gap noises. (Each is dimensioned as N x N. According to eq.(27), 
not all of the matrices are independent.) From the viewpoint of a correlative 
theory, matrices (26) entirely describe the statistical features of the external 
noise in the time domain. . 

The noise properties inthe frequency domain are given by (complex) spectral 
matrices. Their elements, the (mutual) spectral power densities ate the Fourier 
transforms of cross-correlations (26): 

00 I 

p~~~l}(W) = J (v,V)~(~ll}(T) exp(iwT) dT (28) 
-00 

with n, nl = 1,2, ... , N. Due to real-valueness and symmetry (27) of the cross­
correlations, matrix elements P~$I~l)  (w) acquire the property of 

. ' 
~•.� p«(d(-w) = p«(d(w)· = p«I()(W).

nnl . nnl nln� (29) 
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Main-diagonal elements p~~()  (w) are real-valued and symmetrical functions of ' 
frequency w. These can. be interpreted physically as (double-sided) spectra} 
power densities of stationary noises v~()(t). Due to evenness of auto-correlation 
function (v v)~~;)(r) = (v v)~~)(-r), the double-sided Fourier cosine transfor~ 

mation, rather than that of eq.(28), is commonlY,applied to calculate P~;P(w).  

Quite transparent are the physical reasons th~t  force us to resor.t to eqs.(19), 
(20), (24) which are put down in the laboratory frame. Particular samples of 
ral1dom voltages v~()(t)  are, by no means, obliged to-be slowly varying func­
tions in the time scale of 2Jr /ws' That is, the frequency spectrum of random­
modulated oscillatio~s  V!l()(t)cos(q'wst - <p~(» may well contain harmonics of 
the reVQlution frequency other than q'. It is due to these harmonics that the 
new synchronous-to.:.beam propagating waves of voltage appear on the orbit. 
They affect the beam systematically at harmonic numbers other than q'. Their, 
phases being, uncorrelated, the new waves involved sum up incoherently, and 
do not build up any determinate spatial patteln (like the, one given by function 
g(l?) from eq.(8». '.: 

Of course, these effects can hardly be studied :whenever the' noises are in­
troduced by eqs.(8), (9), (10) in the co-rnoving frame directly, in terms of 
synchronous wave perturbations (i4). Such an approach allows one to treat 
stqchastic processes that are slowly varying in the time sqtle of 21r/ws • The 
latter is appa.r.ent from general physical reasons, and is confirmed by the ca1cu­

• lations which follow. ' 

Stati~naty Noises un(t) and .6.E(e, t) 

Due to multiplication of stationary signals v~()(t)  by harmonic carrijer os­
cillations at frequency q'ws in eq.(24), stochastic processes un(t) and t1E(e, t) 
are almost sure to be periodically-ullstational'y, their moments being periodic 
functions of t. 

The only exceptiQn'is the case when inphase and quadrature' amplitudes. 
v~c,s>(t)  show quite definite statistical features, ref.[6]: 

(VV)~C~~(T) = (vv}~s~!(r)  = C'1I11I(r), (30) 

(V v)(cs)(r) = -(v v)(sc)(r) = -5 (r) (31)nnl' nnl nnl' 

Or otherwise, in terms of the spectral matrices, 

P (CC) ( ) p(SS) ( , c ( ) 
nnl W = nnl W) = n1l1 ,w , (32) 

Let us put coefficieuts (N2
, N), along with IGq'1 2 from eq.(78), into the 

dcfi~ition  of effective spectral pow.er d~nsity P(O(O). ofnoise vW(t) as 'seen' by 
the beam: . 

'1'(()(fl) ~  (~)p«()(n)  IC",', p«)(O) = p«)( -0). (81) 

Factor N2 or N should again be 'taken' according to the context as established " by eqs.(66) or (67), respectively. Factor \Gq,\2:5 1 accounts for the traJ;lsit-time

.' effects at frequency q'ws. ' 
As a result, eqs.(68), (43) and (50) convert into 

D«()(.J)"='~  -( Oij. ) 2 E P«()(mH (;») W~)(.J); (82)2 s
2 q ~xt sm iPs j=-oo • " 

m == j, (.J S .Jeep); 

m. = 2j, (.J ~  .Jeep, M = q, I~sl,= i) .. 
By adhering to constraints (76) dud (72) simultaneously, one arrives at a' 

\llodel of the so~called  (low-pa$s) white noise v«)(t) . .It has the spectral power 
density which is -collstant throughout a range of a few synchrotron frequency 
harmonics, its bandwidth, however, not exceeding the 'revolution {requency 
Ws ::> Os: ' 

p«)(~)  ~  {~«)(O),  101;5, ImlOs ; (83) , " to\ ~W8' 

Realizations v«) (t) 'of sl\ch a nois~ ai'e bo.th, fast functions in the time scale 
l 

of 21r/Os and slowly varying ones in the scale of 21r/ws • On inserting eqs.(76) 
and (83) into eq.(73), one gets the diffusion coefficient for the (low-pass) white 
noise: 

j)«)(.J) = ! ( 2 r 05. )2 P«)(O) A«)(.J). (84)
2 q ~'ext sm 'Ps" . 

Eq.(75) yields for the unbullched-beam limit 

02 )2�
D«()(.J ::> .Jsep) = !' 2 O. p(() (q'{)'(.J)) x 2(1 + Dq,o cos 2<p(O). (85)

• . 2 (q l~xt 8m <Ps . . ' 

(Notice, due to evenness of p()(O), there is no "dependence on the sign of {j' 

here.) .~p(CS)(w) = _p(sc)(w) = -5 (w) (33)nnl nnl n1/. l • 
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Possibility of further simplifications to yield the results of refs. [1 ,2,3,4] for 
the amplitude and phase noises of acceler(;\ting voltage emerges from a rathel~  

!?tringent conjecture-.on the ?pectrum shape of noise v(()( t). 

7. Narrow-Band Noises 

Low-Frequency Noisev«)(t) 

Let the spectrum of (modulation) noise v()(t) be localized in a lower­
frequency domain within a narrow bandwidth:. 

P«)(kws +. Q) = OkO p«)(f2),� (76) 

where p«)(O) = p«)( -0) is a low-frequency function whose bandwidth at base 
is subject to constraint ~wv  < ws . Therefore, correlation time Tv of noise v«)(t) 
should exceed the revolution period, Tv > 2n/ws , which implies realizations 
v«)(t) to be slowly varying in the time scale of 2rr /ws • Combine the latt.el: 
inequality with the initial conjecture (6) where T~V = Tv is taken. The result is 
eq.(12) which was discussed formerly in Section 1: 

2n < Tv < Tdif·� (77) 
Ws 

Due to assl1'mption (76), the only term with k = 0 should be retainecLin all 
the formulae of the preceding Section, which has the follo~ving  consequences: 

Firstly, 1/012 = 1, and the diffusion coefficient under noise (G6) fails t.o 
depend on gap coordinates en. 

Secondly, it can be easily established that functions w,;~l  (..1) and A~()  ( ..1) 
from eqs.(71), (74) factorize when k = 0, 

w~J(.J)	 = IGq,1 2 
, w!:i)(.J); Ab()(.J) = IG(1'1 2 , A«)(.J). (78) 

Here, the following notations, are used 

2 2 
m q 11* (..1) . ( .. «) 1* (..1)" ( '. «»1 

2
• , (79)W~)(:J) 4'2 mq' exp +tcp - 111.-'/' exp -l,1P 

q . 

A«)(.J)� = L
00

W~)(.J) = (80) 
j=-oo , 

= ~ j1fd¢ (aq!?~,  fi»)' cos2(/O(.J,.~') + ",()). 
2n -1f 

where C,Snnl(W) = C,Snnl(-w)* are the F~urier  transforms of the,r.ks. of 
eqs.(30), (31) . • Under these conditions one gets noises un(t) and ~E(e,  t) which are sta­
tionary w.r. t. the laporatory frame. Really, multiply Un (t) by Unl (t - T) both 
taken in the form of their expansions (20). Average theresult statistically. Due 

~,	 to eqs.(30), (31), all the.oscillatory (at frequency 2qws) funations of current 
time t would cancel each other, which would exclusively retain the dependence 
011 T. Cross-correlation function of g~p  voltages Un (t) converts into t 

(un(t) Unlet - T») = Cnnl(T) coS(q'WsT - ~<PnnJ  ­
Snnl(T) sin(q'wsT - ~<PnnJ, (34) 

~<Pnnl = <pn - <Pnl . 

Which, in itself, is an evidence for the stationarity of un(t) and ~E(e,  t). 
Like any other stationary noise, un(t) can be described by its spectral matrix 

Pnnl(w). By applying the Fourier transformation to identity (34) one' gets 

Pnnl(w) =� 2'1(Cnnl(w + q'ws)e-iAJPnnl. '+ Cnn1(w - q'ws)e+iA'Pnnl)+ 

+ ~(Snnl(W + q'ws)e-iA'Pnnl - Snnl(W - q'ws)e+ia'Pnnl). (35) 

functions C,Snnl(r) may be referred. to as the inphase and quadrature am­
plitudes of'expansion (34) of the cross-correlation; Thus, they are not indepen­
dent at all. Indeed, by a mere inspection one concludes that eq.(35) is solvable 
for C, Snnl (w): ' 

Cnnl (w) = ~ (Pn~l (w + q'ws)e-iA'Pnnl + Pnnl (w - q'ws)e+iA'Pnnl), (36) 

Snnl(W) = ~(Pnnl(W + q'ws)e-iA'Pnnl - Pnnl(w - q'ws)e+iA'Pnnl). (37) 

In this route we express spectral matrices (32), (33)' of random amplitudes 
·v~c.s)(t)  through spectrum Pnnl(w) of stationary noises un(t) across the gaps. 
Now, they are voltages un(t) which can he treated as. the primary n9ise sources, 
while' v~()(t) and their features by eqs.(30)-(33) turn out to be the secondary 
ones. The possibility itself of such an inversion is closely related to the afore­
said generality of decomposition.byeqs.(20), (21). The latter is applicable to a . f ' 
stationary noise un(t) as well. 

However, in this case an admission of oscillation cos(q'wst - <Pn) to be the" 
'. reference one is not predetermined physica:lly. (Provided, of course, we are not 

\ . \ 

22� 11� 



going tp treat eqs.(20)-(23) along with eqs.(32), (33) as a way of expanding 
stationary noise un(t) into sum over the amplitude and phase noises of accel- ' 
erating voltage.) Any frequency ,from the spectrum of un(t) can be taken as 
a reference one. Moreover,.evensuch a choice is not obligatory if we are not 
insisting on envelopes v~()(t) to be slowly varying'functions of time. Thus, the 
presence of parameters q' andcpn seems to be redundant as only the'final results V("
are concerned. And it happens precisely this way ultimately. 

Indeed, it was noticed earlier that there existed a more direct way to attaCk ~ 

stationary" noise un(t). Eqs.(20), (21) show that this approximation can be 
approached, e.g., by putting 

, = C, Sj , q' = CPn = 0; vic)(t) = u~(t);  p~~c)(w) = Pnn(w) , (38) 

into the ultimate formulae~'  :From this viewpoint, the stationarity ofnoiseun(t) 
is but a particular manifestation of its periodical non-stationarity - with the 
relevant period tending to infinity. ' 

From this. it follows that the diffusion coefficient of particles in rando'm 
field (24) would show quite an.unexpected feature. Namely, the insertion of 
particular spectral matrices (32), (33), (36), (37), with q' and CPn embraced 

.explicitly, must yield the same result as tIie use of eq.(38) with q' = CPn = o. 
At a first glance, such a structure of the diffusion coefficient is llot self-evident. 
Still, the expressions for D(.:T) obtained later do exhibit such a behavior. 

All this offers a key to a physical interpretation of dynamical effect inflicted� 
by stationary noise un(t) of accelerating voltage. It acts as a superposition of� 
the inphase and quadrature - otherwise, of the amplitude and phase - noises� 
v~c,s)(t) which have quite definite statistical features as given by eqs.(32), (33),� 
(36), (37).� 

• 
3. Piffusion inside Buckets 

Random electric field (24) originates azimuthal (along iJ) voltage harmonics� 
whose amplitudes are ' , .� 

N . ' 

~ ltl:(t) = .E E Gnjl: v~()(t) exp(ikwst) cos(q'wst -' cp~(»).  (39) 
n=1 ( 

Therefore, the cross-correlation functions entering diffusion coefficient (2) ac­�
quire the form of� 

J 

12 

This factor ,has an out-of-phase interference nature. It takes int~'  account a 
possible incoherence of an effect exerted on. beam by die sp.~tral  components 
of noise at frequencies (k ± 'q')ws , the reason of the incoherence residing in a 
non-optimal (for the latter frequencies) phase-lock of fields in the accelerating 
gaps. 

Emergence of N2 as of an (upper) factor in eq.(68) is quite understandable... 
Given eq.(66), a near-to-coherent summation ~ N of the random voltages across 
the gaps occurs. Hence, spectral power density of the noise 'seen' by the beam 
lllay,increase ~  N2, which is contrasted to an increase f'V N in case of eq.(67) 
for the uncorrelated random voltages. 

Eq.(68) also embraces weight factors W,~t(J) whiCh equal 

w!,fl(:l) = m:q2 
I I:';~,Y)  Gh9' exp(+i<p((») + (71) 

+ I,:;-.!~~) G>-9' exp(-i<p(())1'. 

Es~entiall)', it is the absolute value squared of V~f~k(3) from eq.(44), the latter 
fUllction being expressed in 'tel~nls  oJ gap form-function G(e), eq.(60). 

.Given a. noise with a slowly varying (in the frequency sGale of Os « w s ) 

spe<.tral power density 

P(O(kws+ mns(J)r~  P«()(kws), (7~) 

eqs.(47), (48) convert into /' 

D«()(3) = ~  (2 !l~.  .) 2 f (N2/ ik /2) P«()(kw ) A~(;(3); (73)s2 q ~xt S111 CPs k=-oo N, 
\ ­

A~()(J) = ioo w,\;l(J) = 2~ Jaw (iJqt?~~,~))' ~ (74) . 

x~IGl:+ql exp(+iq'iJ(3, 1/;) + i<p«(») + G.k-ql exp( -iq'iJ(3, 1/;) _ iCP«(»)/2.. 4 , 

Finally, i~ the unbunch~d-beam  limit it follows from eq.(54) that 

2 
D(O(3> 3sep) = ! (2 n~.  )2 f (N2 IikI ) X (75) 

. 2 q ~xt  sm CPs k=-oo N 

x [P«()(kw(3) + q'iJ'(3)) IGk+Q,12+ P«()(kw(.J) ~ q'iJ'(.:J») IGk_ q,1 2+ 

+ P«()(kw(.J)) IGkI2,26q,o cos 2t.p«() ]. 
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Statistical Interplay between Gaps 

To simplify the matters, let the noise spectral power density 1;>e the same for 
each of N gaps. It is the level of cross-correlation between the random voltages 
across the gaps which is taken to be the only subject to distinction in extent. ' 
Two qualitatively opposite cO!ljectures are possible which yield quite simple 
results. Namely, 

1. Absolute gap-to-gap cross-correlation of noises: 

P~~)1 (w) = p«)(w). (66) 
• tit. 

Such a noise source play be introduced by low-level driving and shaping circuits 
of the RF-system (a master oscillator, amplitude and phase modulators) which 
are shared 'by all accelerating gaps. 

2. Complete statistical gap-to-gap independence (uncorrelation) of noises: 

P({) (w) = p«)(w) fJ (67)nnl nnl· 

Such fe~tures  may be appropriate to noises driven by the RF-power amplifiers� 
which are coupled each to a certain accelerating gap.� 
Both these assumpti?ns are studied concurrently.� 

6. Wide-Band Noise 

Insert eq.(65) fol1ow~d by eqs.(66) or (67) into eqs.(42), (44). Sum up over 

n to get 
. 

DC()(j) 1 (. O~  )2 00 (
N2 IikI

2
) (68) 

= 2 (p~xtsin<P8  k,jEoo N· x 

x P({)(kws+mOs(j)) w~1(3).  

Either of factors, N2\fA:\2 or N should be taken according- to the assumption 
. studied, the,one given by eqs.(66) or (67); respectively. 

Functionlfkl2 

o~IJ;I'  =I~ f eJq>(-ikenlj' ~ 1, (6g)' 

depends upon locations of the gaps along the ring. For example, their regUlar 
layout en roJ ~e  .n gives 

2 sin2(k~eN/2) (70)IfA: I = N2 sin2(kt1e/2)· 

\• 

N 
(~V1:(t) ~VA:·t(t  - r)) = E EGn;1:G~I;A:l(vv)~(J:)(r) x (40) , 

n,nl=1(,(1 
X cos(q'wst - <p~(») cos(q'ws(t - r) - <p~~d)x 

x exp(i(k - kdwst) e~(ikl~Sr).  , 
Thereby, a periodically-unstationary stochastic process is encountered in the 'co­
moving frame, as well. Fortunately, being time-averaged over a period of 271" /ws ; 

~ its correlations show aproperty of the moments pertaining to a stationary 
stochastic process. Perform such an averaging in eq.(40) to get 

H!;
,:8 !dtd~VA:(tl)~Vk~(t1-r)) 
f(7I" t 

x (vv)~(J:)(r)  [fJA:IL exp(i{k + q')wsr 

+fJk1,k+2ql exp(i(k + q')wsr 

N 

= E E~GniA:G~I;A:IX  (41)
n,nl=1 (,(I 

- ,i(<p~() - <p~~d)) + 

- i(<p~() + <p~~d))  + 

+ ... (r/ -+ -q',' <p -+ -~)],  

witt. fJA:l k denoting the Kronecker's delta-symbol. Non-vanishing contribution 
to sum (41) is borne by those ,of its items which comply with the conditions of 
frequency resonance: (k - kt}ws = 0, ±2q'ws' 

Insert eq.(41) into eq.(2). Straightforward calculations, unwieldy though 
they are, provide the diffusion coefficient (or, to be more precise - its system­
atic part D(.1)) in the form of 

1"'\2 ) 2 
D(j) =! 2 ~'O.  x (42)(2 q ~xt sm <Ps , 

N 00 

x E E E p~~~I)(kws  + mOs(3)) V~~~k(3)  V~:~~k(3).  

n,nl=1 (,(1 1:,j=-oo 

Inside separatrix, the, label m of multipole coincides with the. sumtpation ' 
index j: 

m = j,' . (.1 ~  3sep). (43) 

Such a notation is employed intentionally. Its convenience will be confirmed 
later, refer to eq.(50).'I,. 

Factors V~~~J:(3) specify the efficiency of the bunch perturbation excitation 
at the m-th ~ultipole  as caused by spectral components of noise v~()(t) at 

~  
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, 
frequency w ~ kU!s: 

-

V(~) (.1) = mq (I:",H';(J') G.L , exp(+it,.,«()) + (44)
n,mk 2 , k +q' n,..+q , Tn 

+ I:n,Ic-,,(J') G eXP(~il.,)«()))k _ q' n;..
L 

-q 
, 

Tn' 

These functions depend on both, the carrier frequency q'ws and its 'phase Ip~()  

w.r.t. the bunched beam. The presence of expansion coefficients I:n,k±9' which 
decompose plane waves 'V exp(i(k±q')19) into series over multipoles 'V exp(im"p') 
is' quite eXplainable. Multiplication.of sigrialv~()(t)  by high-frequency harmonic 
oscillation cOS(q'w8t-<P~())  translates spectral components of voltage v~~)(t)  from 
frequency w ~ kws into a region of (higher) "frequencies w ~  (k, ± q')ws . From 
which these as ~uch  affect the beam by driving the IDultipole oscillations of 
the bunches. Quantities Gn;Hq' are the transit-time factors at the relevant 
frequencies (of interaction). . 

Apart from noise correlation time Tv TdV, beam revolution period 27r/ws'V 

and time constant Tdif of the bunch diffusion (refer to Section 1), the pi'oblem 
in question has one more representative time scale which is imposed by unper­
turbed motion of particles in the external ,accelerating field. It is the period 
of synchrotron oscillations 27r/ns with ns N no denoting some typical value of 
synchrotron frequency. Sp far no restrictions we,re imposed ona relationship 
between Tv and 27r/Os . Nevertheless, a quite unive:l"sal way' to simplify general 
eq.(42) may follow from this. ' 

Let realizations of noise v~')  (t) be fast functions in the time scale of the 
synchrotron oscillation period: 

27r 
(45)

Tv <: Os' 

(Com)nonly 0 8 <: ws, and the above assumption may turn actual for wide-band 
noise (13).) 

In which case P~~(d(w)  should vary insignificantly throughout any intel'val 
1 . 

of-freqllency w 'V n «: ws• Thus, takes 

P«((I)(kw + mO ('7)) 'V p«((l)(kw ) (46)nnl 8 8'" - nil! S 

and factor this quantity out of the sum over m, j in eq: (42). The series of the 
weight functions thus retained is summable (reducible to quadratures). Tile 
result is the diffusion coeffl.cient: 

D(") = ~ ( n~  )2 ~ '" ~  p«((d(~:1  . ) A«((t} ( 1).., 2 2:v.;· ~ ~ ~  IInl Ws Tml;k'" ' (47) 
q . ext sIn Ips . II,n!=1 (,(I k=-oo 

To study noise un(t) which is stationary w.r.t. the laboratory frame take 

q' =0, tp«) = ep«() (= 0).
n , (64) 

(Identity cp(C) = 0 is not an essential one.. Its dismissal would only alter i~sta.il­
taneous values of noise un(t) 'V cos ep(C) , and its spectral intensity"" cos2 ep«().)~ 

Uncorrelated Noises ( =a, tp,. 
Let US follow the interpretation of the inphase and quadrature components 

of the random perturbation as offered by eqs.(21), (22), (23). Replace the 
noise "type indices ( .= C, s by thoSe ( = a, ep attributed to the amplit~de  and 
phase noises of accelerating voltage. Consider noises ( =a, ep to be statistically 
independent (or, to be more correct, uncorrelated): 

p!~~d(w) = P~~(w) 6(.(1' ) (65) 

Thus, components ( = a,i<p would enteF D(J') addiq.vely" D = E(=a,V'D«(). 
The objective of calculations is a component D«()(3), It stands for a noise of 
type ( = a, ep depending on a particular phase optiondn eq.(63). (Subsequent 
summation over ( = a, cp is implied, but is not commonly carried out.) The 
expression for D«()(J') copes-,-with a transition to stationary noise un(t) as well. 
It can be performed via substitution (64). . \ 

Rigorously speaking, assumption (65) is a concession to a customary ap­
proach of refs.[2,3,4]. To justify it, one might recall that the beam dynamics 
still remains the subject matter ijnder study. Noises ( = a, ep of the accelerating 

. voltage do occur in quadrature, and build up a basic ('mutually-orthogonal') 
set of the external perturbations. To a certain extent, beam responses to these 
two .types of p~rturbation  diverge to the utmost in their features. It is for this 
very.reason that these are themselves of interest. 
. As froID, a practical standpoint., the situation seems to "be somewhat different. 
A question arises regarding technical feasibility of eq.(65). A more natural and . 
technically imposed system of basic perturbations appears to ,be' that of the 
'amplitude and phase noises of the forward wave of current in the feeder of 
accelerating gap. Their cross-uncorrelated per~ormance,  being quite plausible 
practically, does not necessa.rily results in eq.(65). The latter is an exclusion· . 
rather than a rule. Expressions for D(.J) in terms of these random currents are 

'} . obtained in th~  Appendix. 
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where A~~lJk(J) is the equation symbol for amplitude function: Accelerating System Model 1. 

For definiteness, let the 'co-rotating frame be introduced as {) = e - wst 
(i.e. the reference particle {) = 0 of the bunch in question traverses the origin I 
e=:o of the generalized azimuth at the moment of time t = 0, and after 
each revolution period of 27r/ws further on). Substitute decomposition (16) 'l

'i,
'I,linto eq.(15) and transfer to the co-moving frame. The required form '(14) of the 

.synchronous wave can be obtained by, say, the following choice of amplitudes 
Vn and p~ases  'Pn of the gap voltages: 

N 

E VnlGn;tl = V:~t,  (58) 
n=1 

'Pn = 'P~ - ,arg Gn;q' (mod 27r). (59) 

The la.$t of these expressions specifies a way of phase-locking of fields in the 
gaps, which depends on th~ir  locations along the ring. While the first one 
entails that the lowest level of RF-power is consunled to drive the required 
amplitude Ve'xt of the accelerating voltage: the,RF-power to feed the n-th gap 
is tV V;. It is the last argument that makes cOrlditions (58), (5~)  optimal, and 
these are commonly realized in practice. , 

Consider the field geometry to be identical in all the accelerating gaps. (In 
many cases it does not conflict with the reality.) Then, the entire distinction be­
tween functions Gn (8), eq.(16) for the different gaps is reduced to an azimuthal 
shift of their common form-function G(e): 

-GnCe) =G(e - en), (60) 

where en is the coordinate of, say, the n-th gap cellter. Hereof, harmonics GII;~  

(17) -can be presented in t~e  form of 

Gn;k = Ok exp( -iA:8n ). (61) 

Without a loss of generality, from now on we require coefficients G±q' to be 4 

real-valued, i.e., having arg G±q' =O. . 
Insert eq.(61) into phaSe-lock identity (59). Then, by applying to definitions 

(21), one determines carrier phases <p~() for both, the inphase and quadrature 
noises v~()(t): 

q':f 0, cp~() = cp«) + q'en , (62) ,,', 
(",(c) _ I'" 1,,,(8) = I'" _ ~. (63)
T - TS' T Ts 2 4, 

A«(lJ (.1) = ~ V(~) (.1) V«~)· (J)=-.!.- J+lr d~/. (8Q',J(.1, 1/;»)2 x (48)
nn1J~ . L..J n,mk nllmA: 2 'j/ 8~/.  

]=-00 7r -lr 'j/ 

X ~[GnjA:+q,  exp(+iq'19 (.1 ,'I/J) +i'P~(»+Gnik-q'  exp( -iq'19(J, 'ljI) """" i'P~(»]X 

x[ ;.. (n --+ nl, (--+ (1)r. 

4. Diffusion beyond Stationary Buckets 

Let us remiZ:d the principal guide-lines to extend the diffusion equation 
to beam halo region, ref.[IJ. -Only a storage oper:tion mode is involved, Le., 
l'Psl = 7r/2. Angle-action variables ({fJ,:1) of finite orbital motion of untrapped 
particle are introduced. Choice of q'/ q = 1, 2, . .. results in coincidence of the 
diffusion coefficients inside all the beam buckets. Therefore, on injecting M = q 
identical bunches, the beam halo would be built up uniformly w.r.t. phase {J. (In 
other words, the random phase type of approximation for the orbital IPotion is· 
realized.) Consequently, particle dynamics in the halo region may be ultimately 
reduced to a single closed equation - the diffusion one along coordinate :1. 

Further, periodicity (with a period of the main RF) of the orbital motion 
allows one to transform ({fi,:1) to scaled variables ('ljI,.1). The latter are de­
fined within the one RF-period, l1e~  the separatrix at issue, and manifest the 
folJowing behavior: 

1. At .1 = Jeep go over continu<?usly into 'ljI, .1 and d'ljl/dt = Os(J) of the 
synchrotron oscillations of trapped particles. ­

2. lQ. case of .1.-;» Jsep (unbunched-beam approximation) passag~  is per­
formed to the limit: 

~/,  q{). {)'
'Y --+ ~slgn , .1 -. 2119'1 

q , Os(.1) --+ ql19'12 . (49) 

" 
As a result, the diffusion coefficient along coordinate .1, .1 ~  Jeep is obtained 

which resembles outwardly eqs.(42), (44) or (47), (48). All the formal difference 
is reducible to the following three modifications: 

1. Instead of eq.(43), use should be made of an analogue for the multipole 
index m beyond separatrix: 

m = 2~Signt9' + 2j, (.J ~ Jsep, M = q,l<t'sl ='i). (50) 
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2. Functions I~(3)  inside weight factors (44) grow into a continuation of . Given q' f: 0, eq.(54) retains' its dependence on carrier-phase differences 
eq.(3) beyond separatrix: . (cp~()  - cp~(d)  only, i.e., on the cross-lock in phase of fields across the accelerating 

1, '. • 

gaps. Thei~· phase-lock w.r.t. anunbunched beam is inessential (and, moreover, 
I:nI:(3) = ! J1t d~ exp(ikiJ(3, t/J) - imt/J), (51) is not well· defined at all). , 

~  o . . Give~ t/. = 0, one goes over to a particular case of noise un(t) that is station-
" 

~~.  I "','" 

iJ(3, t/J + ~) = iJ(3, t/J) + 2~ signiJ', 3 2: 3sep. ary w.r~t.tpe:laboratory  frame, in which case eq.(54) is subject to a noticeabl,e 
q , simplification:

I \J~3. Amplitude factors (48) 'get the new limits of integration over phase: 
,/ 

" 1"( Oa )2 N 00" D(3 > 3sep) = - 2' L LEx (56) 
~ j+1t dt/J -. ! /+1t dt/J. . (52) 2 q ~xt sm<ps n,nl=l (,(11:=-00 ' 

2~  -7r ~  10 , x 4 p("1 )(kw( "'» G 'I:G· I: cos I,"l«) cos l,"l«d.""I n, nl; TnlV Tn 

Up to these .reservations, we areno~ going to distinguish bet",een cases 
3 ::; 3~p and 3 2: 3sep,M = q, l<Psl =!: ~ /2 altogether. (Naturally, ~ave  the Emergence of factor cos y~() cos y~~I) i~ quite explainable. It takes into account 
unbunched-Eeam li,mit to follow.) . t.hat voltage u n{ t) = L( v~()  (t) cos cp~() is, in fact, applied to the gap as q' = o. 

'V4i!e spectral matrix pJ~~d(w)  is related to amplitudes v~()(t)  solely. 

Unbunched-Beam Limit For example, consider one gap (n = N = 1).and .asingle stationary noise 
source (say, , ,= 1.):

Wide-band performanc~  (in the frequency sc~e of ws) of noise v~()(t) inflicts, 
though weakly so, an asymmetry to diffusion coefficient D(3l as, 3 ~ ·3sep. Now P«(d(w') - p«()(w) {; 6(,. t,"l(q - 0 . 

• nnl' - n nnl ..I' Tn - • 

it starts to depend on where the particles mova, in the upper (iJ' > 0) 'or in the� 
lower (iJ' < 0) half-planes of phase-plane (iJ, iJ'). (Such a possibility can first be As a result get from eq.(56)� 
noticed as early as from eq.(50).) .� 

"( 02 )2.The most apparent illustration to this effect can be gained by passing to the ? . ~ '0 00, «) 2
D(3) ..1sep) = -2F' L :Pn (kw(3» IGn;1:1 . (57)

.limit (49) of unblinched beam in which case functions (51) do degenerate: . q (~XL  sin 'Ps, k=-oo 

(53) Convert 3 into a new independent variable 6pL/2~ with Ap being the devi­I:nI:(l) -. 6m,2~8igD""  

at.ion of momentum from the reference one. Consequently, find out the above 
Substitution of these values into eqs.(42), (44) yields expression to'coincide with the diffusion coefficient which was obtained in ref.(5] . -. 

in treatment of the so-called st.ochastic aCcelel~tion t.echnique. 
1 ( 02 )2 N • 00D(3) 3sep) = - 2 O. L L L x (54)
2 q '~xt sm <ps n,nl=l (,(1.1:=-00 5. Simplifications 

X [ p~~~I)(kw(3) + q'iJ'(3»Gn;l:+q,G~I;I:~q'exp(+i(~~()  - cp~~I») + 
General expressions fot' D(..1) are too' complicated. More particular results 

+p~~~d(kw(3)  - q'iJ'(3» Gn;t-q,G~I;I:_q'  exp( -i(cp~q  - <p~~I»)  + ~'e  of practical interest. Major pDssibility of getting ~hem  is to involve a few.' . 
physically justifiable. assumptions on the stl'ucture of cross-correlation matri­... + p«(d(kw( "'» G 'I:G· L?6 '0 COS(I,"l«) + l."l«d) ]. nnl v n, nl;II:"" q Tn Tnl ' ces (26) or, equivalently, of spectral matrices (28), A simplified model of the 
accelerating system is required, as well. ' 

where w(3) denotes the angular velocity of the off-set particles: 
Let us introduce these simplifications one-by-one with all the suitable com­

ment.s accompanying.w(3) = Ws + iJ'(3); iJ'(3) = ~3signiJ'. (55) J
2 
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