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Abstract 

S.S. Kurennoy. Beam Coupling Impedance of Holes in Vacuum-Chamber Walls: IHEP Preprint 
92-84. - Protvino, 1992. - p: 23, figs. 6, tables 3, refs.: 18. 

Both the longitudinal and transverse coupling impedances produced by a small hole in 
vacuum-chamber walls are evaluated for wavelengths large compared to a typical size of the 
hole. The method developed is based on the Bethe theory of diffraction by small holes. The 
problem is solved for an arbitrary cross section of the chamber and arbitrary hole shape. The 
results are obtained in analytical form for the cases of a circular and rectangular cross section. 
Contributions from pumping holes to the coupling impedance of the UNK, LEP and LHC 
vacuum chambers are calculated. 

AHHoTaO;BJI 

e.e. KypeHHoH. HMneAaHc ClUItl.H rrylJxa C OTBepCTHJlMH B CTeHxax BaxyyMHOH KaMepbl ycxo­
pHTeml: IlperrpHHT H<t>B8 92-84. - npOTBHHO, 1992. - 23 c., 6 pRC., 3 Ta6JI., 6H6JIHOrp.: 18. 

n POAOJIhHblH H rrOnepe'lHblH HMrreAaHC, COtlAaBaeMble MaJIblM OTBepCTHeM B CTeHxe Baxy­
yMHOH XaMepbl ycxopHTeJIJI, BbI'IHCJIeHhI Ha '1aCTOTax, coOTBeTcTByIOUJ;HX AJIHHaM BOJIH, tlHa.­
'1HTeJIhHO OOJIhIllHM xapaXTepHoro paoMepa OTBepCTBJl. MeToA OCHOBaH Ha TeopBH ARcPpax­
n;HH Ha MaJIblX oTBepCTBJlX, Pa.:JBHTOH BeTe. 3aAa'la pellieHa AJIJl xaMepbl C npOH::3BOJIhHblM 
nOnepe'lHblM Ce'leHBeM H AJIJI npoB3BollhHOH cPoPMbl OTBepCTBJI. B CJIy'lae xpyrrroH R npJlMo­
yrOJIhHOH XaMepbl OTBeTbI nOJIy'leHhI B aHaJIBTH'IeCXOM BHAe. P aCC'IHTaH BKJIaA oTBepcTHH 

C.C.KypeHHo~ 

AlIJl OTKa'lKR B HMueAaHC KaMepbl Y , LEP H LHC. 
rlMrre~aHC CBR3R ny~a C oTBepCTRHMa B CTeHKax 
BaKYYMHO~ KaMepH yCKopRTeXff. 
Pe~aKTop A.A.AHTHnOBa. TeXHK~ecKKa pe~aKTop ~.IT.TKMKKHa.
KoppexTop E.H.rOpHHa • 

• 
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0wceTH8H ne~aTD. ITe~.~. I~43. Y~.-H3~.~. I,? THPaE 120. 
3axa3 388. ~exc  364~.  UeHa 2 py6. 50 Kon.

j© Institute for high energy physics, 1992. 
" HHCTHTYT ~H3RKH BHCOKHX 3HeprKa, 142284, ITpOTBHH0

MOCXOBCl(Ott o6~. 



• "~"U" .•, '~'- .,. ,''t.,. ~";p."  . ', ;~'~"  ""'~'~Y  • ·I':'.'~.:~':~}~~"'  ""'~."  :~'-;'-l"';.'  ,- ' ..... ,.. , ,,~. '," •••~  ~""",  •• ~  ••••.•• 

:...... , u 

.",' 

I: 
.1 

';~, 

}'l 

\,.! 

.~'4l·  

~l{'  \
.;i'< '\X..
,.1,' I 

.~.  "'j' I 
INTRODUCTION>S. 

.~ -:,:~  The problem of the beam-chamber interaction is very important in modem 
accelerators and storage rings which have very high intensity of beams. This 
interaction is usually studied in terms of beam-chamber coupling impedances 

.'i 

or co~ected  with these, of wake potentials, e.g. review [lj. ;:\;l 
. ','1 ~  , There is a g~neral tendency to minimize the coupling impedances to avoid 
...:.; beam instabilities and reduce wall heating. In doing so one tends to shield, with 

~. 

~ :J. 
respect to electromagnetic fields, such enlargements of the vacuum chamber as . 

,'id' 
vacuum boxes, bellows, etc., by metallic shields or liners. On the other hand, the 

~~} requirement of the beam life-time to be long enough and beam-loss reduction ;.. :itj'
t~,jl ~:\,  

j 

puts cODBt~aints  on the admiuiblevalue of the vacuum inside the beam pipe. 
:/f Achieving this high vacuum requires the presence of vacuum pumping holes in 

these shieldB. The nwilber of such elements, which are chamber discontinuities \' 

,
 

and interact with a beam, can be very large in big machines. For example, 3260
 
liners in the vacuum chamber of the UNK first stage have in total nearly 105
 

narrow pumping slots. In theLEP c~llider  of the order of 10· holes connect
 
the b'eam pipe with the parallel chamber containing getter pumps. The LHC
 

.' design includes a thermal screen with 107 + 2 . 108 small holes for pumping
 
(the number depends on the hole size). Common wisd~m  tells us that such a
 
small discontinuity contributes very little to coupling impedances since it does
 
Dot interrupt essentially the lines of beam-induced currents in the chamber
 
wallS. Nevertheless, their total contribution to the beam-chamber coupling
 
'impedances can be very essential because of a la.rge number of such elements. 

Therefore, quantitati'Ce results should be obtained and the impedance eval­
.uation for these chamber elements is of great importance~  Because of lack'of the 

p "....... \. axial symmetry, it is obvious that a numerical solution to the problem has to be
 
·r~ 

. ~"\1 essentially three-dimensional. This implies time-consuming computa.tions even 
}" 

:,;,;~;; 1 

, 

J!
 



in the case of simplified models. This paper presents the analytical calculation 
Qf both the. longitudinal and transverse coupling impedance for small holes in 
the walls of the vacuum chamber which has an arbitrary cross section. 

1. EVALUATION METHOD 

To evaluate the coupling impedance we ha.ve to calculate the fields induced 
in the chamber by a given current perturbation. The fields produced by' a 
rela.tivistic point charge in the' chamber having a con,stant arbitrary-shaped 
cross. section, without hole, are evaluated easily. Then we can consider them 
as incident electromagnetic waves on the hole. According to the Bethe theory }of diffraction by small holes [2], the diffracted fields can be obtained as those 
radiated by effective surface "magnetic" currents and charges or, in the case of \ 

a small hole, just by effective electric and magnetic dipoles. Thus, when this 
approach is applicable, one can rep'lace the excited hole by induced dipoles, 
evaluate the fields radia.ted by them inside the chamber and obtain the coupling 
impedance. 

1.1. Fields in Chamber without Holes 

We consider an infinite cylindricalpipe with an arbitrary cross section S and 
perfectly conducting walls. Let Z axis be directed along the pipe axis, a typical 
hole size h satisfy h <: b, and the hole center be located at point (b, z = 0). 
The point charge q moves with velocity 1J = c along the chamber axis with a 
transverse offset s. Then the electromagnetic fields harmonics E(e), jj(O), which 
would be produced by this charge in point (b, z) on the chamber wall without 
hole, can be expressed as series 1 

(0) ~ (0) ~ il.z -1 ~  Ell (b,zjw) = ZoHr (b,zjw) =,-Zoqe. E Anm1/Jnm(S)VIl1/Jnm(b) , (1)
n,m 

where Zo = 1201rOhms is the impedance of free space, k =w/c, and in­
dices v and T define the normal and tangential (in a transverse cross section 
of the chamber) field component, respectively. In Eq. (1) Anm and 1/Jnm(T) 
are eigenvalues (EV) and orthonormalized eigenlunctions (EF) of the following 
two-dimensional Dirichlet boundary problem in region S: t '. 

(V2 + Anm) 1/Jnm = 0 ; 1/Jnmlas = 0 . (2) 

lTim.e dependence is exp(-iwt). lt 

2
 

Let us consider the ratio of the real part of the impedance to the ima.ginary 
o~ ,I 

Re Z(w) _ (Q~  + Q~)w3  

IImZ(w)l- 611'(Qe + Qm)c3 . 

It follows, in the framework of the applicability of our approach, i.e. when 
wh/c <: 1 or wl/c <: 1, that the inequality ReZ <: IImZI holds. Actually, the 
polarizabilities are proportional to the third power of the typical size h of the 
hole, and as a result 

Re Z(w) (Wh)3
IbnZ(w)1 ex 7' <: 1 . 

•..
23 
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Other field.. components of the relativistic charge vanish on the chamber walls.APPENDIX 
For example, in the case & circular CIosssectionwith radius b the nonvanishing~>(~ 

field harmonics on the hole, i.e. in point (r == b, I(J = I(JI.. Z = 0), can be writte~
On real part of longitudinal impedance o,f hole	 .'~, 

.Va as	 ' .. "~ 

\.' 

The purely inductive longitudinahmpedance of a hole in perfectly conduct­
ing walls of the vacuum chamber was obtained, see Eq. (13). However, some 
part of the beam energy is lost to excite the hole, and hence, the imp~dance  

has to have a nonzero real pan. One can calculate it in an indirect way, by 
evaluating the energy radiated by the hole. This evaluation is, in essence, the 
same one as in paper [5], where beam energy losses produced by the beam-hole 
interaction are calculated. 

Let a bunch with noqnalized longitudinal charge distribution ..\(s) move 
along the chamber axis with velocity tJ ~ c. In the case of a point charge '\ 
..\(s) =15(8). The total energy radiated by the effective dipoles M(t) and P(t) " 

is .100 'Zo roo [1 (rP. )2 (rP ... )2] .
l1U =. -00 dtW(t) = 671"c2 LOll dt c2 dt2M(t) + dt2P(t) . 

. 't~'Since Ev(z - ct) = ZoHr(z - ct) =q..\(z - ct)evleo, for t~e dipole "alues we get 
P(t) = Q.qev..\(z - ct) and M(t) =a."qevc..\(z - ct). Then we rewrite l1U in 
w-domain as 

l1U = Zoq2(~ + ~) e21°° dww41..\(w)12 , 
.{T.'12",2c4 v -00 

~l_. 

where ..\(w) = Jd8exp(iwslc)..\(s) is the bunch spectrum (..\(w) =1 for a point 
<harge). I 

On the· other hand l1U = kq2, where the loss factor k is defined as 

1 100k = 2,," -00 dwRe Z(w)I..\(wW . 

So 
. 1 00 

l1U = tj;q2LOll dwRe Z(w)I..\(w)12 . 

Comparing two. expressions of l1U and taking into acco1lnt that the in­
tegrands are positively defined we obtain the real part of the longitudinal 
impedance of the hole 

17 (~.+  Q~)W4  2Re Z( ) = 
W ~o 671"c4 ev • 

The energy loss of a Gaussian bunch calculated using this expression in the case 
of a circular chamber where ev = 1/(21rb), coincides with the result by Sands 
~.. 	

 

~  

22 

j!f, 
~/	 E~O)(b,l(Jh,O;W) = ZoH~O)(b,l(Jh'O;W) 

:,1 

'\1
r	 

Zoq [ 00 (8)" ]= 21rb 1 + 2El b c08n(l(Jh -I(J.)	 (3)
:1 ..;:;
:/	 \ 

where I(J. is the azimuthal angle of the beam in the chamber cross section. 

:} \ 
1.2. ,Hole excitation by beam fields

<,\ / 
Let us discuss conditions which have to be satisfied to consider the hole 

excitation by fields (1) in the spirit of the Bethe theory. Bethe's paper [21 
investigates the diffraction of a plane. electromagnetic wave by the hole in an 

"infinite perfectly~onducting  plane, its thickness is assumed to be negligible. 
The boundary conditions on the hole are satisfied by introduction of effective 
surface "magnetic" charge and current. Their densities p-. and JrrJ4g depend 
both on the hole shape and size and on the fields of the incident wave. To 
evaluate fields produced by these charge and current at distances R from the 
h(>le which are large compared to a typical hole size h, one can replace them 
by effective dipole moments. It IsobvioUJ that the applicability conditions for 
B~the's approach in our problem are as follows: 

•	 h <: b - one can neglect the curvature of the chamber wall; 
• whlc	 < 1 - field values can be considered as equal in different hole 

points and the approximation of incident plane wave can be used; 
•	 l1 < h,where l1 is the wall thickness. . 

It is clear that for small holes in chamber walls, say, for pumping holes, these 
conditions are usually satisfied. The restriction on frequency from the second 
condition is weak: a.nd the approach, as a rule, is applicable at frequencies above 
cutoff as wen. 

The effective magnetic dipole moment of the hole is defined [3] as 

, M:= -.!.. J1hole dSPm09r , 
Ito 

the electric one as 
t	 • 1 (( • 

P := 2JJhole dSJrrJ4g x r . 
3 

, .. J'
 



An important point is that these effective moments can be easily expressed 
in terms of the beam fields on the hole. Let us consider an elliptic hole with 
semiaxesll and 12 (II ~ 12 ), and introduce a local hole coordinate (u,v) with 

L. J.j: .:I:J~~I'f: ..l.~··:
the axis u along the major axis of the ellipse. Then the effective moments can 
be written [3] as I I i I /Y"'1

/"'··..··..··..t···· .. 
.. .. H(U) .'.. H(O)M = auamll TU + a"am.L TV ; I .J ~ 

I IP = eoaeiiE!O) , (4) I I., 

Iwhere au and a are the local coordinate unit vectors, ii is the normal to the j s~~~;~·~l<:~:: E11!ptic ii,
l1 

hole plane (u, v). Fields E~O)  and j{JO) are defined by Eq. (1). Electric am and 
magnetic ae polarizabilities of the hole are purely geometric factors and can be 
calculated or measured. For the elliptic hole' [3] they are ;:~;;1;:::":f:f:::I:~~tJl.::  

1rl~e2  
amI! = 3[K(e) - E(e)] , 

60 70 80 
_ 1rlfe2(1 - e2

) Azimuth angle f/J.. 

am.L - nr'"'(e) _ (1 _ e2)K(e)], (5) Figure 5. Dependence of angle <1>0 on hole poIition 

1rlf(1 - e2)� 

ae ...�= 3E(e) IE 1.6 

w~ere e = J1- lVl~  is the eccentricity, K(e) and E(e) are complete elliptic ~  t·'1I-I·r··t·-t+·· 
b 1.4 '-'f - -r _--r "l- ,) ····r········_·~··~· 

integrals of the first and second kind. .­ i I ~ i j ~"!  i* ············I··..············I···············f.. ·············f·~·············i·~···u········f··· ·..·······{·.·············i··.···.. ······Let a be the angle between the chamber axis and ellipse major axis. Then ~1.2 

M.. [ .. ( . 2 2 ) N

'U

.. 1.. ../. 1... ..i. ..1. ~ ~.J= aT amI! Sin a + am.L cos a + V
+

..........�+ az(am.L - amI!) sin a cos a ] H~O)  , (6) o.a 
where aT is. a unit tangential vector to the boundary~'of the chamber cross 

0.6
section. 

For the specific case of a circular hole with radius h we get e = 0 and 0.4 

3amI! = am.L = 4h /3 , 0.2 

ae == -2h3/3. (7) 
0

0 10 20 30 40 50 60 70 80
Another important particular case is a' narrow slot. In the case ofa longi­ Azimuth angle C{Jh 

tudinal slot (a = 0) with width w and length 1, w «: I, the limit of e --+ 1 in Figure 6. Dependence of ZJ. OIl hole position 
Eqs. (5) yields 2 ' 

am = am.L =7tlw2/24 , •� 
a e = -1rlw2/24. (8)� )

2This value, 1flw2 /24, for a narrow slot is cited also in [4]. Paper [5] and book [6] give another 
value, ~lw2 /16, whith is obtained from the solution for an infinite narrow slot in a plane shield. 

4 21 
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2 

,~ 

!I: 

.. '~.  

,w , The applicability condition for ,the Bethe theory here is wi/e < 1. For a ,, tra.nsverse narrow slit (a =1(/2) with width w and length I, w < I, it follows 

1.75

'.5~:l~:~I~.-~f~-
1.25 

........ ··I:::J_~ :l::~·
 

! ·······t ......·...... 

Figure 3. Function 1:1 venus hole position 

w"
....· ·· ..·..·t···..· ···········-j--· · ·..·.. ·.!..··· · 1... .. 

; o/b=.5 i i 

o 0 0.1 0.2 0.3 

FigUre 4. Function 1:2 versus hole poaition 

20 

from (5) and (6) that . 

a, 

am 
1(13 

= amU = 24 (In(4qwr=-n ' 
= -1(lw2/24. (9) 

\ 

\ 
\ 
I 

In the latter case, in. contrast to a longitudinal slot, the condition I < b is 
very essential. When it fails, the hole dimensions are comparable to the radius 
of curvature of the chamber walls, and the approximation of a small hole in 
Bethe's approach does not work. 

1.3. Fields radiated by hole in chamber 

We look for fields radiated into the chamber by induced effective currents 
and charges in the form of a series over tile waveguide eigenmodes (3] 

F =/~ (IlnmF:m6(z) + """,F;...6(-z)) , (10) 

where F means either E or i1 and 6(z) is the Heaviside step function. The 
superscripts '±' denote fields with propagation factors exp(=rrnmz), r nm = 
(A~m- k2')1/2, radiated respectively in the straightforward (index '+', z > 0) or 
reverse ('-',z < 0) direction. The unknown coefficients a"", and bnm can be 
found by applying the Lorentz reciprocity theorem and uSing the eigenfunction 
orthogonality, e.g. (3]: 

(11). k -{Ilnm} rr ....'I'
21 Zo Anmrnm bnm = JJNalc dSJfMI/.Hnm 

. ( . jJ'f" "'I''' )= ~W  JJo ,,,,,M ­ E"",P + ... , 

• 

where Ai and P are defined by Eqs. (4). The expansion of the integral in the 
RHS over dipole moments is justifiedlor a small hole. However, sometimes the 
higher multipoles (quadrupole, etc.) have to be taken into account &8 well. 

f 
2. LONGITUDINAL IMPEDANCE 

The longitudinal coupling impedance of the hole can be defined as 

Z(WjS,t) = _! roo dze-"·Ea(~zjw) 

q J-oo 
5 

, (12) 



.f~:  

'­

where tis the transverse· offset of a test charge. The component Ez of the field� 
radiated by the hole into the chamber, depends on i since beam fields on'the� 
hole and, as a result, the effective currents depen~  on i. The usual impedance� 
definition corresponds to the particular case of i = t = 0, i.e. to the lowest term� 
of expansion over i, t, for details see review [7].� 

Let us substitute Ez from Eq. (10) into definition (12). When w < Wcut, all� 
r nm > 0 and one can easily integrate over z. It is easy to recognize that at� 
frequencies above cutoff the difficulties of integration over z on infinite intervals� 
are only formal ones and by introducing a small attenuation we get the same� 
result as for W < Wcut. Then taking into account Eqs. (11) and (4) we obtain� 
the longitudinal impedance of a small hole in the following form� ~ 

Z(W; i, t) = -iZo~(ae  + am)ev(i)ev(i) . (13)
c 

2Here am = amlJ sin2 a + am.l cos ex for holes with a symmetry II.Xis at angle a� 
to the chamber axis, and the following notation is introduced� 

_ E!O)(T) _ -I ... 
e.,(T) = -z- - - I: Anm1f!nm(rjVv1/Jnm(b) . (14) 

oq n,m 

It is seen that e.,(rj. is just a normalized electric field of the beam on the hole;� 
In other words, it is a solution to the standard two-dimensional electrostatic� 
problem in S: to find the electric field on a conducting boundary produced by \.

,� 
a charge which is placed in point r. For simple cases ev can be easily found by� 
means of the Gauss theorem.� 

rIt should be noted that imp.edance (13) is proportional to frequency W and 
\.~ 

, 

. to sum of hole polarizabilities a e + am' In the accepted notations [3] a e is 
negative, and this sum has to be considered as a difference of contributions . '" 
from the magnetic and electric effective dipoles. It is a typical low-frequency 
impedance in the case of a e + am > O. Such an impedance can cause the i

I 

longitudinal instability of intense bunches when the impedance value is above 
some admissible threshold [8]. I.t is well known that low-frequency (w <: Wcut) 
impedances from various inhomogeneities are additive. Naturally, the following ~ 

idea arises: the total inductive impedance of the accelerator chamber can be 
lowered either by choosing the shape of-pumping holes in such a manner that t.: 
condition a e + am < nholds, or by introducing special compensating holes of /lo. 

such a form. Unfortunately, for small holes the inequality a e + am > 0 seems 
always to hold. Specifically, in paper [9] for the holes possessing a symmetry 
with respect to two perpendicular axes the inequality lael-I ~ a;;.i, + a~  was 
proved. The equality holds here for an elliptic hole, cf. Eq. (5) and particular 

6 

w 

···..············l··· .. 
i

j·· 

.......~/p..~~~J.
0.8 

0.6 ·····f·.. 
0.4 "·····~  ••i,.!,,,!J .•·.,,·" j ~ .. 

02 h ••"":1;2::~:'J;~":.t.·.•: 
°0· 0.3 0.4 /0.5

Ratio Yh b' 

Figure 1. Function IJ versus hole poeition 

f !0' ! , , I I , I ! , I! " I , I "J h 0!! ! It, , ! , I , , I J , , .J 
o 10 20 30 40 50 60 70 80 

Azimuth angle rph 

Figure·2. Dependence of Z on hole position 
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cases (7)-(9). It rollows 

3 2
a2mjlsin a+ a2m..1. cos a ::. 0 . 

(15)am +a. ~  amjl + am..1. 

Circular chamber 

,} 
Let us consider the chamber with a circular cross section or radius b. Taking 

into accOunt the axial symmetry we can easily obtain from the Gauss theorem 
that e.,(O) = 1/(bb), cf. Eq. (3). Substitution into Eq. (13) gives the longitu­
dinal impedance or a small hole having an arbitrary shape, in the rorm 

Z(w) = _iZg~(a. +am) (16)c 411"262 • 

This result was obtained fust by a direct summation over EFs in paper {1(\] and 
later by another method in {ll]. 

In the particular case or a circular hole with radius h taking into account 
" Eqs. (7) for polarizabilities we get a simple expre88ion 

3 
Z(w) =-i Zo wh� (17). . . 6lr2 cb2 . 

It shows an inductive contribution or the hole. The usually quoted in cyclic 
accelerators quantity, the so called reduced impedance Z/n, is 

Z(nwo) . Zo h3 

---=-1--� (18)
n� 61l"2R62 ' 

".1� where n = w/wo = wR/c is the harmonic number of revolution frequency Wg 

and R is the machine radius. 
The longitudinal impedance of a circular hole in the "circular-chamber walls 

"':,,,. was studied by a direct numerical method as well. In paper {12] by using the 
3-D code T3 in·MAFIA {13] the longitudinal wake potential produced by such

J a discontinuity was computed. The low-frequency impedance was estimated by ·;t
i fitting the numerical results. The obtained formula, Z/n ~ -iO.OI7Zgh3/(&:I),r 

,~ 	 

coincides well with the exact analytical expression (18) (1/(61r2) ~ 1.69.10-2). 
, It should be noted that this dependence or the longitudinal impedance on 
i ) 

the hole radius h and that of chamber b can be simply derived fr~m  qualitative
I 

considerations~see [12). 

); , , 3K. Baae. prime CODlDlUIlic&tiOll. 

7 

16) Cob S.B. 1/ Proc. I. R. E. 1951. V.~9. P.1416.� 

17) Deaip Study oUhe Large Hadron Collider,CERN 91-03, 1991.� 

18) GlucbWa RL. - Preprint CERN SL/92-06(AP), Geneft, 1~92. 
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, For the case of a circular hole the effect of a finite chamber-wall thickness 
on the hole impedance was investigated. Numerical results 114] show that the 
hole polarizabilities decrease slowly when wall thickness 1:1 increases from zero, 
reaching a constant value when 1:1 > 2h. For such or thicker wall the impedance 
is equal to 0.56 multiplied by its value (17) for a thin wall, see 111]. So taking 
into account the finite thickness of the chamber waJJS slightly reduce the value 
of the hole impedance. . 

For a very narrow longitudinal slot taking into account' polarizabilities (8) 
le~ds to Z(w) == 0, i.e. the impedance vanishes to the first-order approximation 
of our approach. It seems natural since such a slot does not interrupt essen­
tiallybeam-induced wall currents. However, it should be noted that, such a 
cancellation of contributions from the electric and magnetic dipoles ta.kes place ~ 

only as a limiting case, cf. (15) with a == 0 and amjl :> am.!.' The account of 
next-to-Ieading terms in expansion (5) at E -+ 1 i~a<;ls,  when w <: l < b, to the 
following expression 

. Zo W w 4 (dl ) , Z(w)== -Z-,~- In - - 1 .� (19)
9611" C IJ2l w 

The contribution of the quadrupole induced moment to impedance in this case 
vanishes as well (101.. 

Narrow transverse slot, in contrast to the longitudinal one, disturbs drasti­
cally the currents which are induced in chamber walls by the beam. It is clear 

/' ..that tp.e impedance produced by such a discontinuity is large. Substituting (9) 
into (16) and neglecting the contribution from the electric dipole which, in this 
case, is small as compared to the magnetic one,cf. (9), we obtain 

. Zo� w l3 
(20)Z(w) ~ -z9611" C 112 (In(4l/w) - 1) • .. 

'rhis formula can be applied when w <: l <: b. 

Rectangular chamber 
',~ 

Consider now the chamber having a rectangular cross section with width a, :j, 

and heigh~  b. Without restriction of generality, let us consider a hole in the side .fJ 
wall (Xh == ±a/2) which is displaced from the horizontal plane of the chamber ", 

syn;u:netry, Y == 0, at distance Yh, IYhl ~ b/2. The 'two-dimensional problem to ( '{ 
find' ell(r) can be analytically solved, in a rectangular region and substituting \ ,j' , 

.� ".ell(O) into Eq. (13) yields '� ;.,'J"
." w (ere +am) ~3Z() == -Z£iO C '112 """� (21)w 
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of the chamber the results are obtained ,in a simple analytical form, Eqs. (16) 
and (29), a semianalytic answer is given for a rectangular chamber, and in the 
general case some simple computations are to be done. 

The results obtained allow one to give both the numerical estimates of hole 
contributions to the chamber impedances, and some practical reCOJD.Jilendations 
for the vacuum chamber design: 

•� Comparing Eqs. (17) and (19), (30) and (31) we conclude that both the 
longitudinal and transverse impedance of a narrow longitudinal slot are 
lower than those of a circular hole with the same area. The result is 
independent of the chamber cross section. 

•� Both the longitudinal and transverse impedances of a hole in the wall of 
a rectangular chamber vanish when the hole is near one of the chamber 
comers. Naturally, since the hole has a finite transverse size its impedance 
teduces essentially when the holeAS near a comer 'rather than goes to zero. 

•� In the chamber having the cross section of a general shape it is better, from 
the viewpoint of impedance minimization, to arrange holes in places where 
beam fields are minimal, i.e. in comers, dips, etc. In doing so the hole is 
weakly excited by the beam and produces lower coupling impedance. 

The behavior of hole impedances at very high frequencies when the pertur­
bation wavelength is smaller than or of the order of the hole size, has remained 
beyond the framework of the present paper. In this frequency range the beam 
fields penetrate through the holes and the interaction with elements which are 
placed beyond the shields or liners, Le. cavities, bellows, etc., becomes essen­
tial. This can lead to resonances whose parameters seem to. be determined by 
specific cavity }ayout. The study of such resonances is especially important 
for electron accelerators where the bunch length is very short. In principle, 
it is possible to calculate impedances at high frequencies numerically, but the 
problem is very hard and time-consuming since the geometry is essentially the 

three-dimensional one. 
The special case is the LHC vacuum c~amber  where the inner wall of the 

chamber together with the outer surface of the thermal screen form a coaxial 
structure. Through the pumping holes the beam can excite a TEM-wave in the 
coaxial structure. Since such a wave has a phase velocity which is equal to the 
speed of light, it is synchronous to the ultrarelativistic beam and interacts with 
the beam in a resonant ma.nner. This interaction is studied in paper [181· 

*** 
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where function ~ is defined by the fast-converging series 

~ = f cos(2m+ l)1rYh/b 
(22) 

- m=O cosh(2m +.l)1rXh/b . 

IJ 

The dependence of ~ on the hole coordinate Yh is shown in Fig. 1 for a few 
values of the ratio a/b. It should be mentioned that in a rectangular chamber 
the impedance of a small hole vanishes when the hole is near one of the comers: 
~  -+ 0when IYhl -+ b/2. The explanation is that since the beam fields near the 
comer tend to zero the effective currents on the hole are not induced. 

Chamber with an arbitrary cross section 

To calculate the longitudinal impedance of a hole in the wall of the chamber 
with an arbitrary cross section S it is necessary to find e...(T) by solving the 
electrostatic problem. The evaluation of the electric field which is produced by 
a thin uniformly-charged filament on the cylindrical surface with cross section 
S is the standard two-dimensional boundary problem in the case of interest 
when the filament is parallel to the surface generatrix. There are a number 
of codes for numerical solution to the problem. We use the code MGD2 [15] 
which is based on the multigrid variant of the finite element method. The field 
produced on the boundary of region S by a unit "poin:t" source is computed. 
Fig. 2 shows the values of e~  for square 70 x 70 mm chamber and elliptic one, 
with semiaxes 40 and 30 mm. For comparison we cite results for a.circular 
chamber with radius b =35 mm. 

i Numerical results for the square chamber coincide well with the analytic 
solution (21) at alb = 1. Note, the hole impedance strongly depends on the 

:1 hole position in the chamber cross section. It was shown above in analytical 
~,j  I, way for the case of a rectangular chamber. For the elliptic chamber under 
';'<1 
)~~. 

consideration the impedance of a hole in the horizontal plane (<Ph = 0) is 5.6 

·•.
r, 
·1 times smaller than that of the same hole in the vertical plane (<Ph = 1r/2) while 

:):1 
the ratio of their squared distances from the axis is equal to 16/9."{ 

'.~  i We may not care about solution normalization if the longitudinal impedance 
?-~ 

is computed as follows. One can solve numerically the two-dimensional problem 
for ev in region S and then in the circle ohadius b. Afterthat we get the result: 
simply from a comparison with the hole impedance in the circular chamber as 

Z = Zcirc (ev/ecirc)2� (23) 

where Zcirc is given by Eq. (16). 
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3. TRANSVERSE IMPEDANCE LHC� 

The transverse imped~ce  is defined as 

Z.J.(W; 8,t) = _i.jOO dze-ilu [.E + ZaP x H] , (24) 
qs -00 .J. 

where in the RHS the fields produced by the hole are taken at (~z;w),  iJ--+ 
(0,0,1) and the limit of s --+ 0, t --+ 0 is usually understood. It is obvious that 
both' the E- and If-modes c'ontribute to the integral unlike the longitudinal 
impedance (12). After some calculations which are similar to those for the 
longitudinal case we, get the expression 

... ... i [1.... ... ...
Zi.(w;s,t) = --E );N(VtPN)t{'VtPit·P/eO)h 

qs N , ' 

"+ IC}/(P X VXN MVXN . ZOM)h] , (25) 
, 

where N= {nm} is a generalized index, ICnm and Xnm(rj are respectively the 
eigenvalues and EFs of boundary problem (2) with the Neumann boundary 
condition, i.e. 8vXnml8S = O. Here we mean that the hole effective moments in 
the RHS are induced by the dipole component of the beamfieldsJ i.e. P, M oc 
s, cf. n = 1 term in Eq. (3). Substituting expressions (4) and (6) of the 
moments and taking into account the following relation between the beam field 
components, ZoH}O) = a,. x E~O), we obtain 

iZo [ -1 ( ... )... "'di )Z.J.(w;s,t) = - E a.AN VtPN t(VtPN . ev P h 
S N 

+ amlCr/(a,. XVXNMa; x VXN . e:iP)h] (26) 

Since the longitudinal impedance Z(w; 8, t) has been calculated above as 
a function of 8 and ~  see Eq. (13), one can obtain the transverse impedance 
by means ofthe Panofsky-Wenzel theorem as Z.J.(W;8,t) = cVtZ(w; 8,t)/(WS), 
e.g. see [7]. This way leads to the expression 

.' '.(~)... ... .... ev 8 .. i'\
Z.J.(w;s,t) = -~Zo(a.  + a m)--· Vtev(tj , (27) 

s 

as well as above here s --+ 0 and t --+ O. Using the completeness of the EF 
sets Cet> Xnm and tPnm one can prove the equality, up to factors a., am, of the 
contributions from the electric and magnetic dipoles in Eq. (26), and transform 
this equation to form (27). It should be noted that the transverse impedance 
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In the LHC design it is supposed to shield the chamber walls by an internal 
thermal screen with pumping holes. The total pumping areahas to be approx­
imately 0.05 of the screen surface. For es~ima.tes we accept the mean radius of 
the thermal screen b= 1.5 em, the accelerator radius R = 4243 m. Let us con­
sider the design version [17] w,ith N = 107 circular holes of radius h = 2 mm. 
In this case there are M = 4 holes in one cross section of the chamber, the 
longitudinal spacing between such cross sections is d =1 em. There is another 
version, with N = 1.6 . 108 very small circular holes, h = 0.5 mm, burned by 
laser~  We assume d = 2.5 mm and M '= 8 for this version. The values of 

, the impedances produced by the pumping holes ar~shown  for the both design 
variants in Table 3. , 

~ Imped.a.ncea Produced. by Holes in LHO Thermal Screen 

II 

One hole 
One cross section 

Total 

II IZ/nl/ Ohm 
h=0.5 mm h=2mm 
8.3.10 -IU 5.3.10-8 

6.6.10-9 2.1.10-7 

0.13 0.53 

II Z.J./ (Ohm/m) ~ 
 

h =0.5 mm h=2mm� 
0.063 4.0� 
0.25 8.0� 

5.106 2.107� 

Taking into account the finite thickness of the screen wall leads, according 
to [11], to multiplication all the values in Table 3 by a factor of 0.56. Nev­
ertheless, the values of both the longitudinal and tranSverse impedances are 
high, especially for the variant with larger holes. The latter variant can not be 

,~~; considered as acceptable. The present design should be modified, for example, 

'" by replacing the circulcLr holes by longitudinal slots. .~ 
.\ 

" CONCLUSIONS 

'/ The method developed allo\9'S one to calculate the coupling impedances of 
small holes in the vacuum-chamber walls of an accelerator at the frequencies 

{ ,I which are important in practice, i.e. when the wavelength is large compared to 
li~;,/,}. a typical hole size. The problem is solved for an arbitrary cross section of the 
I ".' 
, ). chamber and general hole shape. In the specific case of a.circular cross section 

4F. Ruggiero, private communication 
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approximating the slot by a long elliptic hole with length 1 and effective width 
will = 4wl1f. For upper estimate we use the results of the polarizabilities 
measurements in the range wi1= 0.2 + 1.0 for the rectangular aperture wx 1 
from paper [16], cited in [91. They are well fitted by the linear dependence 
(am +ae)/(w21) ~ (0.033+0.27wll). The extrapolation to the value of interest, 
wll = 0.1, gives (am + ae) ~ 0.06w2/. For Z.l the maximal absolute values of 
the impedance corresponding to the factor cos(lpo - Ipd) = 1 are shown. 

~ Impedance btimatel for the UNK Slob 

IZlnl / Ohm Z.l / (Ohm/m) 

One slot (0.4 + 3.1) . 10-1 ' 0.5 + 3.3 
One liner (1.1 + 6.6) .10-6 6.0 + 42.9 

Total (3.6 + 26) . 10-3 (0.2 + 1.4) . 105 

The impedance values obtained are quite permissible from the viewpoint of 
the beam stability. 

LEP 
The vacuum chamber of the electron-positron collider LEP has the circum­

ference nearly 27 Jan, its cross section is the ellipse with semiaxes 131 and 
65 mm. About 21 km of the chamber have pumping holes (40 per meter) of 
rectangular shape 20 X 8 mm with rounded comers. For estimates we approxi­
mate the hole shape by the ellipse with semiaxes It =11.3 mm and 12 =4.5 mm 
h~ving  the same area. The pumping holes are placed in the horizontal plane, 
Iph = 0, connecting the beam pipe with the parallel chamber which contains 
the getter pumps. For such a layout the transverse impedan(fe has only the 
horizontal nonzero component. The results are shown in Table 2. 

1AbU Impedance Eetim.atel for LEP Pumping Hol~  

~ IIIZln/ / Ohm j- Z~ I (Ohm/m) ~  

~  One hole ~ 2.7.10-8 I 0.11 ~ 

~ .Total ~  0.023 I 9.3 . 104 ~  
These figures contribute less than 10% of the measured impedances of the 

LEP vacuum chamber. 
14 

of a hole, as well as the longitudinal one, is proportional to the sum of the hole 
polarizabilities. 

Substituting e~'P(s)  = s' V.ev(s) into Eq: (27) and going to the limit 8 = 0, 
t =9 we get 

Z.l(w) = -iZo(ae +~m)(~  + ~)adcos(lpo -Ipd) . (28) 

Here x, y are the horizontal and vertical coordinates in the chamber cross sec­
tion; d~  == 8",ev(0) , d" == 8I1ev(0); 11'0 = 11'. = Ipt is' the azimuthal angle 
bf the beam position in the cross-section plane; ad = a", cos Ipd + all sin Ipd

Ii is a unit yector in this plane indirection Ipd, which is given by conditions 
cos Ipd = d",l..j ~ +~, sin Ipd = d,,1..j4 +~. It is seen from Eq. (28) that 
the angle Ip~  shows the direction of the transverse-impedance vector Z.l and, 
'therefore, of the beam-deflecting force. Moreover,the value of Z.l is mmmal 
when the beam is deflected along this direction and· vanishes when the beam I offset is perpendicular to it. 

\ '1 
Circular chamber 

In the case of a circular cross section of the chamber one can easily derive 
I from Eq. (3) that d", = cos Iphl(lI"b2) and d" = sin Iphl(lI"b2). As a result, Ipd = Iph,
I ad coincides a", which is the direction to the hole, and the transverse impedance 

is 
~ () . am+ae~  () ( )Z.l W = -zZO 1I"2b4 ah cos Iph - Iplt . 29 

This formula was fust obtained by a direct summation over EFs in [10]. It is 
clear that the deflecting force is directed toward the hole (or in the opposite 
direction) and the force value d~pends  on the angle between the beam offset and 
the direction to the hole. It is worth noting that in axisymmetric structures the 
beam-deflecting force has to be directed along the beam offset. The presence 
of a hole breaks this symmetry. 

For particular cases ofthe hole shape,we obtain from Eq. (29) the transverse 
impedance of 
circular hole with radius h, cr. (5),

.',.� ,� 

i� 
11(� 

Z.l(w) = -iZo3~~~4ahcos(lph -11'0); (30) 

'if narrow longitudinal slot with width wand length I, w <: 1< b, d. (8),
':~",'.'
,t
3 i 

Z.l(w) = -iZo24:~1 (In ~ -1) ahcos(lph -11'0) ; (31) 

11 
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narrow transverse slQt with width w and length 1, when w <: 1<: b, cf.· (9), Chamber with an arbitrary cross section
• 

3 To evaluate the transverse impedance of a hQle in the walls of the chamber ... (). 1 ... ( ) (32)ZJ. W ~ -tZo241rb4(ln(41/w) _1)ahcos CPh - CPb . with an arbitrary crQSS section S it is necessary tQ find quantities dz and d, 
defined by (28). In doing so we compute, using the cQde MGD2 [1~],  the electric 

If we consider M (M ~  3) holes uniformly spaced in Qne cross section, as a field produced on the region boundary 88 by a dipole, which cQnsists of two 
result Qf vectQr summation Qf M expressiQns (29) the transverse impedance is opposite-sign charges spaced by small distance 28 and is directed along the axis 

... () . 'am+aeM ...
ZJ. W = -lZO _'2U 2 ao; (33) 

where itb is a unit vector in the direction of the beam transverse offset~  One can 
see that the deflecting force is nQW directed along the beam offset, Le. some kind \ 

('of the ~al  symmetry restoration occ~s.  The maximal value Qf ZJ. fQr M holes 
which are unifQrmly spaced in Q~e  cross-section is Qnly M /2 times larger than 
that for M =r. MQreQver, the well-known empirical relatiQn ZJ.. = (2R/1J2)Z/n 
(cf. (16) and (33)), which is justified only for axisymmetric structures, holds in. 
this case also. I 

Rectangular chamber 

In the case of the rectangular (a x b) chamber cross section Qne can derive 
analrtical expressions dz '= 1rEz /1J2 and dy = 1r'Ey/b2 in the fQrm ofseries 

E = 1: (2m ~  1) cQs(2m + l)1rYh/b j 
z (34) 

m=O s~(2m + 1)1rxh/b 

~ = ~ 2m sin 2m1rYh/b 
~11 - L.J 'h /.m=Ocos 2m1rXh b 

These series are fast-cQnvergent ones. The dependence Qf functions defined by 
these series Qn the hQle positiQn fQr variQUS values of alb is shown in' Figs. 3 
and 4. The transverse impedance Qf the hole in the' rectangular-chamber wall 
IS 

... () . 1r
2
(am +ae )( 2 2)... ( )ZJ. W = -~Zo  b4 'Ez + Ey ad cos CPb - CPd , (35) 

where tan CPd = 'Ey/'Ez . Note, that in th~  rectangular chamber CPd is not equal,� 
in general, tQ CPh. Since 'Ez -+ 0 and Ey -+ 0 when IYhl -+ b/2 the hQle transverse� 
impedance in the rectangular chamber gQes tQ zero,' as well as the IQngitudinal ,~,
 

one, when the hQle is placed near one Qf the chamber comers.� 

fII' ~;," 

" 
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x Qr Y, respectively. In the case when regiQn 8 has SQme symmetry with respect 
to x Qr Y it is convenient tQ solve numerically the problem for a single charge 
in the quarter of the region with given relevant boundary conditions of the 1st 
and 2nd kind Qn the axes. After dividing the result by the dipole length 28 we 
get dz and d, as functions of the hole position on the 4amber wall. 

Computations for circular and rectangular chambers show a good agreement 
with the analytical results cited abo~e.  As an example, the results for the elliptic 
chamber with semiaxes 40 and 30 mm are shown also in Figs. 5 and 6. It is worth 
noting that the dependencies of the v~ue  of the transverse impedance Qn the 
hQle position (Fig. 6) are very similar to those for the longitudinal impedance 
(Fig. 2). 

4. ESTIMATES 

At frequencies below cutQff the contributions to' the .cha~ber impedance 
from small discontinuitIes are additive. One can give a. formal proof of this fact 
for many hQles if the effective mQments induced on each hQle are independent Qf 
the presence Qf neighbQring hQles. The latter circu'mstance is not very restrictive 
even in the case Qf hples which are very clQse tQ each Qther, see [5J. In making 
estimates we will assume this additivity Qf the cQntributiQns frQm different 
hQles tQ the inductive impedance of vacuum chambers. Nevertheless, at higher 
frequencies the prQblem' Qf coherent effects is ,still Qpen. The real part of the 
longitudinal impedance prQduced by a hQle in the chamber wan is evaluated in 
Appendix. . 

UNK, 1st stage 

Let us estimate the impedances prQduced by slQts in the liners Qf the UNK 
1st stage. Approximately.N = 3260 vacuum boxes with. bellows 'Yill be shielded 
by the liners and each liner has M =26 slot with width w = 0.6 cm and length 
1 = 6 cm. FQr estimates we take the chamber radius b = 3.5 cm and the 
machine Qne R = 3306 m. NQte, in this case l > band therefQre Qur estimates 
will be rough. The figures are cited in Table 1. The lower bound is Qbtained by 
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