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Abstract

S.S. Kurennoy. Beam Coupling Impedance of Holes in Vacuum-Chamber Walls: IHEP Preprint
92-84. — Protvino, 1992. — p. 23, figs. 6, tables 3, refs.: 18.

Both the longitudinal and transverse coupling impedances produced by a small hole in
vacuum-chamber walls are evaluated for wavelengths large compared to a typical size of the
hole. The method developed is based on the Bethe theory of diffraction by small holes. The
problem is solved for an arbitrary cross section of the chamber and arbitrary hole shape. The
results are obtained in analytical form for the cases of a circular and rectangular cross section.
Contributions from pumping holes to the coupling impedance of the UNK, LEP and LHC
vacuum chambers are calculated.

AHHOTAmEA

C.C. Kypennon. Hwmmenanc cB43# Iydka ¢ OTBEPCTHEMHE B CTEHEAX BaKyyMHOH KaMepH yCKO-
purens: IIpenpaar HPBD 92-84. — IlporBuro, 1992. —23 c., 6 puc., 3 Tabn., 6ubnuorp.: 18.
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YMHOM KaMephl YCKOPHTelNf, BHITACIEHE Ha YaCTOTaX, COOTBETCTBYIOIAX JJIMHAM BOIH, SHa-
9ETENLHO GONBIUAM XapakKTEPHOT'O pasMepa OTBepcTHi. MeTop ocHOBaH Ha Teopuu fu@pak-
IAHE Ha MalkX OTBEPCTHEX, pasBEToM Bere. Bagaua peileHa [ng KaMepH ¢ IPOH3BOILHHM
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YyronbHOM KaMepHl OTBETH MONYyTeHH B aHANHTHYECKOM BHiE. PacciMTaH BKiIaj OTBEPCTHM
Ig OTKadK¥M B AMOefaHc Kamepu Y , LEP m LHC.
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INTRODUCTION

The problem of the beam-chamber interaction is very important in modern
accelerators and storage rings which have very high intensity of beams. This
interaction is usually studied in terms of beam-chamber coupling impedances
or connected with these, of wake potentials, e.g. review [1].

There is a general tendency to minimize the coupling impedances to avoid
beam instabilities and reduce wall heating. In doing so one tends to shield, with
respect to electromagnetic fields, such enlargements of the vacuum chamber as
vacuum boxes, bellows, etc., by metallic shields or liners. On the other hand, the
requirement of the beam life-time to be long enough and beam-loss reduction
puts constraints on the admissible value of the vacuum inside the beam pipe.
Achieving this high vacuum requires the presence of vacuum pumping holes in
these shields. The number of such elements, which are chamber discontinuities
and interact with a beam, can be very large in big machines. For example, 3260
liners in the vacuum chamber of the UNK first stage have in total nearly 10°
narrow pumping slots. In the LEP collider of the order of 10° holes connect
the beam pipe with the parallel chamber containing getter pumps. The LHC

'design includes a thermal screen with 107 + 2 - 10° small holes for pumping
" (the number depends on the hole size). Common wisdom tells us that such a

small discontinuity contributes very little to coupling impedances since it does
not interrupt essentially the lines of beam-induced currents in the chamber
walls. Nevertheless, their total contribution to the beam-chamber coupling

' impedances can be very essential because of a large number of such elements.

Therefore, quantitative results should be obtained and the impedance eval-
uation for these chamber elements is of great impox:tance'. Because of lack of the
axial symmetry, it is obvious that a numerical solution to the problem has to be
essentjally three-dimensional. This implies time-consuming computations even
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in the case of simplified models. This paper presents the analytical calculation
of both the. longitudinal and transverse coupling impedance for small holes in
the walls of the vacuum chamber which has an arbitrary cross section.

1. EVALUATION METHOD

To evaluate the coupling impedance we have to calculate the fields induced
in the chamber by a given current perturbation. The fields produced by a
relativistic point charge in the chamber having a constant arbitrary-shaped
cross section, without hole, are evaluated easily. Then we can consider them
as incident eleéctromagnetic waves on the hole. According to the Bethe theory
of diffraction by small holes [2], the diffracted fields can be obtained as those
radiated by effective surface “magnetic” currents and charges or, in the case of
a small hole, just by effective electric and magnetic dipoles. Thus, when this
approach is applicable, one can replace the excited hole by induced dipoles,
evaluate the fields radiated by them inside the chamber and obtain the coupl.mg
impedance.

1.1. Fields in Chamber without Holes

We consider an infinite cylindrical pipe with an arbitrary cross section S and
perfectly conducting walls. Let z axis be directed along the pipe axis, a typical
hole size h satisfy h < b, and the hole center be located at point (b,z = 0).
The point charge ¢ moves with velocity v = ¢ along the chamber axis with a
transverse offset §. Then the electromagnetic fields harmonics E®, HO), which
would be produced by this cha.rge in point (b z) on the chamber wall w1thout
hole, can be expressed as series ?

E,(,o)(l-;,z;w)

= ZoHio)(l;,z;w) =—Z0ge™ T A\ Yam(DVithum(®) , (1)

where Zy = 1207 Ohms is the impedance of free space, ¥ = w/c, and in-

dices » and 7 define the normal and tangential (in a transverse cross section

of the chamber) field component, respectively. In Eq. (1) Apm and 9nm(7)
are eigenvalues (EV) and orthonormalized eigenfunctions (EF) of the following
two-dimensional Dirichlet boundary problem in region S:

(v? +'A,,,,.) Yam =03  Ynmlps =0. (2)

!Time dependence is exp(—iwt).

Let us consider the ratio of the real pé.rt of the impedance to the imaginary
$

one .

ReZ(w)  (a?+ad)w®

ImZ(w)| 6m(ce + am)c®
It follows, in the framework of the applicability of our approach, i.e. when
wh/c € 1 or wlfc < 1, that the inequality Re Z < |Im Z| holds. Actually, the
polarizabilities are proportional to the third power of the typical size h of the
hole, and as a result

3
«(2) <1.

Re Z(w)
[z W)~
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APPENDIX

On real part of longitudinal impedance of hole

The purely inductive longitudinahimpedance of a hole in perfectly conduct-
ing walls of the vacuum chamber was obtained, see Eq. (13). However, some
part of the beam energy is lost to excite the hole, and hence, the impedance
has to have a nonzero real pait. One can calculate it in an indirect way, by
evaluating the energy radiated by the hole. This evaluation is, in essence, the

same one as in paper [5], where beam energy losses produced by the beam-hole - h

interaction are calculated.
Let a bunch with normalized longitudinal charge distribution A(s) move

along the chamber axis with velocity v ~ c. In the case of a point charge

A(s) = 6(8). The total energy radiated by the effective dipoles M(t) and P(t)

is [~ at [clz (j; M(t)) (:f;P(t))z]

Since E,(z — ct) = ZoH,(z — ct) = g\(2 — ct)e, [eo, for tl‘e dipole values we get
P(t) = a,qe,\(z — ct) and M(t) = amge,cA(z — ct). Then we rewrite AU in
w-domain as

AU —_-[_: AW (t) = G—f"c;

_Zog}(@d+ ) 5
AU = —Q—I(ZT—IC2/ dww‘[z\(w)lz
wheére A(w) = ds exp(ws/c)A(s) is the bunch spectrum (AM(w) = 1 for a point
-charge).

On the other hand AU kq where the loss factor k is deﬁned as
' _ 1 , 2
k= /_ "~ duRe Z(w)AW)[* -

So
' AU = —q2 I dwRe Z(w)lA(w)I’
Comparing two expressions of AU and taking into account that the in-

tegrands are positively defined we obtain the real part of the longitudinal
impedance of the hole

(a2 +am)w 2
% 6rct ¥

The energy loss of a Gaussian bunch calculated using this expression in the case
of a circular chamber where e, = 1, (21rb), coincides with the result by Sands

[5}-

Re Z(w) =
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Other field components of the relativistic charge vanish on the chamber walls.
For example, in the case a circular cross section with radjus b the nonvanishing
field harmonics on the hole, i.e. in point (r = b, = ¢4,z = 0), can be written
as ‘ : .

E(o)(b om0 w) = ZﬂHg”("’ #n,0;w)
Z,
202 1+2Z( ) cosn(w-so.)] ) )]

where ¢, is the azimuthal angle of the beam in the chamber cross section.

1.2.  Hole excitation by beam fields

' Let ﬁs-discuss conditions which have to be satisfied to consider the hole
excitation by fields (1) in the spirit of the Bethe theory. Bethe’s paper (2]
investigates the diffraction of a plane electromagnetic wave by the hole in an

- infinite perfectly-conducting plane, its thickness is assumed to be negligible.

The boundary conditions on the hole are satisfied by mtroductlon of effective
surface “magnetic” charge and current. Their densities pma, and Jm, depend
both on the hole shape and size and on the fields of the incident wave. To
evaluate fields produced by these charge and current at distances R from the
hole which are large compared to a typical hole size h, one can replace them
by effective dipole moments. It is obvious that the applicability conditions for
Bethe’s approach in our problem are as follows:

o h € b— one can neglect the curvature of the chamber wall;

o wh/c € 1 — field values can be considered as equal in different hole
points and the approximation of incident plane wave can be used;

o A € h, where A is the wall thickness.

It is clear that for small holes in chamber walls, say, for pumping holes, these
conditions are usually satisfied. The restriction on frequency from the second
condition is weak and the approach, as a rule, is applicable at frequencies above
cutoff as well.

The effective ma.gnetic dipole moment of the hole is defined (3] as

the electric one as



An important point is that these effective moments can. be easily expressed
in terms of the beam fields on the hole. Let us consider an elliptic hole with
semiaxes I; and I3 (I; > l;), and introduce a local hole coordinate (u,v) with
the axis u along the major axis of the ellipse. Then the effective moments can
be written [3] as

™

M = domHY +dam HY ;

P = & 7ED (4)

where @, and &, are the local coordinate unit vectors, 7/ is the normal to the
hole plane (u,v). Fields E® and H(® are defined by Eq. (1). Electric o, and
magnetic o, polarizabilities of the hole are purely geometric factors and can be
calculated or measured. For the elliptic hole {3] they are

nl3e?
Q. = ——
™ 3K(e) - E(e)]
wlie?(1 — €?)

L = 3EE) - A - DK@ -
_ o owl(1-¢€%)
a, = —‘w—(e),

where € = |/ 1 - 1/12 is the eccentricity, K(¢) and E(e) are complete elliptic
integrals of the first and second kind.
Let o be the angle between the chamber axis and ellipse major axis. Then

-

M = | @(amsin’a+amcos?a) +
+ Gy(amL — Otmy)sinacosa ] HO (6)
where @, is a unit tangential vector to the boundary-of the chamber cross
section. :
For the specific case of a circular hole with radius h we get ¢ = 0 and
Qpy)| = Oml = 4h3/3 ’ .
o = —2h%/3. (n
Another important particular case is a narrow slot. In the case of a longi-
tudinal slot (o = 0) with width w and length I, w < I, the limit of ¢ — 1 in
Egs. (5) yields 2 ’
U = amy = mlw?[24
o = —mlw?/24. (8)

*This value, xlw?/24, for a narrow slot is cited also in [4]. Paper [5] and book [6] give another
value, xlw?/16, which is obtained from the solution for an infinite narrow slot in a plane shield.
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The applicability condition for the Bethe theory here is wl/c €« 1. For a
transverse narrow slit (a = 7/2) with width w and iength I, w €, it follows
from (5) and (6) that

- o xl3
Om = Cml = o m@lw) 1)’
a, = —nlw?/24. 9
In the latter case, in contrast to a longitudinal slot, the condition | € b is
very essential. When it fails, the hole dimensions are comparable to the radius

of curvature of the chamber walls, and the approximation of a small hole in
Bethe’s approach does not work.

1.3. Fields radiated by hole in chamber

We look for fields radiated into the chamber by induced effective currents
and charges in the form of a series over the waveguide eigenmodes [3] ‘

F =Y (aumFind(2) + bumFo(~2)) (10)

where ' means either E or H and 6(z) is the Heaviside step. function. The
superscripts '+’ denote fields with propagation factors exp(FIamz), I'nm =

(A2, - k)2, radiated respectively in the straightforward (index ’+’, z > 0) or

reverse ('—’, z < 0) direction. The unknown coefficients anm and bnm can be
found by apply'mg the Lorentz reciprocity theorem and using the elgenfunctnon
orthogonality, e.g. [3]

Amn nm{an } //“ dSJiMOHnm (11)
= —iw(wHI M- EX P+..),

where M and P are defined by Egs. (4). The expansion of the mtegral in the
RHS over dipole moments is justified for a small hole. However, sometimes the
higher multipoles (quadrupole, etc.) have to be taken into account as well.

2. LONGITUDINAL IMPEDANCE
The longltudmal coupling impedance of the hole can be deﬁned as

.\ Z(w;5,t)=—= de""’E, t,z;w), 12
( q/"j‘,5 (E50) (12)



where £'is the transverse offset of a test charge. The component E; of the field W
radiated by the hole into the chamber, depends on & since beam fields on the ! L e —
hole and, as a result, the effective currents depend on 5. The usual impedance : *\
definition corresponds to the particular case of ¥=f = 0, i.e. to the lowest term
of expansion over 7, for details see review [7].

Let us substitute E, from Eq. (10) into definition (12). When w < wey;, all i

0.8 |

I'mm > 0 and one can easily integrate over z. It is easy to recognize that at ) 0.6 1 : N
frequencies above cutoff the difficulties of integration over z on infinite intervals §
are only formal ones and by introducing a small attenuation we get the same \ ‘ 0.4 [omnss ] _9_{ b=1

result as for w < wcy. Then taking into account Egs. (11) and (4) we obta.m
the longitudinal impedance of a small hole in the following form

Z(w;é’,f)%—iZo;(a¢+am)eu(§)ey(ﬂ- (13) 4 . - /=2 \ ...............

Here am = ) sin? a + apmy cos® @ for holes with a symmetry axis at angle o ' ' ' %Ratio Ya /b'
to the chamber axis, and the following notation is introduced ‘ Figure 1. Function T versus hole position
(0) :
k=D = 5 AoV () a9y L
' : ’ . € 4ok

It is seen that e,(7) is just a normalized electric field of the beam on the hole. T}, O? Elibtic A4
In other words, it is a solution to the standard two-dimensional electrostatic . o Sl SN HE S SR S S St
problem in S: to find the electric field on a conducting boundary produced by s 30E N i /
a charge which is placed in point 7. For simple cases €, can be easily found by \ /
means of the Gauss theorem. £ e AN A . e

It should be noted that impedance (13) is proportional to frequency w and % DO T NS S, I o g S “.l.J.'?f/. ...............

. to sum of hole polarizabilities a, + a,,. In the accepted notations [3] a, is b : \ /
negative, and this sum has to be considered as a difference of contributions . / 15¢ \\ S ,
from the magnetic and electric effective dipoles. It is a typical low-frequency " 10k .
impedance in the case of @ + ay, > 0. Such an impedance can cause the i peeeeee \ ! /
longitudinal instability of intense bunches when the impedance value is above : S5t \ Sq ore
some admissible threshold {8]. It is well known that low-frequency (v € weut) g N SRR DU DU TR U2 AU FUUUE S P
. % . 0 10 20 30 40 50 60 70 80

impedances from various inhomogeneities are additive. Naturally, the following
idea arises: the total inductive impedance of the accelerator chamber can be '
lowered either by choosing the shape of pumping holes in such a manner that ) '
condition o, + a; < 0 holds, or by introducing special compensating holes of £ 4

such a form. Unfortunately, for small holes the inequality o, + a,, > 0 seems L
always to hold. Specifically, in paper [9] for the holes possessing a symmetry
with respect to two perpendicular axes the inequality |a.|™ > o) + o) was
proved. The equality holds here for an elliptic hole, cf. Eq. (5) and particular

6 - 19 .

Azimuth angle ¢,
Figure 2. Dependence of Z on hole position
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 cases (7)~(9). 1t follows

ol sin*a + o 2q .
m|| 510" @ + ,,u_cosa>0.
am|l+am.L

Qm+ Qe 2

(15)

Circular chamber

Let us consider the chamber with a circular cross section of radius b. Taking
into account the axial symmetry we can easily obtain from the Gauss theorem
that e, (0) = 1/(2#b), cf. Eq. (3). Substitution into Eq. (13) gives the longitu-
dinal impedance of a small hole having an arbitrary shape, in the form

2w) = ~izg2 ot om) | (16)

This result was obtained first by a direct summation over EFs in paper [10] and
later by another method in [11].
In the particular case of a circular hole with radius h taking into account

- Egs. (7) for polarizabilities we get a simple expression

Zo wh
6n2 cb?
It shows an inductive contribution of the hole. The usually quoted in cyclic
accelerators quantity, the so called reduced impedance Z/n, is

Z(w) = ~izt (17)

Z(ﬂwo) Zo ha
n ‘6x? Rb? (18)

where n = w/wy = wR/c is the harmonic number of revolution frequency wp
and R is the machine radius.

The longitudinal impedance of a circular hole in the circular-chamber walls
was studied by a direct numerical method as well. In paper [12] by using the
3-D code T3 in MAFIA [13] the longitudinal wake potential produced by such
a discontinuity was computed. The low-frequency impedance was estimated by
fitting the numerical results. The obtained formula, Z/n s —i0.0172,A%/(Rb?),
coincides well with the exact analytical expression (18) (1/(6#3) ~ 1.69 -10~2).

It should be noted that this dependence of the longitudinal impedance on
the hole radius A and that of chamber b can be simply derived from qualitative
considerations? see [12].

3K. Bane, private communication.



. For the case of a circular hole the effect of a finite chamber-wall thickness
on the hole impedance was investigated. Numerical results [14] show that the
hole polarizabilities decrease slowly when wall thickness A increases from zero,
reaching a constant value when A > 2h. For such or thicker wall the impedance
is equal to 0.56 multiplied by its value (17) for a thin wall, see [11]. So taking
into account the finite thickness of the chamber walls slightly reduce the value
of the hole impedance.

For a very narrow longitudinal slot taking into account pola.nzablhtxes (8)
leads to Z (w) =0, i.e. the impedance vanishes to the first-order approximation
of our approach. It seems natural since such a slot does not interrupt essen-
tially beam-induced wall currents. However, it should be noted that such a
cancellation of contributions from the electric and ma.gnetic dipoles takes place
only as a limiting case, cf. (15) with & = 0 and apy > ami. The account of
next-to-leading terms in expansion (5) at € — 1 leads, when wl< b to the
following expressxon

Zo ww dl ) : - . ,
2W) = —ige o ml (1” A @
The contribution of the quadrupole induced moment to 1mpeda.nce in this case

vanishes as well [10].

Narrow transverse slot, in contrast to the longitudinal one, disturbs drasti-
cally the currents which are induced in chamber walls by the beam, It is clear
that the impedance produced by such a discontinuity is large. Substituting (9)

into (16) and neglecting the contribution from the electric dipole which, in this

case, is small as compared to the magnetic one, cf. (9), we obtain

Zo w 13
~'%6r c b2 (ln(4l/w) -1) °
This formula can be apphed when w € ! € b.

Z(w) ~ (20)

Rectangular chamber

Consider now the chamber ha‘.ving‘ a rectangular cross section with width a

and height b. Without restriction of generality, let us consider a hole in the side
wall (25 = +a/2) which is displaced from the horizontal plane of the chamber
symmetry, y = 0, at distance y3, |ys| < b/2. The two-dimensional problem to
find e, () can be analytically solved in a rectangular reglon and substituting
e,(0) into Eq. (13) yields

w (ae + o)

Z(w) =-iZ——p 22 (21)
8
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of the chamber the results are obtained in a simple analytical form, Eqs. (16)
and (29), a semianalytic answer is given for a rectangular chamber, and in the
general case some simple computations are to be done.

The results obtained allow one to give both the numerical estimates of hole
contributions to the chamber impedances, and some practical recommendations
for the vacuum chamber design: :

o Comparing Eqs. (17) and (19), (30) and (31) we conclude that both the
longitudinal and transverse impedance of a narrow longitudinal slot are
lower than those of a circular hole with the same area. The result is
independent of the chamber cross section. ‘

e Both the longitudinal and transverse impedances of a hole in the wall of
a rectangular chamber vanish when the hole is near one of the chamber
corners. Naturally, since the hole has a finite transverse size its impedance
reduces essentially when the hole.is near a corner rather than goes to zero.

"o In the chamber having the cross section of a general shape it is better, from
the viewpoint of impedance minimization, to arrange holes in places where
beam fields dre minimal, i.e. in corners, dips, etc. In doing so the hole is
weakly excited by the beam and produces lower coupling impedance.

The behavior of hole impedances at very high frequencies when the pertur-
bation wavelength is smaller than or of the order of the hole size, has remained
beyond the framework of the present paper. In this frequency range the beam
fields penetrate through the holes and the interaction with elements which are
placed beyond the shields or liners, i.e. cavities, bellows, etc., becomes essen-
tial. This can lead to resonances whose parameters seem to be determined by
specific cavity Jayout. The study of such resonances is especially important
for electron accelerators where the bunch length is very short. In principle,
it is possible to calculate impedances at high frequencies numerically, but the
problem is very hard and time-consuming since the geometry is essentially the
three-dimensional one.

The special case is the LHC vacuum chamber where the inner wall of the
chamber together with the outer surface of the thermal screen form a coaxial
structure. Through the pumping holes the beam can excite a TEM-wave in the
coaxial structure. Since such a wave has a phase velocity which is equal to the
speed of light, it is synchronous to the ultrarelativistic beam and interacts with
the beam in a resonant manner. This interaction is studied in paper [18].

* % % s
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where function ¥ is defined by the fast-converging series

_ & cos(2m + 1)my,/b
_E " m=o cosh(2m + )7z, /b (22)

The dependence of ¥ on the hole coordinate y; is shown in Fig. 1 for a few
values of the ratio a/b. It should be mentioned that in a rectangular chamber
the impedance of a small hole vanishes when the hole is near one of the corners:
T — 0 when |ys| — b/2. The explanation is that since the beam fields near the
corner tend to zero the effective currents on the hole are not induced.

Chamber with an arbitrary cross section

To calculate the longitudinal impedance of a hole in the wall of the chamber
with an arbitrary cross section S it is necessary to find e,(7) by solving the
electrostatic problem. The evaluation of the electric field which is produced by
a thin uniformly-charged filament on the cylindrical surface with cross section
S is the standard two-dimensional boundary problem in the case of interest
when the filament is paraliel to the surface generatrix. There are a number
of codes for numerical solution to the problem. We use the code MGD2 [15]
which is based on the multigrid variant of the finite element method. The field
produced on the boundary of region S by a unit ”point” source is computed.
Fig. 2 shows the values of €2 for square 70 x 70 mm chamber and elliptic one,
with semiaxes 40 and 30 mm. For comparison we cite results for a_circular
chamber with radius b =35 mm. ‘

- Numerical results for the square chamber coincide well with the analytic
solution (21) at a/b = 1. Note, the hole impedance strongly depends on the
hole position in the chamber cross section. It was shown above in analytical
way for the case of a rectangular chamber. For the elliptic chamber under
consideration the impedance of a hole in the horizontal plane (¢; = 0) is 5.6
times smaller than that of the same hole in the vertical plane (@5 = 7/2) while
the ratio of their squared distances from the axis is equal to 16/9.

We may not care about solution normalization if the longitudinal impedance
is computed as follows. One can solve numerically the two-dimensional problem
for e, in region S and then in the circle of radius 5. After that we get the result

* simply from a comparison with the hole impedance in the circular chamber as

\ Z = Zgire (e,,/ec.-,c)z , (23)

where Z,. is given by Eq. (16).



3. TRANSVERSE IMPEDANCE

The transverse impedance is defined as

‘ ZJ_(w §1)= _qis dze [E + 208 x H"] , o (29)
where in the RHS the fields produced by the hole are taken at (t zw), B —
(0,0,1) and the limit of s — 0 t — 0 is usually understood. It is obvious that
both the E- and H-modes contribute to the integral unlike the longitudinal
impedance (12). After some calculations which are snmlar to those for the

longitudinal case we get the expression

-

Zu(w;5) = -é;[&’(wn)&m-ﬁ/&)h
+ kR E x x)(Fxw - Zab] - (25)

where N = {nm} is a generalized index, Knm and Xnm(7) are respectively the
eigenvalues and EFs of boundary problem (2) with the Neumann boundary
condition, i.e. 8,Xnm|os = 0. Here we mean that the hole effective moments in
the RHS are induced by the dipole component of the beam fields, i.e. P, M
s, cf. n = 1 term in Eq. (3). -Substituting expressions (4) and (6) of the
moments and taking into account the following relation between the beam field
components, ZyH! 70 = &, x E( ), we obtain c

- -, 'lZo

Bu(wisd) = R edw (Tom(o -

+ amiyt (@ x Vxw)e(d@: x Vxw - E5)] - (26)

Since the Iongltudma.l impedance Z(w;§,7) has been calculated above as
a function of 5 and f, see Eq. (13), one can obtain the transverse 1mpeda.nce
by means of the Panofsky-Wenzel theorem as Z 71 (w;3,8) = Vi Z(w; 5,1) /(ws),
e.g. see [7]. This way leads to the expression

2 . ; din(3) o '

Bu(w35,) = —iZa(ee + am) L) Fye, (), (1)
as well as above here s — 0 and ¢ — 0. Using the completeness of the EF
sets CD Xnm and 1, one can prove the equality, up to factors ae,om, of the
contributions from the electric and magnetic dipoles in Eq. (26), and transform

this equation to form (27). It should be noted that the transverse impedance
10

Ceand

p= S

S

LHC

In the LHC design it is supposed to shield the chamber walls by an internal
thermal screen with pumping holes. The total pumping area has to be approx-
imately 0.05 of the screen surface. For estimates we accept the mean radius of
the thermal screen b = 1.5 cm, the accelerator radius R = 4243 m. Let us con-
sider the design version [17] with N = 107 circular holes of radius A = 2 mm.
In this case there are M = 4 holes in one cross section of the chamber, the
longitudinal spacing between such cross sections is d =1 cm. There is another
version, with N = 1.6 - 10® very small circular holes, 2 = 0.5 mm, burned by
laser* We assume d = 2.5 mm and M = 8 for this version. The values of
the impedances produced by the pumping holes a.re‘ shown for the both design
variants in Table 3.

Table 3. Impedances Produced by Holes in LHC Thermal Screen

[__1Z/n)/ Obm Zi] (Obm/m) |

h=05mm|[h=2mm[A=05mm|[h=2mm
One hole 83-10710 [ 53.1073 0.063 4.0
One cross section | 6.6-10~° [ 2.1.10°7 0.25 8.0
Total 0.13 0.53 5.108 2-107

[

Taking into account the finite thickness of the screen wall leads, according
to [11], to multiplication all the values in Table 3 by a factor of 0.56. Nev-

‘ertheless, the values of both the longitudinal and transverse impedances are

high, especially for the variant with larger holes. The latter variant can not be
considered as acceptable. The present design should be modified, for example,
by replacing the circular holes by longitudinal slots.

CONCLUSIONS

f

The method developed allows one to calculate the coupling impedances of
small holes in the vacuum-chamber walls of an accelerator at the frequencies
which are important in practice, i.e. when the wavelength is large compared to
a typical hole size. The problem is solved for an arbitrary cross section of the

 chamber and general hole shape. In the specific case of a circular cross section

*F. Ruggiero, private communication
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approximating the slot by a long elliptic hole with length ! and effective width
w¢fs = 4w/m. For upper estimate we use the results of the polarizabilities
measurements in the range w/l = 0.2 + 1.0 for the rectangular aperture w x !
from paper [16], cited in [9]. They are well fitted by the linear dependence
(am+e)/(w) =~ (0.033+0.27w/l). The extrapolation to the value of interest,
w/l = 0.1, gives (om + ac) =~ 0.06w?l. For Z, the maximal absolute values of
the 1mpedance corresponding to the factor cos(p, — pg) = 1 are shown.

Table 1. Impedance Estimates for the UNK Slots -

|Z/n| [Obm | Z, / (Ohm/m)
Oneslot [(04+31)-10"| 0.5+33
One liner { (1.1 +6.6)-10~¢ | 6.0 + 42.9
[Total | (36+26)-10° | (0.2 = 1.4).10°

The impedance values obtained are quite permissible from the viewi)oint of
the beam stability.

LEP

The vacuum chamber of the electron-positron collider LEP has the circum-
ference nearly 27 km, its cross section is the ellipse with semiaxes 131 and
65 mm. About 21 knr of the chamber have pumping holes (40 per meter) of
rectangular shape 20 x 8 mm with rounded corners. For estimates we approxi-
mate the hole shape by the ellipse with semiaxes /; = 11.3 mm and I; = 4.5 mm
having the same area. The pumping holes are pla.ced in the horizontal plane,
@n = 0, connecting the beam pipe with the parallel chamber which contains
the getter pumps. For such a layout the transverse impedance has only the
horizontal nonzero component. The results are shown in Table 2.

Table 2. Impedance Estimates for LEP Pumping Holes

ﬂ [Z]n[ ] Ot [ 2. ] (Ohi/m)
One hole || 2.7-10-% 0.11
Total 0.023 9.3-10*

These figures contribute less than 10% of the measured 1mpeda.nces of the
LEP vacuum chamber.
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of a hole, as well as the longitudinal one, is proportional o the sum of the hole
polarizabilities.

Substituting ed’?(5') =
t =48 we get

V,e,(3) into Eq. (27) and going to the limit s =0,

Z) (w) = —iZs(ce + am)(d? + dz)&'d cos(pp — Pa) - (28)

Here z,y are the horizontal and vertical coordinates in the chamber cross sec-
tion; d = 0,6,(0), dy = 9ye,(0); v» = @, = ¢ is the azimuthal angle
bf the beam position in the cross-section plane; @; = @, cospq + @, sinpqg
is a unit vector in this plane in direction ¢g4, which is given by conditions
cos g = d,/\/d2 +d, sinpy = dy/,/d2 +di. It is seen from Eq. (28) that
the angle ¢4 shows the direction of the tra.nsverse-lmpedance vector Z ', and,
‘therefore, of the beam-deflecting force. Moreover, the value of Z, is maximal
when the beam is deflected along this direction and vanishes when the beam
offset is perpendicular to it.

Circular chamber

In the case of a circular cross section of the chamber one can easily derive
from Eq. (3) that d, = cos ¢3/(wb?) and dy, = sin ¢y /(wb?). Asa result, pg = @,
@4 coincides dj, which is the direction to the hole, and the transverse impedance
is

a

> . m + - ’
Z (w) = -—zZoT:xeah cos(pn — @) - (29)

This formula was first obtained by a direct summation over EFs in [10]. It is
clear that the deflecting force is directed toward the hole (or in the opposite -
direction) and the force value depends on the angle between the beam offset and
the direction to the hole. It is worth noting that in axisymmetric structures the
beam-deflecting force has to be directed along the beam offset. The presence
of a hole breaks this symmetry.

For particular cases of the hole shape we obtain from Eq. (29) the transverse
impedance of

circular hole with radius &, cf. (5),

943
‘ 3m2pt
narrow longitudinal slot with width w and length I, w <1 < b, cf. (8),

Z)(w) = —iZy———dn cos(pn — @) ; (30)

- . 4 41 -
Zl(w) = "Z"ﬂ% (ln pol 1) ap COS(% - <Pb) ) (31)
11



narrow transverse slot with width w and length /, when w <« ! & b, cf. (9),
. Z ] P G | 32
Z,(w) ~ —iZ, 24n5* (m(dljw) l)u;, cos(in — pp) - (32)

If we consider M (M 2> 3) holes uniformly spaced in one cross section, as a
result of vector summation of M expressions (29) the transverse impedance is

mtae M,
Z)(w) = oa—,bT— 2 - (33)

where @; is a unit vector in the direction of the beam transverse offset: One can
see that the deflecting force is now directed along the beam offset, i.e. some kind
of the axial symmetry restoration occurs. The maximal value of Z\ ) for M holes
which are uniformly spaced in one cross-section is only M/2 times larger than
that for M = 1. Moreover, the well-known empirical relation Z, = (2R/b¥*)Z/n

(cf. (16) and (33)), which is justified only for axisymmetric structures, holds in.

t}ns case also.
\

Rectangular chamber

In the case of the rectangular (a x b) chamber cross section one can derive
analytical expressions d; '= 7X./b? and d, = 7, /b? in the form of series

= (2m 4 1) cos(2m + 1)wys/b
meo  sinh(2m + 1)7z, /b ’
&, 2msin 2mmy, /b
7=y cosh2mmzp/b

T, (34)

=

These series are fast-convergent ones. The dependence of functions defined by
these series on the hole position for various values of a/b is shown in- Figs. 3
and 4. The transverse impedance of the hole in the rectangular-chamber wall
is L, - :
Z)(w) = —iZo—mei + T3)dacos(pp — pa) (35)
where tan g = I, /T,. Note, that in the rectangular chamber 4 is not equal,
in general, to 5. Since £, — 0 and £, — 0 when |ys| — b/2 the hole transverse

impedance in the rectangular chamber goes to zero, as well as the longitudinal

one, when the hole is placed near one of the chamber corners.
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. Chamber with an arbitrary cross section

To evaluate the transverse impedance of a hole in the walls of the chamber
with an arbitrary cross section S it is necessary to find quantities d, and d,
defined by (28). In doing so we compute, using the code MGD2 [15], the electnc
field produced on the region boundary 8S by a dipole, which consists of two
opposite-sign charges spaced by small distance 2s and is directed along the axis
z or y, respectively. In the case when region S has some symmetry with respect
to z or y it is convenient to solve numerically the problem for a single charge
in the quarter of the region with given relevant boundary conditions of the 1st
and 2nd kind on the axes. After dividing the result by the dipole length 2s we
get d, and d,, as functions of the hole position on the ¢hamber wall.

Computations for circular and rectangular chambers show a good agreement
with the analytical results cited above. As an example, the results for the elliptic
chamber with semiaxes 40 and 30 mm are shown also in Figs. 5 and 6. It is worth
noting that the dependencies of the value of the transverse impedance on the

~ hole position (Fig. 6) are very s1m11a.r to those for the longltudma.l impedance

(Fig. 2).

] 4. ESTIMATES

At frequencies below cutoff the contributions to the chamber impedance
from small discontinuities are additive. One can give a formal proof of this fact
for many holes if the effective moments induced on each hole are independent of
the presence of neighboring holes. The latter circumstance is not very restrictive
even in the case of holes which are very close to each other, see [5]. In making
estimates we will assume this additivity of the contributions from different
holes to the inductive impedance of vacuum chambers. Nevertheless, at higher
frequencies the problem: of coherent effects is still open. The real part of the
longitudinal impedance produced by a hole in the chamber Wa.ll is evaluated in
Appendix.

UNK, 1st stage

Let us estimate the impedances produced by slots in the liners of the UNK
1st stage. Approximately N = 3260 vacuum boxes with bellows will be shielded
by the liners and each liner has M = 26 slot with width w = 0.6 cm and length
!l = 6 cm. For estimates we take the chamber radius b = 3.5 cm and the
machine one R = 3306 m. Note, in this case { > b and therefore our estimates
will be rough. The figures are cited in Table 1. The lower bound is obtained by

13



