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Abstract 

S.Y. Ivanov. Longitudinal Diffusion of a Proton Bunch 
Preprint 92-43. - Protvino, 1992. - p. 38, figs. 11, refs.: 6. 

under External Noise: IHEP 

Evolution of longitudinal distribution of a proton bunch subjected to stationary (amplitude 
or phase) RF-noises is governed by a diffusion equation. Its diffusion coefficient is essentially 
nonlinear and, possibly, diverges near separatrix. The paper deals with the dynamical founda
tions of this diffusive approximation. Treated in detail is the motion of particles located either 
inside, or outside stationary buckets (beam halo). The formal statement of boundary-value 
problem for the noise-induced diffusion of a bunch (zero boundary conditions at separatrix, 
or at infinity) is discussed. Both these problems are solved numerically for arbitrarily long 
bunches. Use is made of the Finite Element Technique (spatial discretization), and of the 
Crank-Nicolson's scheme (time-domain integration). Computed estimates of the representative 
bunch life-times for the wide-band (white) noise approximation are presented. These emerge 
from the criteria of either bunch quality degradation, or of its population loss. 

AHHoTanBJI 
C.B. HBaHOB. IIpollonhHaJI llH<P<PY3HJI crycTKa npOTOHOB nOll ,neucTBHeM BHellIHem 
IIpenpHHT HcPB3 92-43. - IIpoTBHHo, 1992. - 38 c., 11 pHC., 6H6mwrp.: 6. 

llIyMa: 

3BOnIOIJ,HjI npo,nonhHoro pacnpelleneHHjI crycTKa npOTOHOB no,n ,neHcTBHeM CTaIJ,HOHapHoro 
(aMnmITy,nHoro HnH <pa30Boro) BLI-illYMa onHChIBaeTCjl ypaBHeHHeM ,nH<p<pY3HH. Em K03<P<PH
IJ,HeHT ,nH<P<PY3HH cymecTBeHHO HenHHeeH H, B03MOJKHO, pacxo,nHTCjl B6nH3H cenapaTpHChI. B 
pa60Te rrpOBo,nHTCjI llHHaMHqeCKOe 060CHOBaHHe 3TOm ,nH<P<PY3HOHHoro npH6nH)l{eHHjI, IlollPo6
HO Hccne.uyeTcjI ,nBHJKeHHe qaCTHU KaK BHyTpH, TaK H BHe CTaIJ,HOHapHhIX cenapchpHc (raJIo 
rryqKa). 06cYJK,naeTcjl <pOPMaJIhHaJI nOCTaHOBKa KpaeBoH 3a,naqH lIIyMOBOH ,nH<P<PY3HH crycT
Ka (HyneBhIe rpaHHqHhIe ycnoBHjI Ha cerrapaTpHce JIH60 Ha 6eCKOHeqHOcTH). 06e 3TH 3a,naQH 
pellIaIOTCjI QHCJIeHHO ,nJIjI crycTKoB npOH3BOJIbHOH ,nJIHHhI. HCnOJIb3yeTCg MeTO,n KOHeQHbIX 3JIe
MeHTOB (npocTpaHCTBeHHaJI ,nHCKpeTH3aI.J,HjI) H cxeMa KpaHKa-HHKOJICOHa (HHTerpHpOBaHHe no 
BpeMeHH). IlpHBe,neHhI QHCJIeHHhIe OIJ,eHKH XapaKTepHhIX BpeMeH JKH3HH crycTKa B npH6JIH)l(e
HHH IlIHpOKOnOJIOCHOrO (6eJt020) IllyMa, OHH orrpe,nenjlIOTCg HCXo,ng f') KpHTepHeB yxy,nlIIeHHg 
KaQeCTBa crycTKa JIH60 nOTeph ero HHTeHCHBHOCTH. 
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INTRODUCTION 

Studies of bunched-beam dynamics under RF-noise in a proton synchrotron 
were initiated long ago. Diffusion equation for the longitudinal distribution 
of a bunch was obtained in refs. [1 ,2]. A more rigorous, theoretical-physical 
derivation of the result was published in ref.[3]. 

All the papers mentioned arrive at diffusion equation within the frames of 
a probabilistic approach. The latter proceeds from the Fokker-Planck equation 
for the probability of a particle, affected by an external perturbation, to transit 
from its phase-plane trajectory to another one. The subject to calculations are 
the coefficients of this equation. These are expressed through a linear in I3.t 
component of time dependence of both the first ((I3.'ljJ); (13.:J)) and the second 
((13.'ljJ2); (13.'ljJ13.:J); (13.:J2)) moments of a change in phase-plane coordinates 
of a particle during time intervals I3.t ---+ O. (Here, for definiteness, angle
action variables ('ljJ,:J) are used. The angular brackets (...) denote a statistical 
average over the noise ensemble. Mathematical averaging over phase 'ljJ reduces 
the problem in question to a one-dimensional one.) 

Virtually, such an approach 'a priory' incorporates a few qualitative sugges
tions. Namely, it assumes: 

'. 
1. Absence of any probabilistic after-effect (the so-called Markovian random 

process). 
2.	 Certain type of behavior of the transition probability during vanishingly 

small time intervals: the third and higher-order moments of phase-plane 
displacement of a particle decrease faster than the first power of I3.t. 

This approach is not free of its intrinsic limitations. It circumvents the 
analysis of a particular relation of the dynamical properties of the system in 
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question to statistical features of an' external perturbation. Whereof, an un
certainty arises regarding dynamical foundation and physical prerequisites for 
applicability of the diffusion approximation. Appreciable efforts are as well re
quired to prove an exact compensation of the systematic-transfer velocity of 

' ..particles along J -coordinate due to the diffusion coefficient gradient (identity 
Al = ~oA2/ oJ in refs. [1]-[3]). It is this very condition which reduces the 
Fokker-Planck equation to a standard diffusion one. 

This paper derives the longitudinal diffusion equation for a bunch under RF
noise in a quite different way - in frames of a consistent dynamical approach. 
Similar techniques is employed, say, in ref.[4] to study a Brownian motion. To 
put it briefly, the main id~a  of this approach is as follows. First, the dynamics 
of particles in a bunch under the sole effect of determinate, i.e. not random, 
perturbations is studied with the Vlasov equation. It is at a concluding step only 
that stochaStic processes themselves are incorporated, and proper statistical 
averages are taken. 

This approach allows one to apply the formal techniques already developed 
in the theory of bunched-beam instabilities. The general results of ref.[3] are 
rederived in a more transparent way, these being valid for an arbitrary azimuthal 
pattern of a perturbing-voltage wave synchronous to the beam. Hence, the 
results of [1 ,2] for a beam stored' inside stationary buckets (amplitude and phase 
noises) are also obtained, Methodologically, this alternative derivation is itself 
of interest, arid facilitates a deeper physical insight into the problem at issue. 
The 'approach involved can be readily extended to treat the motion of particles 
beyond separatrices. 

i However, refs. [1]-[3] seem to skip over a detailed solution of the diffusion 
problem. Indeed, the approximation of short bunches turns out to be the only 
one studied practically. Therefore, a highly nonlinear dependence of the diffu
sion coefficient on oscillation amplitudes is not taken into full account, which 
might be crucial for some near-separatrix region. The motion of particles which 
have escaped from (stationary) buckets is not considered. These off-set particles 
build up a beam halo whose presence must be taken into account in putting 
boundary conditions for the noise-induced diffusion problem in a storage regime. 
No quantitative data on life-times of arbitrarily long bunches are presented. The 
paper attempts to fill in the blanks mentioned. 

~ 

1. INTRODUCTIVE REMARKS 

Let {} = e- wst be an azimuth in the co-moving coordinate frame. Here e is 
a generalized azimuth along the ring in the laboratory fr,ame; Ws is the angular 
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revolution frequency of a reference particle which is synchronous to the nominal 
value of the RF-frequency; t is the time. Put the origin {) ,:= 0 of longitudinal 
{)-coordinate on the unperturbed reference particle of the bunch in question. 
Neglect beam-induced self-fields. 

Consider the pair ({); {)' == d{) / dt) as the canonical coordinate and momen
tum. First, let us study dynamics of particles under effect of determinate, i.e. 
not random, fields exclusively. The equations of longitudinal motion can be put 
down in their canonical form: 

d{) 81t d{)' 81t 
(1)dt = 8{)'; di - 8{)'
 

Hamiltonian 1t({), {)', t) is a sum of two items:
 

1t({), {)', t) = H({), {)') + i1H({), t).	 (2) 

Here H({), {)') is Hamiltonian of the unperturbed motion
 

{),2
 

H({), {)') = 05U({)) + 2'	 (3) 

U(.?) = :,((1- cosq.?) + (q.? - sinq.?) cot",.) '.=:+" ~', (4) 

where 0 0 is the small-amplitude angular frequency of synchrotron oscillations; 
U(J2} is the scaled potential energy; q is the RF harmonic number; 'Ps is the 
nominal value of stable-phase angle ( 'Ps > 0 below transition; synchronous 
energy gain varies as cos 'Ps ). However, the results of Sections 1, 2 are quite 
general and do not depend on the particular shape of U({)). 

Time-dependent additive term i1H reads 

i1H({),t)=- v: 02 
~ Jd 

i1V({)l,t)d{)l, (5) 
q ext sm 'Ps 

where ~xt  is the nominal value of accelerating voltage--amplitude; i1V ({), t) = 
i1V( {) + 27r, t) is a perturbing voltage reduced to the co-rotating frame. The ex
plicit form of i1V({), t)-term is specified later on. For th'e time being, i1V({), t) 

'l 

is considered as a given, or particular, realization of a random (noise) process. 
Therefore, it should be treated as a determinate value. Introduction of stochas
tic processes themselves is delayed until the end of calculations, i.e. until the, 
moment when statistical averaging over a noise ensemble is carried out. 

The bunch is given by its single-particle distribution function F({), {)'. t) 
which is normalized at the initial! instant of time t = 0: 

~	 rr d{)d{)' F({), {)', 0) = 1. (6)
27r ll(sep) 
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The integration goes over the region bounded by separatrix.. Specification of 
the instant of time t = 0 is essential. Indeed, in course of evolution of the bunch 
its particles eventually abandon the bucket, which changes the normalization. 
But extension of the integration limits over a full beam phase-plane would keep 
the normalization unaltered (naturally, in the absence of a physical aperture). 
This situation would indicate conservation of the total number of particles in 
both the beam and its halo. 

Time-evolution of the distribution F obeys the Vlasov equation 

8F({),{)',t) + {1i;F}I1I1/ = 0, (7)
8t 

where 
{A;B}xy = oA8B _ 8A8B (8)

8yox ox 8y 

is the Poisson Bracket. 
Consider ~  V( {), t) as a small perturbation which allows to split F( {), i', t) 

into a sum 
F ({), {)' , t) = F({), {)' , t) +~F ({) , {)' , t), (9) 

where ~F  ----+ 0 in a direct proportion with ~V, and the following normaliza
tions are imposed 

-2
1� rr d{)d{)' F({),{)',O) 1, (10)
7f ll(sep) 

-2
1� rr d{)d{)' ~F({), {)', 0) O. (11)
7f ll(sep) 

In acc<?rd with this assumption, eq.(7) can as well be split into two. This is the 
equatipn which governs slowly varying (with a rate of fV ~  V 2) function F: 

8F({),{)',t) {H F} {H }
8t + ; t'h,)' = - ~ ;~F 111')', (12) 

and t.f1e equation for additive disturbance !!::.F: 

8~F({), {)', t) + {H; ~F} 191')' = -{~H;  F} 1111" (13) 
~.  

To begin with, let us study inside-separatrix motion only~:.rcansform  the ,.
pair ({), {)') into angle-action variables ('I/J, 3) of the unperturped longitudinal 
motion. EquatioIjl.s of motion (without noise) in terms of t~ese·  variables are 
canonical as well 

d3 8ed'I/J _ 8e = Os(e);
di- 83 di = -8'I/J = 0, (14) 

~  
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Figure 10. Population-loss life-times (phase noise). 
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Figure 11. Population-loss life-times (amplitude noise). 
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where ns ( £) denotes the frequency of synchrotron oscillations along the phase
plane trajectory H (fJ, fJ') = £. Energy £(J) coincides with the value of new 
(unperturbed) Hamiltonian, and is defined formally as a function inverse to 
J(£): 

2J(£) = ~ fI9 (£) dfJ J2 (£ - n2U(fJ)) (15)7r JiJ 1 (&) 0' 

where fJ 1(£) < fJ 2(£) are coordinates of the turning points of phase-plane tra
jectory H( {}, fJ') = £. 

For'the coordinate-transformation Jacobian 8(fJ,fJ')/8('lj;,J) = 1, normal
izations (10), (11) become 

~ rr dJd'lj; F(J, 'lj;, 0) 1, (16)
27r JJ(sep) 

~ ff dJd'lj; ~F(J, 'lj;, 0) o. (17)
27r JJ(sep) 

In what follows, periodic function ~V({},  t) is expanded in azimutha~  har
monics via the Fourier series representation: 

~V(fJ,t)  = L
00 

AVk(t)exp(ikfJ), (18) 
k=-oo 

1 2. . 
~Vk(t) = - J~V({},t)exp(-ik{})d{}. (19)

27r 0 

Functions F, ~F(J, 'lj;, t), as all the iother periodic functions of phase 'lj; inside 
bucket, are Fourier series decompos~d  in multipole harmonics 

F,~F(J,'I/;,t)  = L
00 

F,~Fm(J,t)exp(im'lj;),  (20) 
m=-oo 
1 -f1T . 

F, ~Fm(J, t) = - JF, ~F(J, 'lj;, t) exp( -zm'lj;) d'lj;. (21)
27r -br 

2. EQUATION OF NQISE-INDUCED DIFFUSION 

General Case 

, Eq.(12) in terms of ('I/;, J)-variables reads 

8F(J, 'lj;, t) + ns(J) 8F(::'lj;, t) =_ {~H(J,  '1/;, t), ~F*(j, 'lj;, tn1PJ"' (22) 

Figure 9. Increase of bunch emittance (amplitude noise). 
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Here, the advantage is taken of the Poisson Bracket kept intact by the canonical 
transformation (f),'l9 f

) ~ ('lj;,.I). Convenience of complex conjugation applied 
to real-valued function t1F is confirmed later on. 

Let us study the evolution of the particle distribution in .I-variable. Define 
it formally as the 'tP-average of function F(.I, 'lj;, t): 

1 
211" 

+lrJF(.I, 'lj;, t) d'lj; == Fo(.I, t). (23) 
-lr 

Replace functions t1H, t1F* in the r.h.s. of eq.(22) by their Fourier series ex
pansions in multipole harmonics (20). Integrate both sides of eq.(22) over 'tP 
between limits (23). In the r.h.s., this integration would retain only the diagQ,tlal 
items of the double sum over multipoles. As a result, one gets 

aFo(.I, t) = i~ f m t1Hm(.I, t) t1F:n( ..l, t). (24)
at a.I m==-oo 

Definition (5) allows one to relate the multipole harmonic of t1H to azimuthal 
harmonics of t1V 

t1Hm(.I, t) = i O~ f I:nk(.I) t1Vk(t) , (25) 
q~xt  sm 'Ps k==-oo k 

where functions 

1 
I:nk(.I) = 211" J+lr 

d'lj; exp(ik'l9(.I, 'tP) - im'lj;) (26) 
-lr 

are coefficients of the Fourier series expansion of a plane wave in the multipole 
oscillations. These coefficients are extensively used in the theory of longitudinal 
instabilities of bunched beams. Thus, eq.(24) turns into 

aFo(.I, t) 02 
o X (27)

at q~xt sin 'Ps 
t 

a ~ R (I:nk(.I) ( ) A "* ( ))
x a.I k,mL;:-oo e m -k- t1Vk t uFm .I, t . 

Explicit extraction of the real part in the r .h.s. emphasizes that the series in •eq.(27) involves coefficients of the Fourier series decomposition with respe~t  to 
f), 'tP of a real-valued function. It simplifies subsequent passing to spectral power 
densities. 

Fig.7 also marks an interval of time t f ;S 2 during which more than 99%
fraction of particles is left confined inside the physical aperture. This interval 
may well be treated as a time domain in which numerical solutions obtained 
(say, times to.99 and to.96 ) diverge insignificantly from those for the boundary
value problem inside the half-infinite straight-line segment. Of course, the time 
domain involved is subject to convention. It depends entirely on the accuracy 
level adopted. Thus, in the following, while applying a similar approach to 
solving the degenerate boundary-value problem, it is required that the finite 
physical aperture should contain at least 99.9%-fraction of particles injected. 

The VEry onset (t f ;S to.99 ) of the noise-induced diffusion features a beam 
quality degradation, its quantitative measure being an increase of a bunch lon
gitudinal emittance .I, refer to eq.(79). 

Figs.8,9 plot curves of .I(t f
) for the phase and amplitude noises, respectively. 

Solid lines are numerical results, while dashed lines plot analytical solutions of 
eqs.(83) in the short-bunch approximation. Notice a rather good fitting together 
of the curves for the phase noise. The parameter of the curves is bunch size at 
base .Ib(tf = 0). As for distribution (136), it is related to the initial emittance 
via the identity: 

.:T(I! = 0) = ~ G=::) .:Tb(t' = O)la~! "" 0.29.:Tb(1! = 0). 

All these curves are cut off at time to.99 coming from the boundary-value problem 
with zero condition at separatrix. 

A course of further (as t f 
~  to.99 ) evolution of a bunch depends upon the 

boundary condition imposed. While a loss of population trapped in buckets 
turns out to be a more adequate quantitative measure of the diffusion at issue. 

Figs.10,1l plot the life-time of the bunch against its initial size .Ib(tf = 
0) at different levels of the population loss. Again, the phase (Fig.l0) and 
amplitude (Fig.ll) noises are considered. Two families of curves are shown, 
their parameter being the fraction of particles left inside bucket. Solid lines 
correspond to zero boundary condition at separatrix (their parameter value 
is plotted on the left-hand side), and dashed lines stand for zero boundary 
condition at infinity (parameter is on the right). Practically, the latter case 
incorporates the aperture put at a distance of .Irnax = (4-5).hep. Until time to.
is exceeded, that aperture is crossed by a less than 0.1 %-fraction of the initial 
population. As it should be expected, with t f ~ 00 the effect of boundary 
conditions on the life-time estimates increases. 

Author thanks Drs. V.I. Balbekov and G.G. Gurov for many instructive 

discussions and critical notes on the subject matter of the paper. 
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Similarly, bunch life-times extracted from other levels of population losses are 
introduced (e.g., time t~.96  ~  1.2 in Fig.7). 
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Figure 7. Bunch evolution (continued) 

FUnction !::t.Fm(:J, t) embedded in the r.h.s. of eq.(27) is a solution of eq.(13). 
Coordinate transformation to ('l/J,.:1) converts this equation into 

8!::t.F(.:1, 'l/J, t) + Os(.:1) 8!::t.F~, 'l/J, t) = _ {!::t.H(.:1, t/;, t); F(.:1, t/;, t)}1/J.1' (28) 

Let us assume that for all t < 0 voltage ~V == 0, while a bunch is both 
matched to the phase-plane trajectories and stationary in time. In which case 
F(.:1, 'l/J, t < 0) = Fo(.:1). Hence, it is solely the voltage !::t.V, acting at t ~ 0, 
which is responsible for both the bunch non-stationarity (8F/ 8t -# 0) and its 
multipole modulation (8F/8'l/J -# 0). As only the slow processes are stud
ied, attribute small v31ues to the r.h.s. of eqs.(12), (27). Therefore, in solv
ing eq. (28) one may well restrict himself to the first-order approximation in 
!::t.V -perturbation, and ignore a negligible induced multipole modulation of F: 
8F/8'l/J !::t.V2. Thus, up to the accuracy adopted, substitute Fo(.:1, t) for'V 

F(.:1, 'l/J, t) in eq.(28) (ref.[3] incorporates the similar assumption directly, which 
is referred to as a random phase type of approximation). Then, derive term-wise 
multipole harmonics (21), and take account of eq.(25). As a result, get 

8~Fm(.:1,  t) + imOs(.:1)~Fm(..1,  t) = (29) 

og 8Fo(.:1, t) m f I~k(.:1)!::t.  Vk(t). 
q~xt sin <Ps 8.:1 k=-oo k 

It is easy to get the forced solution of this equation which satisfies the initial 
condition of !::t.F(.:1, 'l/J, t = 0) = 0: 

og .~ I:nk(..1)
~Fm(..1,t) ·--=:....---m L --x (30) 

q~xt sin <Ps b-oo k 

t 8Fo(..1, t - r) A Vi (t _ r) exp (-imOs(.:1)r) dT.x o:l/T U k/o 

Put this result into the r.h.s. of eq.(27) to yield 

8FJO(.:1, t) 02 ) 2 8 ( 00 m2 x= 0 _ Re L(8t q~xt  sin <Ps 8.:1 m=-oo, 
x f I:nk(..1) Imk1 (..1) J8FJe\..1, t - T) X 

k,k 
(31) 

1=-00 k k1 0 8.:1 

x !::t.Vk(e)(t)!::t.Vk~e)*(t - r) exp(imOs(.:1)r) dr). 
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Eq.(31) describes the evolution of the bunch distribution in O"-coordinate 
under the particular (~-th)  realization of perturbing (noise) voltage. This fact 
is denoted by (~)-superscript  attributed to functions Fo and ~V.  So far, they 
were treated as determinate (not random). 

As a matter of fact, such a detailed information about perturbing voltage 
~V('I9,tI)  covering an arbitrary time interval of 0:::; tl :::; t, which could have 
allowed a direct employment of eq.(31), is unavailable. Moreover, it is not 
required practically. 4' 

A theory of stochastic (random) processes implies the concept of a statis
tical ensemble of noise realizations [4]. (In practice, such an ensemble can be 
introduced as a series of experimental observations of the bunch in different 
acc,elerator cycles. Macroscopic conditions for these experiments are assumed 
to be sufficiently unaltered, so as to reproduce exactly the statistical features 
of noise at issue: its mean value, correlation function and correlation time, 
spectral power density.) Within the frames of this ensemble of realizations, a 
procedure of statistical averaging is well defined, and is denoted later on via 
angular brackets (...). Now one can. define the (ensemble) average over realiza
tions, alongside with the relevant fluctuations: 

(FJ€) (.1, t)) = (Fo)(J, t), (32) 

8FJ€) (.1, t) = FJ€\J, t) - (Fo)(J. t); (8FJ€\J, t)) = O. (33) 

Perform the statistical averaging of eq.(31). Consider fluctuations 8Fo (33) 
to be small, and neglect on this footing the term tV (8Fo~Vk~Vk~)'  As a result, 
get the equation for the averaged (over realizations) bunch distribution in .1

" 

•� 

variable: 

o(Fo)(J, t) 
__n....:....~_) 2 _a (Re f: m 2 x 

(at q~xt Slll<ps 0.1 m=-oo 

x f: I:nk(J) Imk1 (.1) jo(Fo)(J, t 
k,k1=-oo k k1 0 oJ 

T) X 
(34) 

x (~Vk(t) ~ Vk~ (t - T)) exp (imOs (.1) T) dT) • 

Practically, correlation function (~V  ~V*) is essentially non-zero only dur
ing the time interval of ITI ;:S T,6.V, where T,6.V is a representative correlation 
time of the noise voltages. Let another time constant, Tdif, be a rate measure of 
a slow, systematic dilution of (Fo) under the RF-noise effect (diffusion life-time 
of the bunch). Consider the voltage fluctuations to be fast 

T,6.V <::t::,.'Tdif, (35) 

The integration of eq.(1l8) has resulted in a quadrature formula of trapezia. 
Numerical computation necessarily employs a finite value of J max. A numeri

cal solution on a finite straight-line segment 0 :::; .1 :::; J rnax would insignificantly 
differ from that for the half-infinite straight-line 0 :::; .1 :::; 00, provided either 
Q(Jrnax, t) ~ 0 or integral (134) remain (ahnost) unaltered. To treat a more 
prolonged process, boundary J max is removed farther, etc. 

The approach discussed here is realized in computer codes for numerical 
solution of the diffusion equation in question. 

8. NUMERICAL RESULTS 

Approximation (46) of the wide-band (white) noise is studied. The ampli
tude and phase noises in question are treated as independent ones. To present 
results, use is made of a scaled time 

tf = t 05 p(a,tp) 
(135)

Veit 

The initial distribution of particlesin a bunch is combined of two conjugated 
parabolas: 

(Fo)(J, tf = 0) 
3 

(1 _ a2).1~ x (136) 

x { (Jb - .1)2  (aJb - .1)2la, 0 :s; .1 < aJb; 
(Jb - .1)2, aJb :::; .1 :::; Jb; 

where Jb = Jb(t f = 0), Jb :s; .:Tsep is a boundary of injected bunch, 0 < a < 1 is 
a parameter. In computation the value of a = ~ is taken. Final results depend 
weakly on the shape of (Fo)(J, tf = 0). 

Figs.6,7 clarify the meaning of the time characteristics introduced, and ex
plain the method of solving the degenerate boundary-value problem. 

Fig.6 shows evolution in time of the distribution function (area bounded 
under the curve t f 

= 0 equals unit). The phase noise is treated. The initial 
bunch occupies half of the bucket: .1b(tf = 0) = ~Jsep. Physical aperture is put 
at a distance of Jrnax = 2.:Tsep. 

The top part of Fig.7 plots time dependence of fractional number of particles 
trapped either inside the separatrix N(J :s; .:Tsep, t') or within the physical 
aperture N(J :s; Jrnax, tf). While the bottom part of Fig.7 shows diffusive flux 
Q(J, t') of particles across the same sections. Parameter. t~.99  denotes the time 
until which more than 99%-fraction of particles is left trapped in the bucket. 
By convention, it may well be referred to as a running-into-separatrix life-time. 
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On substituting these expressions into eq.(120) one gets the following two
layer time-domain integration procedwe (Crank-Nicolson's numerical scheme, 
see ref.[6]): 

(.4+ ~ Llt 13) p(n+1) = (A - ~  Llt B) p(n). (130) 

This iteration process is unconditionally stable for an arbitrary Llt. More
over, a numerical solution will be free of any unwanted oscillations with respect 
to the exact one, given the following inequality is satisfied 

AmaxLlt < 2.� (131) 

Here Amax > 0 denotes the maximum eigenvalue of a generalized problem: 

AAP = BP.� (132) 

By the order of its magnitude, Amax ~ D./Ll.J; where D. and Ll.J* are some 
representative values of the diffusion coefficient and of the discretization step. 
Exact evaluation of Amax is carried out numerically whenever either grid :h or 
function D(.J) are altered. Inequality (131) itself is treated as the practical 
limitation on the choice of a time-domain integration step. 

Degenerate Boundary-Value Problem 

To get a numerical solution of the degenerate boundary-value problem, it is 
important to specify a quantitative criterion which allows passing to the limit 
of .Jmax ---. 00. 

Insert approximations given in eqs.(128), (129) alongside with boundary 
conditions FL(t) = 0, dFL(t)ldt = 0 into eq.(125). Thus, the approximation of 
the diffusive flux through the outer boundary .JL = .Jmax is obtained: 

F(n+l) F(n) F(n+l) F(n)
)(n+l/2) tv -A L-l - L-l _ B L-l + L-lQ(V 

'7 
max - L,L-l Llt L,L-l 2 (133) 

Naturally, it should coincide with the negative time derivative of normalization 
integral (i.e. with loss rate of the fractional number of particles trapped inside 
the physical aperture). The integral just mentioned is 

N(.J ~  .Jmax, t(n)) =
3Jmax 

(Fo)(.1, t(n)) d.J ~ 	 (134) 
o 

F(n) t1.Jl + ~1 F(n) ti.:h + :h+l + F(n) ti..JL 
-
f'V 

l=O 2 ti l 2 L 2' 

and study the bunch evolution during intervals of time t: 

r~v < t:5 rdif.� (36) 

Inequality (36), alongside with a fast fall-off expected of the correlation 
fu.nction, allows one to replace the finite upper limit of integration in eq.(34) 
by +00. Formally, it is the same as to put the forced and sustained (at t ---. 00) 
solution of eq.(29) directly into the r.h.s. of eq.(31). 

On the other hand, on satisfying inequality (35) and due to the cut-off effect 
of the correlation function in the integrand, derivative 8(Fo}(.1, t - r )18.1 may 
be factored out of dr-integration in eq.(34) and treated at the instant of time 
r =0. 

As a result, eq.(34) is reduced to a desired diffusion equation in .I-coordi
nate: 

8(Fo)(.J, t) = ~ (D(.J) 8(Fo)(.J, t)) (37)
8t 8.1 8.1 

with the diffusion coefficient 

D(.J) = ~  ( Q~.)  2 Re f m2 f I:nk(.J) Imk 1 (.1) x 
2� q~xt sm <;?s m=-oo k ,k1=-00 k k 1 

00 

x 2 J(ti.Vk( t)ti. Vk~ (t - r)) exp (imQs(.J)r) dr. (38) 
o 

Stationary Noise in Co-Rotating Frame 

Coefficient D does not, in fact, depend on the current time t, provided 
correlation (ti.V ti.V*) is a function of difference time r only. It occurs so, say, 
in the following two cases. 

1.� The noise voltage is stationary or periodically-unstationary with respect 
to the laboratory frame, while D takes account only of its systematic effect 
which does not average to zero during a revolution period of a beam round 
the orbit. 

2.� The noise is a ('weakly') stationary stochastic process as defined directly 
in the co-moving coordinate frame. 

This paper treats only the last, less general case, which implies that the noise 
correlations exceed the revolution period: r~v  > 2n"/ws • It is also assumed that 
independent variables tJ and t in perturbing voltage ti.V (19, t) are separated 

27T'
ti.V(19,t) = v(t)g(tJ), g(tJ) = g(19 + -). (39) 

q 
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Here g('I3) specifies determinate (possibly, unharmonic)' wave-shape of propa
gating wave of the perturbing voltage synchronous to the beam. Its periodicity 
entails that the diffusion coefficient would be the same for all buckets of the 
beam. (This assumption can. be .withdrawn by taking the ring orbit to be a 
period of g('I3): g('I3) = g('I3+21f). But this would result in unnecessary compli • 
cations, especially in treating the beyond-separatrix motion in Section 5.) 

A real-valued function v(t) denotes a ('weakly') stationary stochastic process 
with a zero average, (v(t)) = O. Its (auto)correICition function (v(t) v(t - r)) • 
does not depend on the current instant of time t. It· is an even function of 
difference time r only: 

(v(t) vet - r)) = (v v)(r); (v V)(-T) = (v v)(r). 

Put eq.(39) into eq.(38) to yield 

1 ( 0
2 

) 2 00D(.J) = -2 2'V 0. L Wm(.J) Pv (mOs(.J)) 2 -0. (40) 
q ext SIn Ips m=-oo 

The value PvC 0) denotes a (double-sided) spectral power density of the station
ary random process vet): 

Pv(O) = J
00 

(v v)(r) cos(Or) dr, Pv(O) = Pvc-0). (41) 
-00 

Weight functions 

Wm(.J) m2q21.i I;".~:T) g./2 (42)2 

I 
 ~ J' 8q{)(.J, 1/;) g({)(.J, l/J)) exp( -iml/J) dl/J!�
21f f)1jJ

-lr 

specify the contribution of the noise at the m-th harmonic of synchrotron fre
quency, while W-m = Wm . (To allow for a joint effect of both harmonics ±m, 
take 2Wm .) The values 9k are coefficients of the Fourier series decomposition of .. 
g('I3) in azimuthal harmonics (19). Due to periodicity imposed by eq.(39) their 
numbers are multiples of q. 

•White Noise 

Calculations of weight functions Wm(.J) would allow to estimate the in
dices of multipoles Iml ~ m'(.J) which bear a dominant contribution to se
ries (40). On varying insignificantly throughout a band of lower frequencies 

Diffusive flux of particles which enters an arbitrary section .Ji. > 0 is given 
by 

d 
Q(.Je - 0, t) ~ -Ae,f-I dt (Fe- I(t) + 2Fl(t)) - Be,e-l (Fe-I(t) - Fe(t)). (125) 

What is essential, the above formula does not apply to definition (112) at all. 
(The latter can hardly be used practically, e.g., at separatrix.) The flux which 
leaves the same section .Ji. < :h is 

d 
Q(.Je + 0, t) ~ +Ae,l+ldt(Fe+l(t) + 2Fe(t)) + Be,l+l (Fe+1(t) - F[(t)). (126) 

In either section the diffusive flux should be continuous, Q(.Ji. - 0, t) = 
Q(:h + 0, t). Subtract the second of above equations from the first one. On 
accounting for properties 

Au = 2(Ae,e-1 + Ae,e+I), Bll = -(Be.e-I + Be,e+d, (127) 

of the matrix elements, one immediately arrives at the f-th equation of set (120). 
Whereof, a physical content hidden in this set becomes perfectly clear. The 

one expresses continuity against .J-variable of both the distribution of particles 
and of their diffusive flux, which is shown in discretized form. It is by this reason 
that an integrable singularity of diffusion coefficient (under a conjugation of 
solutions via eqs.(115), (116)) would never reveal itself in a formal structure of 
set (120). 

Time-Domain Component 

Introduce an equidistant time-domain grid t(n) = n!:i.t; n = 0,1,2, ... Denote 
the nodal v~ues  of vector F(t = t(n)) by F(n). 

Consider vector equation (120) at the intermediate (central) instant of time 
t(n+I/2) = ~(t(n) + t(n+l)). Replace derivative dF(n+l/2) /dt by its central finite 

difference approximation (whose error is rv !:i.t2): 

dF(n+l/2) 2- (F(n+l) _ F(n)) . 
--- -

rv 
6t (128) 

Express vector p(n+l/2) by linear interpolation through the adjacent nodal val

ues, which entails an approximation error of the same order of 6t2
: 

p(n+l/2) ~ ~ (F(n+l) + f(n)) . (129) 
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this point boundary conditions (113), (116), imposed in term!) of diffusive 
fluxes Q(.J, t), are naturally incorporated. Any practical computation of 
the solution gradients at boundaries is excluded altogether. 

As a result, diffusion eqs.(37), (93) entail the following set of linear homogeneous 
equations 

~d  ... ~... ... 
A dtF(t) + B F(t) = 0 (120) 

with symmetrical three-diagonal matrices A and B. Their non-zero elements 
read: 

Aoo = ~~.Jl  AOl = t~.Jl 

~',l-[  = ~~Jt Au = H~.Jl  + ~Ji+I) ; (121 ) ~~l+l ~ ~~Jl+l ] 
[ 

AL,L-l = t~.JL ALL = 3~.JL 

Boo = fJl BOl = -RJi 

Blf-l = -fl Bu = fl + fyl Blf+l = _fJ:l (122) 
, l R. R.+l' l+l 

BL,L-l = -f!JL BLL = f!JL 

Generally speaking, set (120) involves only sub-matrices of dimension L x L 
whose row-column indices f, f l run in the range of f, f l = 0,1, ... ,L - 1. Both 
the L-th row and column are excluded due to boundary conditions FL(t) = 0, 
dFL(t)/dt = O. Np-vertheless, elements of the L-th row are reserved for later use 
in calculation of boundary flux through the section :h = .Jrnax' 

Symbol Dl denotes the diffusion coefficient averaged over the f-th element 
of discretization 

1 :It 

DR. = ~.h  f D(.J) d.J. (123) 
Jl-l 

Column-vector is made of unknown nodal values: 

~ ( TF = FR.=o, Fl , ... ,Flsep ,'" ,FL- l) , (124) 

with FL = 0 due to boundary condition. 

101 ;S m/(.J)Os(.J), the noise spectral density Pv(mOs(.J)) ~ Pv can well be 
factored out of the sum over m. Thus retained series of weight functions is re
ducible to quadratures. (Suffice it to take an integral presentation of eq.(42).) 
The result is the diffusion coefficient which reads 

1 ( 02 )2D(.J) (43)= "2 q2~xt ~in CPs PvA(.J), 

A(.J) = L 
00 

Wm(.J) = (44) 
m=-oo 

2~  Zd?jJ (aqd~~,?jJ) r9'(d( J, ?jJ)). 

(An integral presentation of eq.(44)-type valid for arbitrary functions g(1J) was 
first obtained in ref.[3].) 

It is the so called approximation of a wide-band noise. From the time
domain viewpoint, it implies the noise correlation time rv to be short as com
pared to a period of synchrotron oscillations 

27r 
rv ~ .-7"\ '"' I .-7"\ • ( 45)• I 

Of course, this condition should be satisfied for all .1 belonging to the segment 
o ::; .1 ::; .Jrnax where the solution is looked for. 

Due to an appreciable distinction of representative time-scales; as expressed 
via inequalities (35), (36) and (45), such a noise can be referred to as a delta
correlQ.ted, or white one. Formally, the latter entails 

(v v)( r) ~  Pv 6( r); Pv(O) ~ Pv = const. (46) 

Here 6(r) is delta function; Pv ~ 2rv (v2) with (v2) denoting a (finite) dispersion 
of the actual noise voltage v(t). 

Ergodicity 

Function (Fo)(.J, t) from eq.(37) (the ensemble average) has a quite formal 
origin. It can hardly be measured experimentally. Of a greater practical inter
est is the time-average of a particular bunch observation (under a given noise 
realization). With the stochastic process FJ~\.J,  t) being ergodic, these two 
averages directly correspond one for one: 

1 t+T 

(Fo)(.J, t) ~ T f FJ~)(.J,  tI) dtl. (47) 
t 
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Period T is taken suc~  as to satisfy inequalities 

T6Fo� ~ T:~ Tdif, (48) 

where T6Fo denotes the correlation time for 6Fo-fluctuations.' 
By virtue of the r.h.s. of eq.(48} this time averaging does not result in a loss ~  

of data on a systematic dilution of the bunch. 
On the other hand, the 1.h.s. of eq.(48) provides an effective smoothing of 

fluctuations 6Fo. Indeed, on averaging (over realizations) in a quasi-stationary 
approximation, a square of difference between the r.h.s. and 1.h.s. of eq.(47) is " 
just [4] 

1 t+T t+T 2 
T2 / dtl / dt2(6Fo(.1, td6Fo(.1, t2)) ~ ;Fo

(6F6(.1, t)) ~ 1. (49) 
t t 

Its ~mall  value is, in fact, provided by the 1.h.s. of eq.(48) together with the 
finite value oJ the dispersion of .fluctuations 6Fo. 

In estimating the value of the double. integral an account is taken of its 
integrand - correlation of (quasi-stationary) .fluctuations 6Fo - to be essen
tially a function of time difference t l - t2, this function being non-zero for 

T6FoIt I - t21 ~ ~ T. 
Usually, these .fluctuations as such are oplitted from consideration. Hence, 

the question of a qualitative verification of the ergodic hypothesis for stochastic 
process FJ{) (.1, t) (Le. the proof of inequality (49) ) remains. unanswered. 

3.� AMPLITUDE AND PHASE NOISES INSIDE� 
SEPARATRICES� 

. Many of the formal results presented in Sections 3-4 are already known from 
refs.[1]-[3]. These Sections should rather be treat~d  as a review on the topic. 

An Acceleration Mode 

Perturbations, precisely of eq.(39)-type, are imposed by the accelerating .. 
voltage noises. Namely, 

- either by an amplitude noise: ,.6.v(a)(1?, t) = .6.~xt (t) cos(q1? + <Ps),� (50) 

- or by a (small) phase noise: 

.6.V(<p)(t9, t) = ~xt.6.<p(t) sin(qt9 + <Ps), (51) 

.6.<p(t) = J
t 

.6.wrf(td dtl, (.6.<p2)1/2 ~ 27r. 

Of course, as far as the onset of short-bunch evolution is only concerned 
- until the essential fraction of particles crosses separatrix - the particular 
formulation of boundary-value problem, by eqs.(114) or (117), does not matter 
at aU. The advantage was taken of this fact earlier, in Section 4, to study the 
diffusion equation via the method of moments. 

7. METHOD OF NUMERICAL SOLUTION 

Spatial and time-domain discretizations of the diffusion equation are per
formed in different ways. 

Spatial Component 

Finite difference schemes do not suit: troubles arise in approximating solu
tion gradients at boundaries (113), (116). Instead, use is made of the Finite 
Element Method [6] applied, possibly, to a non-equidistant grid. 

A straight-line segment O-.1rnax, .1rnax ~ ~1sep is covered by (L+ 1) nodes.1£, 
where f = 0,1, ... , L. The boundaries correspond to .10 = 0, JL = .1max. An 
intermediate node 0 < f sep ::; L is placed precisely on the separatrix. The latter 
is subject to continuity conditions (115), (116). Thereby, segment O-..Jmax is 
broken into L (non-identical) elements with their lengths being .6..1£= .1£-.1£-1, 
f i= O. 

A standard basic set of piece-wise linear functions <p£(J) is introduced. 
(Function <Pt(.1) equals unit at the f-th node, and is zero at aU other nodes.) By 
virtue of this set a (piece-wise linear) approximation of the spatial component 
of solution (Fo)(.1, t) is obtained: 

L 

(Fo)(J, t) ~	 L F£(t) <P£(J), (118) 
£=0 

with F£ being an approximation of the exact solution (Fo) at the f-th node: 

F£(t) ~ (Fo)(J£, t).� (119) 

Then, use is made of a weak formulation of Galerkin's weighted residual 
technique [6], which practically implies the following: 

(a) Weight factors' roles in the definition of integral residual for trial solution 
(U8) are played by the basic functions ~t(J}  themselves~  

(b)� In the residual, an integration by parts is carried out once, which decreases 
the order of differentiation with respect to .1 down to the first one. At 
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As far as the storage mode with a beam made of M = q identical bunches 
is concerned, the second of boundary conditions emerges rather rigorously. An 
ultimate loss of particles occurs when these reach quite a distant physical aper
ture, which corresponds to an "absorbing wall" erected at a coordinate .:J = 
.:Jrnax ~ .:lsep. Tl::.erefore, 

(Fo)(.:J = .:Jmax, t) = 0, .:Jmax -----t 00, (114) 

and one arrives at the degenerate boundary-value problem for the half-infinite 
straight-line segment 0 ~ .:J ~ 00. The diffusion coefficient D(.:J) possibly suf
fers a discontinuity at separatrix. At this break-point the continuity is retained 
of the density of particles, and of their diffusive flux: 

(Fo)(.:J = .:lsep - 0, t) = (Fo)(.:J = .:lsep + 0, t), (115) 
Q(.:J = .:Jsep - 0, t) = Q(.:J = .:lsep + 0, t). (116) 

In a more general case (either M f:. q, or l'Psl f:. i) the formulation of the 
boundary-value problem in terms of eqs.(114)-(116) is no longer valid: beam 
dynamics beyond separatrix is not at all reducible to a diffusion equation. In 
this context, it makes sense to resort to the (approximate) boundary condition 
of ref. [2]: 

(Fo)(.:J =.:Jsep ,. t) = 0. (117) 

It assumes the ultimate loss of particles to occur immediately on their reaching 
separatrix. Essentially, this condition is equivalent to that of D(.:J) = 00 as 
.:J ~ .:lsep. Its application is open to no serious objections wh~never  physical 
mechanisms are involved which are fast enough to withdraw particles from the 
bunch vicinity. Namely, these might be the following ones: 

- Acceleration. Phase-plane trajectories beyond separatrices are unclosed 
and unbounded; there is no periodical (orbital) motion of particles near sepa
ratrices. 

- Storage of single bunches in a ring with a large orbit circumference (M ~  

q). The untrapped particles waste most of their time near empty buckets, which 
would not practically affect the diffusion of bunches in a few filled ones. 

In all the rest cases incorporation of boundary condition (117) would prob
ably lower estimates of expected bunch life-time. 

In studying the noise-induced diffusion in a storage mode the paper treats 
both the boundary-value problems, of eqs.(114)-(1l6) and that of eq.(1l7). 
If M f:. q it would hopefully provide the upper and lower margins for bunch 
life-times, respectively. 

In which particular cases eqs.(40)-(42) entail 

D(a,Ip)(.:J) = ~ (2 06. )2 f W~,Ip)(.:J) p(a,Ip)(mO
ll
(.:J)), (52) 

2 q Vext sm 'Ps m=-oo 

where p(a,Ip)(O) is the equation symbol for the spectral density measured in 
mutually comparable units of [VF . [t]: 

p(a)(o) = PAVext(O), (53) 
p(<p)(O) = V:~t PAIp(O). (54) 

Weight functions acquire a simple form of 

2m 2
W~,Ip)(.:J)  = 411~q(.:J)  exp(+i'Ps) =f I~,_q(.:J) exp( -i'Ps)1 . (55) 

Here and in the following, the upper sign (or notation) stands for the amplitude 
noise, while the lower one - for the phase noise. 

Under assumption of white noise, when P(mOs(.:J)) ~ P, eqs.(43)-(44) yield 

D(a,Ip)(.:J) = ~  (2 05. )2 p(a,Ip)A(a,Ip)(.:J), (56)
2 q ~xt sm 'Ps 

(a)A(a,Ip)(.:J) = ~ J+1rd¢ (8qrJ(.:J, ¢)) 2 {COS2(q~(.:J'  ¢) + 'Ps), 
(57)

211" -11" 8¢ x 
sin2 (q19(.:J, ¢) + 'Ps)' (<p) 

A Storage Mode 

As is quite evident, long-time beam-storage operation modes involving sta
tionary separatrices (l'Psl = ~) are of the most practical interest. They are 
studied in what follows. 

In this case the potential well of longitudinal motion is symmetrical (U(19) = 
U( -19)). For phase-plane trajectories trapped inside separatrix it entails that 

Im,-k(.:J) = (_l)mImk(.:J). (58) 

Wherefrom, 

W~,Ip)(.:J)  = m2IImq(.:J)12 x ~ (1 ± (_1)m)2 . (59) 

Therefore, the storage mode (as any other regime offering a symmetrical U(rJ)) 
features a complete partition of noise effect between synchrotron frequency 
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harmonics of opposite parity: the amplitude noise excites the even multipoles' 
m, while the phase noise affects the odd m's only. With this ~act  taken into 

. account, it is convenient to put down eq.(52) as 

\411DCa,cp)(.J) = ~ ( 20~  ) 2 .. f W~,cp)(.J) pCa,cp)(mOs(.J)), (60) 
2 q ~xt  j=-oo 

Ccp) = 2j + 1.mCa) = 2j; m
',e

Section 5 offers a similar presentation for the diffusion coefficient outside sepa�
ratrices.� 

Eqs.(56), (57) for wide-band noise convert into� 

DCa,cp)(.J) = ~ ( 20~ )2 pCa,cp)ACa,cp)(.J) , (61) 
2 q ~xt  

+11"1 (81J(.J. nl.))2 {Sin 1J(.J,7J;), ~(a)
ACa,cp)(.J) = - Jd7J; q , 'f/ x 

2q
(62) 

21r 87J; 2 
-11"� cos q1J(.J,7J;). (<p) 

It is important that analysis of single-particle longitudinal dynamics in the� 
storage mode can be carried out analytically in terms of elliptic functions [1]-[3].� 
Namely, the law of motion 1J(£, t) along the phase-plane trajectory H( 1J, 1J1) =� 
£, together with the essential dynamical functions Os(.J) and .J(£), can be� 
presented parametrically via the functions of an independent variable 0 S x S 1,� 
where x = sin(~q~1J); ~1J is an oscillation amplitude along 1J:� 

£(x) = 0g 2x2 ,� (63) 
q 

n 
Os(x) = 0 0 2K(x)'� (64) 

:lex) = .Jsep· (E(x) - (1- x2 )K(x», (65) 
SOo

Jsep = .J(x = 1) = -2'� (66). nq 

1J(£(X),t) = ~arcsin(xsn(Oot,x)),  1J(£,t = 0) = O. (67) .. 
q 

Action Jsep is the properly scaled phase-plane area bounded by the separatrix 
(longitudinal acceptance). , 

On putting the law of motion (67) into eqs.(26), (59), one gets expressions 
for weight functions Wm(x) which coincide with the result of [1]-[3]: 

WCa,cp)(x) = (1 ± (_1)m)2 ( nm )4 X� (6S) 
m� 2K(x) 

« 
4 t··· 
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Figure 5. White-Noise amplitude functions (out.er). 

6. STATEMENT OF BOUNDARY-VALUE PROBLEM 

To get a unique solution of the noise-induced diffusion equation 

8(Fo)(.J, t) = ~ (D(.J) 8(Fo)(.J, t)) (111)8t 8.J 8.J 

in the domain of 0 S t < 00, 0 S .J S .Jrnax ' one should complement it by 
initial and boundary conditions. 

The initial condition is established straightforwardly. It is just a distribution 
of particles in a bunch (Fo)(.J, t = 0), 0 s .J s Jsep taken at the initial instant 
of time t= O. 

To impose boundary conditions, it is convenient to introduce the concept of 
a diffusive flux 

8(Fo)
Q(.J, t) = -D(.J) 8.J (.J, t).� (112) 

Then the first of boundary conditions reads 

Q(.7 = O,t) = 0,� (113) 

whichphysically signifies the absence of any source of particles in the center of 
bucket. 
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(As calculations show, limits (109), (110) do describe the noise� .. h 2
X sm - 7rm (a)

ing-up of distribution in kinetic momentum of an unbunched beam { cosh-2 (2K(X)K(v'1=X')) , (It?)
perturbations (50), (51)~)  .

on in 
ction :J(x) given by eq.(104) together with eqs.(106), (108) com� and amplitude functions A(x)

of x, 
the problem of calculating functions Wm(:J), A(:J), and diffusion� 

16 K(z)�I(:J) beyond stationary buckets. 
(73)� 

A(a,cp) (x) = 2 x2K(x) f du cn2 (u, x) x (69)s weight functions 2Wm (:J) (106) for some lower "multipoles". 7r 0 
e amplitude and phase noises merge and are practically undistin 2 2 2

X {4X Sn (U'X)dn (U'X)' (a)
Iml ~ 4. Like in the region of :J < .:Tsep, all these functions are 
vanish at :J =� :Jsep. As Iml increases, functions Wm are localized (1 - 2x2sn2(u,x))2. (It?)

(74)� er layer beyond separatrix. Maximums of Wm and their coordi
I ~ 6) are defined by formulae which differ from eqs.(71), (72) Here K(x) and E(x) are complete elliptic integrals of the first and second kind, 
~n index m for phase noise, and by 'plus' sigh put before figure x is their modulus; sn(u,x), cn(u,x) and dn(u, x) are the Jacobian elliptic 
(72). functions. Integration involved can be carried out analytically, which yields [2) 
40== 

16 (15±1A(a,cp) (x) = - K(x) -- (E(x) - (1 - x2) K(x)) =f (70)
7r2 30

u~bn_C_he~:l~~_~mit.  . i:.
(75) -+-----~	 =f~x2(1- x2) (2E(x) - K(x))).

15 

, Function :J(x) given by eq.(65), together with eqs.(68), (70), finally solves 
the problem of calculating functions Wm(J), A(:J) and, hence, diffusion coef
ficients D(:J) for arbitrary amplitudes of oscillations inside a stationary sepa

curves ratrix. 
; quite Fig.1 plots weight functions 2Wm (:J) (68) of some lower multipoles. Notice, 
eached the effect of phase noise at harmonics Iml = 3 drastically enhances as:J ~  ~.:Tsep.  

'. This All the weight functions are bounded and vanish at :J = Jsep. As Iml increases,
e) of a : the Wm-shapes do not differ qualitatively from W 2,3. Rather, they are localized 

\ :..~.::t:.4: ...l ,... ..,. in a thinner layer near separatrix, and (for Iml ~ 6) exhibit their maximums of 
uticles� 
~  phase 1.60 m = even, (a)�

(2W~·CP»)max ~ { 1.49� (71)of syn-� m = odd, (It?)
1.2 1.4 1.6 1.8 /2� 

Figure 4. Weight functions outside buckets. J J."P� at points 

: amplitude functions A(:J) (108) are presented in Fig.5. These� m = even, (a)(L) '" 1 _ { 10.31ml exp(-2.6Im l) (72)·able logarithmic singularities at separatrix.� Jsep max - 9.6\ml exp( -2.4lml) m = odd. (It?)
(76) 

Plots of amplitude functions A(:J) are shown in Fig.2. By virtue of factor 
K(x) in eq.(70) they diverge logarithmically near separatrix. The singularity is 
integrable. 
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Figure 1. Weight functions inside buckets. 
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Figure 2. Amplitude functions inside buckets. 

where am(u, x-I) is the Jacobian elliptic amplitude function. Parameter x is 
still proportional to VE, but is no longer expressed through the amplitude of 
oscillations along '!J. The modulus of the elliptic functions runs within the 
standard range: 0 ~ X-I::; 1. 

;, Weight functions Wm(x) beyond separatrix now read 

W~,<p)(x) (1 +.( _1)m)2 ( 7fmx ) 4� (106)2K(x- I ) X
~ 

. 2 
X smh- 7fm (a) 

{ cosh-2 CK(X-1/(v'1 - X-2l) . (ep) 

As opposed to eq.(68), here index m runs over the even integers only. 
Amplitude functions A(x) are as well expressed via definite integrals of 

elliptic functions 

16 K(x- 1
) 

A(a,<p)(x ) 2' K(x- I
) J du dn2

( u, X-I) X (107) 
7f 0 

X {4sn2(u,X-llcn2(U:X-ll,� (a) 

(1-2sn2 (u,x- I )) . (ep) 

On integrating, they become 

A(a,<p)(x) = 16 K(x-1) (15 ± 1 E(x-1) =F� (108)
7f2 30 

=F1~(1- x2)(2x2E(x- I 
) + (1- 2x2)K(x- I 

))). 

Amplitude functions have the common asymptotics at infinity: 

A(a,<p)(x) --+ 2; E, x --+ 00.� (109) 

These limits are entirely determined by weight functions Wm with Iml = 2. • Indeed, it can readily.be verified that 

W~,<p)(x) --+ Dlml,2; E, x --+ 00.� (110) 
( 

The merging of asymptotes (a, ep) is quite explainable. As the energy of 
particles increases, azimuthal modulation in their velocities disappears. The 
particles move as in an unbunched beam. Naturally, they fail to distinguish 
phase shift of 7f/2q in '!J between harmonics (50), (51) of the amplitude and 
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m(a,<p) = 2j. 

Weight functions Wm = W-m of the "multipole" components of noise be

yond buckets become 
2 

W~,<p)(.J) =: II~q(.J) ± I~,_q(.J)12  . (99) 

Coefficients (92) are now lacking the property of eq.(58). Hence, weight func
tions of the even harmonics of the phase noise are not zeros at all, as contrasted 
to these inside separatrices. Irrespective of the noise type (either amplitude or 
phase), they are the weight functions of the odd harmonics that are equal to 

zero identically. 
Of course, the very introduction of an (even) "multipole" m beyond separa

trix is quite a conventional thing. Rather, it is a way to present wave-number 
ml = ~qm of the decomposition in phase harmonics '" exp(iml'~).  If £ -t 00 

(an unbunched-beam approximation) ;j; --+ ±1?, see eq.(87). By virtue of as
sumptions (50), (51) on the nature of the noise voltages, they are capable of 
maintaining the sole azimuthal harmonics'" exp(±iq1?) of unbunched-beam 
perturbations. Whereof, at £ --+ 00 the effect of phase harmonics Im l1 = q 
(i.e. of "multipoles" Im\ = 2) should dominate, which is confirmed by later 

calculations, eq.(llO).� 
The results for the (white) noise acquire the form� 

D(a,<p)(.J) = ~ ( 205 )2 p(a,<p)A(a,<p>(.J) , (100) 
2 q ~xt 

1 (8 1?(:J ,1,))2 {Sin2q
1?(.J,?/J),7r 

A(a,<p)(.J) = - Jd'l/; q , 'fI X 

(a) 
(101) 

1f o 8'l/; cos2 q1?(.J,'l/;), (<p) 

which coincides formally with eqs.(61) and (62). 
Calculation of single-particle motion beyond stationary separatrices (within 

limits of an RF-imposed period) allows to present counterparts of eqs.(63)
(67) for the beam halo. These are given parametrically via functions of an 
independent variable 1 S; x < 00 (x = 1 at separatrix):� 

0 2� 

£(x) ---.!1. 2x2 (102)
q2 ' 

1fX (103)Os(x) 0 0 2K(x-1)' 

.J(x) = Jsep x E(x-1
), (104) 

1?(£(x),t) 2 xOot,x -1) , 1?(£,t = 0) = 0, (105)-am ( 
q 
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4. EVOLUTION OF SHORT BUNCHES 

Diffusion Coefficient 

Simplify the obtained equations for bunches occupying the central region in 
separatrix. Expand .J(x), Wm(x) and A(x) in the Taylor series in powers of x, 

up to items'" x 
4

: 200(2 x 4 ) 

.J(x) ~  7 x + 8" ' (73) 

A(a)(x) ~ 2wi~(x) ~ 2 x4, 

(74) 

A<') (x) '" 2wii)(x) '" 2(x' _ 5:<) . 
Invert these sums to get the functions of interest 

'" 32 ..1,2,A(a)(.J) ~ 2Wiad(.J) 
- 1f2 

(75) 

A(<p) (..1) ~ 2wii) (..1) ~ ~ (..1' - ~.J'2)  , 

where to abbreviate the notations we have denoted ..1' = ..1/Jsep. 
Fig.3 compares these decompositions (dashed lines) with the exact curves 

by eqs.(68), (70) and (65) (solid lines). Notice, approximation (75) is quite 
acceptable for ..1 ;S ~ Jsep. (As a reference, the value of ..1 = ~ Jsep is reached 
at the phase-plane trajectory with oscillation amplitude of qiJ.1? ~ 99.30°. This 
estimates the upper bound for the maximum phase half-length (at base) of a 
bunch which can yet be treated in a short-bunch approximation (75).) 

, 
Thus, with the noise being sufficiently wide-band, the motion of particles 

in the center of separatrix (..1 ;S ~ Jsep) is entirely governed either by the phase 
noise at the ±l-st or by the amplitude noise at the ±2-nd harmonics of syn
chrotron frequency. The diffusion coefficient reads 

D(a)(.J) ~ ~ ( 205 )2 p(a)(20s(.J)) x 3; ..1,2, 
2 q ~xt 1f 

(76) 

D(/fJ) (..1) ~ ~ ( 2
05 )2 p(<p) ( Os(.J)) x ~ (..1' _ ~.J'2) . 

2 q ~xt  1f 1f 
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continuation of the inside-bunch distribution (Fo)(.J < .:Jsep, t) over separatrix. E 
3: 
N 

i··· 

(Though, of course, the distribution (Fo)(.:J > ..hep, t) consists of particles which 
<i. have never belonged to the bunch at issue, provided M > 1.) 

Diffusion eq.(88) in terms of (Fo)(..1, t) reads 
..1.....0.8 

l,.� 
8(Fo)(.J, t) = ~ (D(.J) 8(Fo)(..1, t))

I I� 
(93) 

I.� 
8t 8..1 8..1'� 

0.6 oj °PliaSrONaiSe On adopting all the above simplifications and substitutions of variables caused 
by periodicity, the diffusion coefficient 

... -.. ~ ....0.4� ~ ~  ..> . 

D(.J > :lsep) =:215 (:J = q{) 
beyond separatrices converts into 

0.2 

D(.J) ~ (~) 2 E Wm(.J) Pv(mOs(..1)) ~ 0, (94)
2� q2~xt ;=-00 

Wm(.J)� (95) 
a a 0.1 0.2� m'q'lJoo I:n.~,7) 9'1' ,Figure 3. Qudratic approximation. 

As the noise is assumed to be wide-band, substitute Os(.J) -+ Os(O) =0 0 in� !. j 8q19(:1, I/J) 9(19(:1, I/J)) exp(-imI/J) di/Ji 
71" 0 81jJ

Ithe argument of its spectral density P(O). Thus, the diffusion coefficient in the 
center of separatrix (..1 .:s !..hep) reduces to a quadratic function of variable ..1: where m = 2j is introduced to shorten the notations. Approximation (46) of 

wide-band (white) noise now results in .
D(.J) ~  D1.J + D2.J2

•� (77) 
2

1 ( 0 ) 2 (96)Evolution of Longitudinal Emittance D(.J) 2" q2~xt PvA(.J) ,� 
00�It is quite evident, in treating the diffusion equation under this very as A(.J) L Wm(.:J) =� (97)

sumption one cannot take into account the effect boundary conditions which ;=-00 
are put at separatrix or beyond it. It is the onset of a short-bunch evolution 2

!J1r d1jJ (8q1J(.J,1jJ)) i(1J(.J,1jJ)).which is the subject under study. Therefore, this analysis can well be carried 
'71" 81jJ 

out yet before a complete statement of the relevant boundary-value problem. " 
o 

It is suitable to employ the "moment-of-distribution" techniques. Its equation 
Amplitude and Phase Noises 

for� the first moment is of the most practical significance. 
Suppose that the following conditions are met at the boundary .Jb(t) of a Put here particular perturbing voltages of eqs.(50), (51) to get the outerf 

short bunch� counterpart of eq.(60): 
8(Fo)

(Fo)(.Jb(t) , t) = 8..1 (.Jb(t) , t) = O.� (78) 2)2D(a,cp)(.J) = ~ ~ E W~,cp)(.J) p(a,cp)(mOs(.J)), (98)
Introduce the natural definition of the distribution-averaged longitudinal emit-� 2 (q2~xt ;=-00 
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with that of eqs.(40)-(42):� tance of bunch. It is just the first moment of the distribution involved 

D(J) =� -1 ( 0 
2 
0 ) 2 E00 m 2q2 x (89)

2 q2~xt  sin <(Js ml=-OO 1 

- - 2 
00 1* 1k (J") I ~ ~) 

x k1Eoo m 9lc1 Pv (m1SlS(.1) ~ 0,k1I 
1

l:n Ie (Y) = -2 7d{J exp(ik11J(Y, {J) - im 1{J). (90) 
1 1 71'" 0 

Now it is convenient to introduce scaled phase variables of the orbital mo
tion: 

2Y =.1, q{J = 'ljJ, qns(Y) = Sls(.1). 
q 2 2 

At .1 = .:lsep they go over continuously into variables .1, 'ljJ (up to a shift multiple 
to 71'") and frequency Sls(.1) of synchrotron oscillations. 

Periodicity of unperturbed motion beyond stationary buckets manifests it
self in 

271'" 
lJ(.1,1j; + 71'") = lJ(..1,1j;) +-, lJ'(.1,1/J + 71'") = 13'(.1, 1/J). 

q 

Make use of this periodicity to pass over in eq.(90) to integration between limits 
of an RF-imposed period. As a result, get 

00 

1:n1k1(Y) = I;mI!q,k1(.1) x E Olc1,ml+pq· (91) 
p=-oo 

Here OH' denotes the Kronecker's delta symbol, and the continuation of function 
I:nk(.1) , eq.(26), over separatrix is introduced by 

2mI* -1 /11" (. . 1 ) . (92)·2mI!q,kl(J'7) = d1/J exp zk11J(.1, 'ljJ) - z-1/J
71'"0� q 

Azimuthal wave-shape 9(13) of perturbation (39) has, by assumption, a pe
riod of 271'"/ q. Hence, coefficients 9k

l 
are non-zero only for those azimuthal 

harmonics whose indices are k1 = lq; I = ±1, ±2, ... Hereof, and by virtue of 
identity (91), it becomes clear that sum (89) retains the phase harmonics with 
their indices m1 = jq only, where j = ±1, ±2, ... 

As is evident, the (271'"/q)-peiodicity of the orbital motion allows to introduce 
distribution (Fo)(.1, t) ,....., (ih)(Y = qJ"/2, t) averaged over phase 1/J within limits 
of an RF-imposed period. This function may conventionally be treated as a 

Jb(t) 

.1(t) = J .1 (Fo)(.1, t) d.1.� (79) 

Here, the account is taken of the fact that by initial normalization (16) and 
definition (23) 

I'� o 

Jb(t)
~~ J (Fo)(.1, t) d.1 = 1. (80) 

o 

Differentiate eq.(79) with respect to time and replace derivative 8(Fo}j8t 
by the r.h.s. of diffusion eq.(37). On inserting D(.1) from eq.(77), carry put 
two-fold integration by parts. Impose boundary conditions (78). As a result, 
get a closed equation in terms of .1 which describes evolution of longitudinal 
emittance: 

d.1(t) 
---;It = D 1+ 2D2.1(t).� (81 ) 

It can readily be solved to yield 

- (- D1 ) D 1
.1(t) = .1(0) + 2D exp(2D2t) - 2D2' (82)

2 

Whereof, 

.1(t») (a) = .1(0») (1 Sl5p(a) (2Slo) ).
( ( --;:r- exp +2 V 2 t,

.:lsep Jsep ext 
(83) 

.1(t») (<p)� = ~  + (.1(0) _ ~) exp ( 3 n5P(<p:(Oo) t) . 
( .1sep 6 .:lsep 6 8 V:xt 

The second of eqs.(83) implicates a seeming effect of the average longitudinal� 
emittance to reach the steady-state value of .1/.:lsep = ~ ~ ~ as t ---+ 00.� 

Nevertheless, this conclusion obviously falls beyond applicability range of the� , short-bunch approximation. Indeed, realistic distributions show .J(t) ~  (} --;�
~).1b(t), while by assumption (75) there should be .1b(t) ;S !..:Tsep. Therefore,� 

. ...,- <1.1 eqs.()83 hold true untIl .:J(t) ,....., (6 -;- 4).:lsep' 

'f 
Suppose, quadratic term in diffusion coefficient D(<p)(.1) from eq.(77) was 

ignored from the very beginning. Then, instead of the second of eqs.(83), one 
would have got its asymptote which is linear in .1(0), t ---+ 0: 

.1(t») (<p) = (.1(0») + 71'" n5P (<p)(no) t 
(84)( .:lsep .:lsep 16 ~it . 
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Take account of identities 

( J(t)) ~  l~(q~tJ)~(t);  °5P(/P)(Oo) = n~p~/p(no) = P~",AOo), 

Jsep� '2 
ext 

where (q~tJ)~  is a square of the bunch r.m.s. half-length measured in the I~ 

RF-radian units; P~"'rf(O)  is the spectral density of RF-frequency noise. In 
passing to the last of these identities, the account is taken of a common rela
tion 0 2Pa(O) = Pb(O) between spectral densities of random processes a(t) and ~ 

b(t) = da(t)Jdt. Hence, eq.(84) entails 

(q~tJ)~(t)  = (q~tJ)~(O)  + P~"'rf(Oo)  t, (85) 

which is a "standard" diffusion law: the bunch size varies as ..;t. It is a classical 
result for harmonic oscillations cited as early as in ref.[5]. Eq.(83) for the phase 
noise offers a somewhat lower growth rate of longitudinal emittance which is 
caused by a fall-off of the diffusion coefficient at l~ger  amplitudes. 

A more detailed application of this - the "moment-of-distribution" - ap
proach to solving diffusion equation with D-coefficient of eq.(77) extended over 
the entire half-infinite straight-line segment 0 ::; J ::; 00 can be found in ref.[3]. 
The same paper as well offers fundamental solutions (the Green functions) for 
D(J) I"V J and J2. 

5.� MOTION BEYOND STATIONARY 
SEPARATRICES 

Diffusion Equation 

Consider a storage operation mode. Phase-plane (tJ, tJ') beyond separatrices 
is split into two disjoint half-planes. The closed phase trajectories running there 
correspond to rotational (orbital) motion. On abandoning stationary buckets, 
the off-set particles would proceed to a periodic motion in the outer vicinity 
of separatrices building up the beam halo. This situation should be taken into 
account in the formulation of the boundary-value problem of the noise-induced 
diffusion. " 

Apply eqs.(12), (13) to untrapped particles moving outside stationary buck
ets. Use former notations to denote all the quantities and functions which can 
be interpreted as continuations beyond separatrix of those introduced so far. \

Take (¢, J) as angle-action variables of the orbital motion: 

1 21r 

J(£) = - Jd13J2(£ - 05U(13)) [;~oo 113'1, (86)
271" 0 

d¢ = o~ = Os(£) £~oo 113'1; dJ = _ 8~ = O. (87)
dt oJ� dt 8'l/J 

The ¢-phase shift equal to +271" corresponds to a complete turn around the 
orbit ~in  a co-rotating frame (either in direction of the beam motion in half
plane tJ' > 0, or oppositely so if 13' < 0). Moreover, as £ ---+ 00 phase ¢ converts 
(up to its sign) into azimuth 13 of a co-rotating coordinate frame. Thus, a 
natural transformation is provided of a multipole decomposition inside bunch 
into a plane-wave expansion peculiar to an unbunched beam. 

There exists a formal analogy between a periodic motion of particles along 
phase-plane trajectories closed inside separatrices, and a periodic motion of the 
untrapped particles which follow the outer phase-plane trajectories closed or
bitally in the storage mode. Hence, any further speculations would have been 
essentially just a word-by-word repetition of the scheme presented in Section 3 
for the inside-bucket motion. (Angle-action pair ('l/J, J) of synchrotron oscilla
tions is juxtaposed to variables (¢,!J) of orbital motion, etc.) 

The most dramatic simplifications are involved in passing from eq.(28) to 
eq.(29). Formerly, it was sufficient to introduce an assumption of no multipole 
modulation ('l/J-uniformity) of a bunch at the initial'moment of time. In many 
cases this suggestion does not conflict with the real situation. 

However, ¢-uniformity of a beam-halo distribution also implies the beam to 
be made of M = q identical bunches which suffer the similar noise effect. The 
latter is readily provided by a periodicity condition of eq.(39). The absence of 
empty buckets in the beam is a more serious simplification which, neverthe
less, has a wide range of application. Withdrawal of this assumption results 
in an infinite set of partial differential equations for amplitudes of harmonics 
(I"V exp(iml¢)) of the distribution function. This set is not amenable to a 
straightfor~ard  solution. (A similar problem arises in an attempt to study the 
noise effect on an un-matched bunch which exhibits a strong multipole pertur
bation.) 

It is in a practically important case of M = q identical bunches that only 
one closed equation would suffice. This is a diffusion equation for distribution 
function (Fo)(J, t) averaged over angle variable {J (i.e. over the ring orbit):· 

o(Fa)(J, t) = 0_ (15(J) o(Fo)(J, t)) . (88)
ot oJ oJ 

Let us again restrict our consideration to perturbations of eqs.(39)-type. 
Then diffusion coefficient 15(J) acquires the form which coincides formally 
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