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Abstract. We describe a proposal for a quantum description 
of black holes. Defining a path integral in the presence of a black 
hole only in terms of variables outside the horizon, and perfor
ming a coarse graining over short distances, we obtain an effective 
lagrangian describing the quantum dynamics of black holes. The 
leading terms are given by the boundary term in the gravitational 
action and by a membrane action. We show that the approach 
correctly reproduces the temperature and entropy, and we write 
down the Schroedinger equation for the black hole horizon. 
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ABSTRACT 

We describe a proposal for a quantum description of black holes. Defining a path·' 
integral in the presence of a black hole only in terms of variables outside the hori
zon, and performing a coarse graining over short distances, we obtain ~n effective 
lagrangian describing the quantum dynamics of black holes. The leading terms are 
given by the boundary term in the gravitational action and by a membrane action. 
We show that the approach correctly reproduces the temperature and entropy, and 
we write down the Schroedinger equation for the black hole horizon. 

1. Introduction 

In this talk we describe a proposal for a quantitative description of quantum 
black holes. The general framework is provided by ideas of 't Hooft l and Susskind 
and coworkers2

• An important consequence of this approach, named by Susskind 
"black hole complementarity", is the following. We are used to think that the ho

. rizon of a black hole is not a special place; it is only a coordinate singularity, while 
invariant quantities remain regular there. This is certainly true classically; however 
a fiducial observer (i.e., an observer static with respect to the black hole) cannot 
consis~ently use classical concepts if he is sufficiently close. to the horizon; this is 
indicated by the 'fact that the local Hawking temperature measured by a fiducial 
observer, T = 1/(87rM ~), diverges on the classical horizon. A fiducial. observer 
located at one Planck length from the horizon is in a region of Planckian tempe
ratures and energies where quantum gravity effects are expected to be dominant. 
Within the principle of black hole complementarity one therefore holds the point 
of view that, for a fiducial. observer, the horizon is a special. place, and it is in fact 
the place where the quantum degrees of freedom of the black hole are to be found. 
Our aim is to dev.elop a computational. scheme which is inspired by this general 
framework. 

2. Defining the path integral in the presence of a horizon 

Let us first state in intuitive terms the physical idea that we would like to 
implement. From the point of view of a fiducial observer, only field variables outside 
the horizon should influence the dynamics. Thus, in a path integral, we would like to 
define an integration over the field variables g~v(:Z:) restricted by the condition that 
x is outside the horizon. This is a very complicated and non-linear condition, since, 
as the field g~v fluctuates, the horizon fluctuates and therefore even the number 
of variables which we would like to use as integration variables fluctuates. (In a 
sense, this reminds of a grancanonical, rather than a canonical ensemble.) A formal 
implementation of this intuitive idea caI{ be obtained as follows. Let us consider 
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the quantum, fluctuating, horizon, and let us draw an imaginary spherical surface 
around it. We place this surface at a distance from the nominal horizon such that 
the typical quantum fluctuations of the horizon are contained in it. A few Planck 
lengths (or possibly string lengths) will suffice. ·Let us call n the region of spacetime 
outside this surface, and an the surface itself. If x belongs to n we insert "9p.v (x) 
as an integration variable in the path integral. The question is what to do in the 
small shell between the fluctuating horizon and an. 

In general, when evaluating a path integral in field theory, a crucial point is 
the identification of the physically relevant variables, as opposed to fast varying 
variables which can be integrated out. The most well known examples of this come 
from QeD, for instance considering the dynamics of flux tubes of chromoelectric 
field, which is governed by an effective string theory, or considering chiral lagran
gians governing the dynamics of hadrons. In our case it is natural to identify the 
"collective variables" which play the main role with the coordinates ("'(8,4>, t) which 
define the position of the horizon. Of course, the variables (p. are uniquely fixed 
by the metric 9p.v' So, the integration variables 9/-W(x), restricted by the condition 
that x lies between the horizon, as determined by 9/-W itself, and the surface an, 
are decomposed into the physically relevant variables (p. plus "fast variables". The 
effective action for the ('" is obtained integrating over the fast variables. As a result 
of this integration, one gets a partition function of the form3 

iI
Z = / V('" In Vg",v e , (1) 

where the action [ is the sum of a membrane action [memb and of the gravitational. 
actio"n [grav, which also includes the boundary termon an. Furthermore, in a first 
approximation one can neglect the fluctuations of the metric within {l, since the 
most important quantum fluctuations are the ones near the horizon, which have been 
taken into account by the renormallzation group procedure. Thus (after rotating 
the membrane theory to Euclidean space), we get 

(2) 

In [grav only the surface term survives. Having an expression for the partition 
function, we can now compute a number of quantities. 

3. A summary of results 

3.1. Temperature 
To study field theory at finite temperature T, we restrict the integration in the 

partition function to Euclidean field configurations periodic in time with period 
f3 = liT. In Rindler space, with acceleration 9, we find3 a periodic solution of 
the membrane equations of motion with period f3 = 21rIg, so that the correct 
temperature T = g127r is reproduced. This result is highly non-trivial, and is an 
independent derivation of the Unruh temp:erature -as well as a strong check of the 



method that we propose. For Schwarzschild metric we find that, if the black hole 
mass M is larger than a critical value, there is a periodic solution of the membrane 
equations of motion just with t·he right period, so that the Hawking temperature 
T = 1/{81rM) is correctly reproduced -again, a rather non-trivial result. For masses 
below a critical value a qualitatively new phenomenon takes place; there is a phase 
transition, the specific heat becomes positive and the temperature goes to zero at 
some value of the mass around the Planck mass. Whether this intriguing result is 
physically meaningful or it is just a signal of the breakdown of our approximations 
is a matter for further investigations. 

3.2. Entropy 

Having fixed the temperature to the correct value, we can evaluate the partition 
function Z, the free energy and the entropy.· The leading term comes from the 
boundary term in the gravitational action, and reproduces the correct result for the 
black hole entropy, S = area/4. The membrane action gives one-loop corrections, 
which are divergent and proportional to the area. 

9.3. Wave function and Schroedinger equation for the horizon 

We can quantize the membrane action, restricting ourselves to spherically sim,.. 
metric membranes. Since we are retaining only the radial mode the problem is 
reduced to a quantum mechanical one and we can write down the Schroedinger 
equation for the membrane wavefunction4 • We find a quasi-continuum of energy 
levels, and a wave-function which oscillates near the horizon and decreases expo
nentia.I1y at large distances. In Rindler space the dynamics of the horizon turns out 
to be equivalent to Liouville quantum mechanics. 

9.4.� 2+1 black hole 

The same analysis can be repeated for the 2+1 dimensional black hole. In this 
case instead of a membrane we have a string; again the temperature and entropy 
are correctly reproduced by our approach5• 
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