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ABSTRACT 

In this paper we report some results obtained by applying the radial gauge to 2+1 
dimensional gravity. The general features of this gauge are reviewed and it is shown 
how they allow the general solution of the problem in terms, of simple quadratures. 
Then we concentrate on the general stationary problem providing the explicit solving 
formulas for the metric and the explicit support conditions for the energy momentum 
tensor. The chosen gauge allows, due to its physical nature, to exploit the weak energy 
condition and in this connection it is proved that for an open universe conical at space 
infinity the weak energy condition and the absence of closed time like curves (CTC) 
at space infinity imply the total absence of CTC. It is pointed out how the approach 
can be used to examine cosmological solution in 2+1 dimensions. 

1. Introduction 

Gravity in 2+1 dimensions! turned out to be a good theoretical laboratory both at 
the classical and at the quantum level. In addition to be interesting in itself, the 
theory is important in connections to the cosmic strings2

, as all solutions in 2+1 
dimensions are special solution of 3+1 dimensional gravity. 

Most attention has been devoted in the past to point like or string like sources 
and to stationary problems, even though some inroads3,4 have been made in the realm 
of the time dependent problem. 

It has been shown3,5,6,7,8 that a special choice of gauge allows to give general 
resolvent formulas for the metric in terms of simple quadratures both in the case of 
time dependent and extended sources. The main reason is the practical identification 
in 2+1 dimensions of the Riemann and Ricci tensors which allows to reformulate 
the problem as the solution of the covariant conservation and symmetry constraints 
on the energy momentum tensor. The procedure of solution is such that one has 
a complete control on the support properties of the energy momentum tensor; still 
more important is the fact that due to the physical nature of the gauge, one is able to 
exploit the weak energy condition (WEC) without the imposition of which, Einstein's 
equations loose most of their content. The possibility of exploiting the WEC will be 
instrumental in the problem of the occurrence of closed time-like curves (CTC). 

In this paper we shall give a brief survey of the techniques and the results 
obtained by exploiting the radial gauge, referring for details to ref. (3),(5),(6),(7) and 
(8). 

As in connection with the problem of CTC we shall be mainly interested in 
the stationary case, we shall report and discuss in sec.2 in more detail the resolvent 
formulae and the support conditions for the stationary case, which will be dealt with 
by developing a variant of the general radial gauge, i.e. the reduced radial gauge 
which is more apt to the time independent situation. 

Turning to the problem of CTC 9, in sect.3 we shall prove the following 
result6,7: for a stationary solution with rotational symmetry the imposition of i) the 
weak energy condition (WEC) and ii) the absence of CTC at space infinity prevents 
the occurrence of CTC everywhere in an open (conical) universe. 
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An extension is given of the same result to any stationary solution, also in ab
sence of rotational symmetry, provided that in our coordinate system the determinant 
of the dreibein never vanishes8 . 

2. General solution in the radial gauge� 

The radial gauge, which can be defined in any space-time dimensionslo , presents par�
ticular features in 2+1 dimensions due to the practical identification of the Riemann 
and Ricci tensors. The defining equations are 

~JLr~JL = 0, (1) 

~JLe~ = 6;~JL. (2) 

These conditions define the usual Riemann-normal coordinates on the manifold and 
in this gauge one can express the connection and the vierbein in terms of the Riemann 
two-form as follows 

r:p «() = e{ R:pp(A()AdA (3) 

e:«() = 8~ + (pe {mpp(>'O>'(l - >')d>'. (4) 

As in 2+1 dimensions the Riemann two-form through Einstein's equations is directly 
given in term of the energy momentum form Eqs. 3 and 4 express the geometry 
of the space in term of the sources through a simple quadrature. On the other 
hand the energy momentum form is not arbitrary but it is subject to the symmetry 
and covariant conservation conditions which are nothing else than Bianchi identities. 
Thus in the present approach the problem is reduced to constructing the most general 
energy momentum form which is symmetric and covariantly conserved. The solution 
of such constraints can be given through a simple quadrature3 . For the stationary 
problem, with which we shall be mainly concerned here, the radial gauge as formulated 
above is in general not apt due to the fact that it singles out a special event in space 
time. One can however, for stationary problems, define a similar gauge which we 
shall call reduced radial gauge, through the conditions (in the following i, j, 1 run 
over space indices) 

~ir~i(e) = 0 (5) 

~ief(e) = ~i6;. (6) 

This gauge has a natural interpretation as the reference frame of an observer which 
follows an integral curve of the (time-like) Killing field. It corresponds to the Fermi
Walker coordinatesll,s,7. The resolving formulae analogous to Eqs. 3 and 4 are 

. fl 
r~i(e) = ~J io R~ji(Ae)AdA, (7) 

r:o(e) = r:o(O) + (i { RMO(>.e)d>', (8) 
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e~ = s~ + e(,l l Rju (A(,)A(1 :.-. A)dA, (9) 

eg = sg + (,ir~o(O) +ee l Rto(.~(,)(1 - A)dA. (10) 

In 2+1 dimensions the Riemann two-form appearing in the previous equations is given 
in terms of the energy momentum form Tc by 

(11) 

where K, = 87rG, and thus 

Rab - _ K,cabcr - _~ c abc T Pdxf.£ 1\ dxV (12)c 
- c - 2 ~ ~ Pf.£V c • 

Using such a relation one can express through a simple quadrature, the connections 
and the vierbeins in terms of the energy momentum tensor, which is the source of 
the gravitational field and thus one solves Einstein's equation. We come now to the 
covariant conservation and symmetry constraints on the energy momentum tensor. 
The problem is to construct the general conserved symmetric energy momentum 
tensor in the reduced radial gauge, which in addition should satisfy other physical 
requirements given by the support of the sources and the restrictions due to the energy 
condition12 , 

The conservation and symmetry equations for the energy momentum tensor 
are 

VTa = 0, (13) 

cabcTb 1\ e C = O. (14) 

The most general solution of Eq. 13 is7 

= .!. [pf.£a AP(e) - .!.AP(e) - .!.epe Af.£(e) - PP (a Af.£(e) 
K, f.£c pC P f.£c f.£c 

-~£clm£",B"p"AI,B({)Am,,({))] , (15) 

where A~ is an arbitrary field. The field A~ is related to the connection r:b in the 
reduced radial gauge by 

r:b(e) = CabcCf.£PVPPA~(e). (16) 

More demanding is the imposition of the symmetry property Eq. 14 which however 
can be solved as follows. One express A~ (e) in component form 
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a~o ap ae 
where Tp. = a~p.' Pp. = a~P. and 8p. = pa~p. are the cotangent vectors defined by the 

polar variables in the (~1, ~2) plane. This gives the following expression for rap 

Introducing the primitives of the functions aI, /31, a2, /32 

A1(e) = p { a1 (.~e)dA - 1 B1(e) = P{ Ih(Ae)dA, 

A2(e) = p { a2(Ae)dA and B2(e) = P{ .B2(Ae)dA, (19) 

the symmetry condition is reduced to the following system of differential equations 

Ala2 - A2a l + B 2/31 - B 1/32 = 0 (20) 
aBl 

A21'1 - A11'2 + ae = 0 (21) 

8A1 
B 21'1 - B 11'2 + a() = O. (22) 

In general, in absence of rotational symmetry, caustics may develop in the sense 
that geodesics emerging from the origin with different e can intersect at some point 
for large enough p. This renders the map of p, e into the physical points of space 
not one to one, but the geometry can be still regular in the sense that a proper 
change of coordinates removes the singularity. For an example of how this non single 
valuedness can show up and how it can be removed by changing coordinates, we refer 
to the appendix of ref. (5). Such a problem does not arise in the case of rotational 
symmetry. 

We recall furthermore that to give a regular geometry, the functions ai, /3i' 1'i 
must satisfy simple regularity conditions at the origin3,7. 

Eqs. 20, 21, 22 give the whole geometry of the problem once three of the 
functions, e.g. aI, /31, 1'1, are given as data; in fact the other three can be obtained 
by a single quadrature7 . We have 

(23) 

(24) 
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(25) 

where� 
_ 1 8 2 2� 

N (p,O) = A2B1 - A1B 2 = 2')'1 (AI - B1) (26)
80 

and coincides with the determinant of the dreibein in polar coordinates, while I is 
given by 

I == foP d ,N(A1!A - Blad (27) 
o P (Bf - A~)2 . 

This parametrization of the source allows a simple characterization of the support 
properties of the energy momentum tensor. In fact one can prove7 that if the energy 
momentum tensor vanishes for P > Po (0) one has 

alBl - Adh == constant for p> Po(O) (28) 

and 
ai - f3f + ')'i == constant for p > Po (0), (29) 

where the two constants do not depend on p and o. Viceversa Eqs. 28 and 29 impose 
that the support of Tap lies in p < Po(O). 

In our formalism the metric assumes the form 

while the determinant of the dreibein in polar coordinates is given by 

(31) 

Even though we shall in the following be mainly interested in general case we want to 
report what happens in case of rotational symmetry. As derived in a previous work3 , 

in the case of rotational symmetry, all functions, as expected, do not depend on O. 
Furthermore from the two last symmetry equations one obtains ')'1 = ')'2 == 0, under 
the assumption that determinant never vanishes. The regularity conditions at the 
origin for the functions ai, f3i become 

and the only surviving symmetry equation is 

(33) 

The support equations simplify to 

a~ == f3: == 0 and (34) 

outside the source. From these equations one can easily derive all solutions with 
rotational symmetry. (For more details see ref. (7)). 
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3. Closed time-like curves and the weak energy condition 

For an arbitrary choice of the functions a2 and (32 the gee = A~ - Bi term in the 
metric is not necessarily negative even though, due to the regularity assumption, gee 
is negative in a neighbourhood of the origin. A not negative gee is a symptom of 
possible occurrence of CTC. In fact the existence of CTC implies that gee(P, B) is 
positive at least for some p and B. In fact given the CTC t(cr), p(cr), B(cr) at the point 
(j, where t' ((j) = 0, one would have ds2 = geed(j2 - dp2 > o. For clearness sake we shall 
consider first the case of rotational invariance6,7. To begin with, if the determinant 
of the dreibein in the reduced radial gauge vanishes at certain p it follows that the 
manifold at p = p either closes or become singular. Such a conclusion is obtained 
through the following steps which are analyzed in detail in ref. (7). The regularity of 
the trace of the energy momentum tensor is an invariant 

(35) 

On the other hand the term (al,B;e«~2,Bl) is also an invariant being the third eigen

value of Tp.v' Thus the regularity of the remainder imposes 

det(e) = c (p - p)(1 + O((p _ p)2)). (36) 

Now if in p A2 and/or B 2 i= 0 one can easily show that the manifold is singular, while 
if A2 = B2 = 0 in p the universe closes without a singularity only if in p A~ - Br > 0 
and a~ - (3i = -1. The topology of the resulting universe is that of a sphere and 
inside the universe det(e) ~ O. 

If we now consider the WEC on the two light-like vectors Ta +ea and Ta - ea 

we obtain an inequality which is exactly integrable i.e. 

dE(±) 
--<0 (37)dp - , 

where E(±)(p) = (B2±A2 )(al ±(3r) - (a2 ±(32)(B1 ±Ar). It is not difficult to show for 
a conical universe, in absence of CTC at infinity (which implies a~ - (3~ :::; 0), using 
det(e) > 0 and the support equation al{32 - a2{31 = 0, that 0 :::; E(±)(oo) :::; E(±)(p). 
Then by straightforward algebra one obtains 

.!!-.- (A~(P) - B~(P)) = _ 1 [(A -B )2E(+)(p) + (A +B )2E(-)(p)] < 0 (38)
dp det(e) 2det(e)2 2 2 2 2 - , 

and as gee is negative at the origin it is always negative and thus CTC cannot oc
cur. Such analysis can be extended to all universes with the single exception of the 
cylindrical universe, generated by a string with tension and zero angular momentum. 
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All these reasoning can be also extended with no substantial change to the case 
of an open universe not invariant under rotation, provided that in our coordinates 
det (e) never vanishes8 . Let us consider in fact a general external metric of the form 

ds2 = goo (O)dt2 + 2goo (p, O)dtdO + goo(p, O)d02 - dp2, (39) 

i.e. the second order polynomial in p, goo(p,O) reduces outside the source (or equi
valently at infinity) to a function" of O. We prove that goo(O) > 0 imposes that 
al = fA = o. In fact such a behaviour implies a~ - f3i = 0 and alAl = f3lB I. Thus if 
al i= 0 one has A~ = Bi and goo == 0 (for p 2 poCO)). Thus al = f3I = o. Symmetry 
equations (20) now gives 

(40) 

and thus 
(A~ - Bi)(a~ - f3i) = goo(a~ - f3i) ~ 0 (41) 

i.e. a~ - f3i ~ o. From al = f3l = 0 we have the validity of the same support equation 
a2f3l - aIf32 = 0 as in the rotationally symmetric case. We are thus in the same 
situation as in the rotationally invariant case and thus we prove that goo (p, 0) ~ o. 
However CTC would imply that at least for a value of p and 0 goo(p, 0) > 0 and thus 
there cannot be any CTC. 

With regard to the metric it is easy to prove8 that the assumption goo(O) > 0 
implies that gOB = gOB(O) and thus the external metric assumes the form 

ds2 = goo(O)(dt + J(O)dO)2 - (a(O)p - b(O)?d02 - dp2 (42) 

because the coefficient "'(BO of d02 is the square of the dreibein determinant divided by 
goo. Performing the following change of variables 

0' = 27r Jg a( 4>)d4> (43)
J~7r a( 4>)d4> 

and 
O(B') 0' 27r ] 

t' = t + [10 J( 4> )d4> - 27r 10 J( 4> )d4> (44) 

we reach the metric 

(45) 

where 
27r 

ao = -1 1 a(O)dO (46)
27r 0 

and 
Jo = ~ f27r J(O)d(}. (47) 

27r Jo 
IT ao i= 0 one easily proves that goo becomes a constant and we have the usual conical 
metric i . IT ao = 0 we have a cylinder. 
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4. Conclusions 

The application of the radial gauge to 2+1 dimensional gravity has been successful 
both in dealing with extended sources and time dependent problems. In ref. (3,5) 
we gave the general resolvent formulas for the time dependent problem in terms of 
a simple quadrature and derived the support properties of the energy momentum 
tensor in the case of time dependent sources with rotational symmetry. In ref. (5) we 
gave also explicit time dependent solutions, not necessarily invariant under rotations 
which satisfy all energy conditions. In the present paper we concentrated mainly 
on the general, non rotationally invariant, stationary problem. We wrote down the 
metric in terms of quadratures and gave explicit formulas for the support of the energy 
momentum tensor. In addition we have shown that the reduced radial gauge allows to 
derive important consequences of the weak energy condition. In particular we proved 
that for the general stationary open universe the WEC and the absence of CTC at 
infinity prevents the occurrence of CTC everywhere, both in presence and in absence 
of rotational symmetry. The radial gauge approach appears also apt to examining 
the time dependent situation in connection to 2+1 dimensional cosmology. 

References 

1.� See "Quantum Gravity in Flatland" presented by R. Jackiwat 17th Internatio
nal Colloquium on Group Theoretical Methods in Physics, St. Adele, Canada 
1988 and references therein. 
A. Staruszkiewicz, Acta. Phys. Polon. 24 (1963) 734; S. Deser, R. Jackiw, G. 
't Hooft, Ann. Phys. (N. Y.) 152 (1984) 220; J. R. Gott, III and M. Alpert, 
Gen. Rel. Grav. 16 (1984) 243; S. Giddings, J. Abbot and K. Kuchar, Gen. 
Rel. Grav. 16 (1984) 751. G. Clement Int. J. Theor. Phys. 24 (1985) 267; S. 
Deser and R. Jackiw, Ann. Phys. (N. Y.) 192 (1989) 352; G. Grignani and C. 
Lee, Ann. Phys. (N. Y.) 196 (1989) 386; G. Clement Ann. Phys. (N. Y.) 201 
(1990) 241. 

2.� A. Vilenkin, Phys. Rev. D 23 (1981) 852; J. Gott, Astrophys. J. 288 (1985) 
422; J. Isper and P. Sikivie, Phys. Rev. D 30 (1984) 712; V. P. Frolov, W. 
Israel and W.G. Unruh, Phys. Rev. D 39 (1989) 1084. For a review on the 
subject see A. Vilenkin, Phys. Rep. C 121 (1985) 263. 

3. P. Menotti and D. Seminara, Nucl. Phys. B376 (1992) 411. 

4.� G. 't Hooft, (( The evolution of gravitating point particles in 2+1 dimensions" 
preprint THU-93/02. 

5. P. Menotti and D. Seminara, Ann. Phys. (N. Y.) 208 (1991) 449. 

6. P. Menotti and D. Seminara, Phys. Lett. B 301 (1993) 25. 

7.� P. Menotti and D. Seminara, ((Stationary solutions and closed time-like curves 
in 2+1 dimensional gravity" preprint IFUP-TH-18/93, to appear on Nuc!. Phys. 
B. 

9 



8. P. Menotti and D. Seminara, to be published 

9.� J.R. Gott, Phys. Rev. Lett. 66 (1991) 1126; S. Deser, R. Jackiw and G. 
't Hooft, Phys. Rev. Lett. 68 (1992) 2647; S.M. Carrol, E. Farhi and A.H. 
Guth, Phys. Rev. Lett. 68 (1992) 263.; Erratum: 68 (1992) 3368; S.M. Carrol, 
E. Farhi and A.H. Guth, " Gott time machines cannot exist in an open {2+1} 
dimensional universe with timelike total momentum" preprint MIT-CTP-2117 
(1992); C. Cutler,Phys. Rev. D 45 (1992) 487; D. Kabat, Phys. Rev. D 
46 (1992) 2720; A. Ori~ Phys. Rev. D 44 (1992) R2214; G. 't Hooft, Class. 
Quantum Grav. 9 (1992) 1335; F. J. Tipler, Ann. Phys. (N. Y.) 108 (1977) 1; 
S. W. Hawking,Phys~ R~v. D 46 (1992) 603; S. Deser and R. Jackiw, Time 
Travel preprint"BRX.TH; 334; CTP#2101 (1992); J.D.E. Grant, Phys. Rev. D 
47 (1993) 2388... ~ 

., ... ......�" 

10. G. Modanese a.nQ _~. Toller, J. Math. Phys. 31 (1990) 452. 

11. E. Fermi, .Atti !1.ccad.Naz. Lincei Cl. Sci. Fis. Mat. & Nat. 31 (1922) 
184, 306; A. G: Walker; Proc. London Math. Soc. 42 (1932) 90. 

12.� S.W. H~wking arid a.F.R. Ellis, The large scale structure of space-time, 
(Cambridge University... Press, Cambridge, 1976),p. 33. 

10� 




