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PRECISION TESTS OF THE ELECTROWEAK 
INTERACTIONS: THEORY. 

R.BARBmRI 

Department of Physics, Univ. of Pisa� 
and INFN, Sezione di Pisa, Italy� 

Abstract The impact of the precision tests on the theory of 
the electroweak interactions is discussed. 

1. INTRODUCTION 

The experimentation at the Z resonance at LEP makes it possible, for the 
first time, to study with great precision some properties of the 
electroweak interactions at distances of the order of the inverse Fermi 
scale, GF1/2. An immediate question arises: What is it that we learn from 
these studies? The answer is not an obvious one. It may in fact require 
some time and some complementary studies (both experimental and 
theoretical) to be able to fully appreciate the significance of these 
precision tests of the electroweak interactions. What is sure is that a 
judgment of the impact of these tests requires an appreciation of several 
different aspects of the theory of the electroweak interactions themselves. 
In particular, this appreciation is not achieved, I believe, by only making 
a comparison of the Standard Model (SM) 1 predictions with the 
experimental results. 

This is the physical background that motivates these lectures. It is 
actually my opinion that the experimental program being canied out at 
LEPl, especially in association with the direct search for the top quark at 
Fennilab, although indirectly, may shed light on the symmetry breaking 
issue in electroweak physics. My purpose, rather than trying to convince 
the reader of this statement, is to make him able to judge by himself. 

To discuss this subject, one has to master the problem of calculating 
the radiative corrections in the SM, as well as in alternative more or less 
defined theories, a technically heavy and often boring task. For this 
reason, when discussing these issues, one frequently ends up by making 
reference to other people's work for detailed calculations and similar 
technical things. This is an attitude that I would like to avoid here, aiming 



rather at being as self-contained as possible. The reader is however 
expected to be familiar with the basic properties and techniques of gauge 
field theories as well as with the Lagrangian of the SM. 

2. DEFINITION OF THE THEORY· BASIC OBSERVABLES 

As I have made it clear in the Introduction, we do not want to restrict our 
attention to the SM only. Rather I consider a generic theory that fulfils 
the following requirements: 
i) The gauge group is SU(2)XU(1); 
ii) The spectrum includes the standard three generations of fermions with 
the usual SU(2)XU(1) assignments; 
iii) At the tree level, the vector boson masses are related to the gauge 
couplings and to a scale parameter v by the relations 

(2.1) 

By the first requirement, I actually mean that, at the tree level, the W 
and the Z bosons are unmixed with the gauge bosons of a possibly larger 
gauge group (e.g., with an extra DCl) factor). The third condition is 
dictated by the experimental observation that the p -parameter, to be 
precisely defined later on, equals one within few per mille. In this way, 
among other things, I certainly include the SM itself, a generic ll1ulti­
Higgs doublet model, the Minimal Supersymmetric Standard Model 
(MSSM)2 and QCD-like TechniColour (TC) models3 , all of which give 
the same tree level predictions for the precision observables that we shall 
consider. In an SU(2)xU(1) gauge theory with any number of Higgs 
doublets Hi, like the MSSM itself where i =1,2, it is always possible to 
define the normalized linear combination 

(2.2) 

which gets a vacuum expectation value 

V=~LiVi2 (2.3) 

and plays the same role as the SM Higgs boson in giving rise to the W 
and Z masses (2.1). In the technicolour case, it is well known that the 
relations (2.1) hold, in fact to all orders in the technicolour interactions, 
as a consequence of an extra "custodial" SU(2)C symmetry4 which is 



only broken by the gauging of the U(l) factor or by the interactions 
responsible for the top-bottom mass splitting (see Section 13). 

In this way I am led to consider a model described by a Lagrangian 
L(g,g',v;... ), which fixes, at the tree level, in terms of g, g' and v only, a 
series of "precision observables". The dots in L(g,g',v;... ) stand for the 
many other possible parameters, e.g. the top or the Higgs masses. The 

. "precision observables", by definition, can be influenced by these extra 
parameters only via radiative corrections. 

Given this framework, even sticking only to the tree level predictions, 
three measurements are needed to determine the basic parameters, 
whereas any extra measurement can be used to check the theory (or 
determine, via radiative corrections, the remaining parameters). The basic 
observables that are used to determine the theory (rather than checking it) 
must be precisely measured on one side, and theoretically calculable in a 
clean wayan the other side. At present, three quantities neatly emerge: 
i) The electromagnetic fine structure constant, a, as measured by the 
Josephson effect or the electron (g-2) 

a= 137.0359895 (61) . (2.4) 

ii) The Fermi constant G as determined from the muon lifetime '1:JI. and 

the theoretical formula5 

2 

e a 25 2 2a mJl. 
1-8 mm 2 [1+(-;)(4 - n ) (1+ 3n 19 m, J] ,(2.5) 

J1 

which includes the QED corrections to the 4-fermion interaction 

G= 1.16637(2)10-5 GeV-2 (2.6) 

iii) The Z-mass 6 

Mz =91.187 ±O.007GeV (2.7) 

The uncertainty on Mz , which is the less precisely known among the 
basic observables, is far smaller (by more than one order of magnitude at 
least) than the relative uncertainty in any of the other observables that are 
currently measured and that we shall consider. 

At the tree level, the basic observables are expressed in terms of the 
parameters g, g', v as 



(2.8) 

where(fl) 

and (2.9) 

3. DERIVED OBSERVABLES. TREE LEVEL VALVES 

Equations (2.8) can be solved in favour of g, g' and v as functions of ao' 

Go, Mzo' In this way, at the tree level, the precision observables that we 
shall use to check the theory can all be expressed in terms of ao' Go' 

M zo . To this end, one needs: 
i) the W-mass 

2 _ 2 2 2 _ 2 _ 1 4naoM wo - M Zo co' Co =1- So =- 1+ 1+...fi 2 
72] (3.1)

2 [ ( J2GoM Zo 

ii) the photon coupling to the fermion f of charge Qt 

(3.2) 

iii) the Z coupling to the fermion f of weak isospin T3t and charge Qt 

VJL (Z - f 1) = -(-v'2GoMiJ72 Yjl (g~t - g~t Ys); (3.3) 

(3.4) 

iv) the W-coupling to the fermion doublet (f, f) 

(3.5) 

(fl) The reader should be aware of the fact that, although keeping the same symbol, the 
precise meaning of S2 will change as we progress. 



Of special interest to us are the Z widths into a pair of fermions 

r(Z -7 f 1), the forward-backward asymmetries at the Z pole 

_ (jl(jl 
AI = F B 3 

FB - (jl + (jl ( .6) 
F B 

CT~(B) == I(J } cose da (e+e- -7 f 1), (3.7) 
o -1 dcose 

and the r -polatization asymmetry 

At' = (jL-(jR (3.8)
Pol - (j + (j 

L R 

(3.9) 

It is a simple matter to obtain, from these definitions, the following 
tree-level expressions(f2) 

(3.10) 

where Nc=1,3 for leptons and quarks respectively, and 

A't'(O) =2n (3.11)Pol -'e 

where 

(3.12) 

If we do not care at all about radiative corrections, it is already possible 
to obtain the predictions for some of the "derived observables", starting 
from the input values of the basic observables given in (2.4-7). This is 
shown in Table l, column A. 

(f2) For simplicity I do not write the trivial fermion mass corrections, which are however 
not completely negligible for the r and the b quark. 



Table 1: Comparison of theory (in different approximations) with experiment 

A B C 
Observable "Bare" e.m. e.m.+ Experiment 

relations corrections large mt 
[6,7] 

r(z ~ll) 84.99 Mev 83.56 Mev 86.36 Mev 83.52±28 

A~B 0.0637 0.0168 0.0351 0.0164±21 

A;ol 0.296 0.150 0.216 0.142± 17 

A~B 0.210 0.105 0.152 0.098±9 

Mw/Mz 0.8876 0.8768 0.8935 0.8798 ±28 

4. ELECTROMAGNETIC CORRECTIONS 

At the level of precision that is of interest here, it is not possible to doubt 
the effectiveness of QED in describing the radiative corrections from 
photon exchanges. Always having in mind the required precision, it is 
less obvious but nevertheless true, with some provisos, that one can speak 
of pure QED corrections in isolation from the full electroweak: 
corrections. Let me briefly describe them(f3). 

For observables at the Z-pole, the largest effect, by far, from pure QED 
radiative corrections is the change in the electric charge when going from 
q2 =0, where the fine structure constant defined in (2.4) is measured, to 

q2 =M~. This change from a to a(M;) is related to the photon vacuum 
polarization function 

via 

a(M2 ) = a = a (4.2) 
z 1+ Frr(Mi) - FrY(O) - 1-~a 

In FrY we only include the contributions from the lepton and the light 
quark loops: 

(4.3) 

(f3) I refer to the original work8 that deals with the QED corrections to Bhabha 
scattering, an essential tool in determining the luminosity. 



that is to say we will conventionally include in the remainder of the 
corrections both the top quark and the W-boson loops. The lepton loops 
give ~al = -0.0314, whereas, for the quark contribution, a perturbative 

calculation is not possible, because of strong interaction effects at low q2. 
The way out consists9 in relating ~aq to the measured, and properly 
normalized, hadronic cross-section 

(4.4) 

via a dispersive representation 

Jia =..!!...-M2 roo dsR(s) (4.5) 
q 3n zJ4m,/ s(s - M~) 

This gives10 Aaq =-0.0282(9), with the error dominated by the 
uncertainties in the measured cross-section between the charm and the 
beauty threshold. Putting together the lepton and the quark contributions, 
one obtains 

a(Mif l 
= 128.87±0.12 (4.6) 

which replaces Eq.(2.4) as the reference value of the fine structure 
constant. The uncertainty of this new value is not such that we can 
obviously neglect it in the following. 

The other relevant electromagnetic corrections for the observables at 
the Z-pole, which we briefly describe in the following, arise from initial 
and final state photon radiation and from the one photon exchange 
contribution to the scattering amplitudes. 

Bremmstrahlung from the initial particles is the largest source of 
corrections to the Breit-Wigner shape. It can be accounted by folding the 
cross section with a "structure function" F(x,s) that describes the 
probability that the initial electron or positron emit a photon which 
carries away a fraction x of the initial momentum: 

I-so/s 

CT(S) == Jdx F(X,S)CTo(s(1-X)), (4.7) 
o 

where So is a threshold energy below which the final state does not exist 
or is not detected and CTo is an "uncorrected" cross section that we now 
define, taking into account of the relativistic phase space and of the one 
photon exchange amplitude. One has 



where 

o 12nrer ! sr~ 
(4.9)

CTZ,j(S) = M~r~ (s -Mn2 
+S2 r~/M~ 

and (j~,Ji(s), C1~r,JJ(S) are respectively the pure photon and the Z-photon 
interference contributions to the cross section, as computed in the 
Standard Model. Equation (4.9) is in fact the very definition of the Z 
mass and of the Z widths. At the needed level of accuracy, the Z mass so 
defined coincides with the real part of the pole of the Z propagator. 

Finally, photon radiation from the final state f 1, is accounted for a 

factor (1 +3a/4nQ!) multiplying the QED uncorrected width. 
The importance of the QED corrections is manifest from column B of 

Table!. After the deconvolution of the initial state radiation effect, they 
are largely dominated by the charge renormalization from q2 = 0 to 
q2 =M;. The entries in column B are obtained in the same way as in 
column A, except for the use of (4.6) instead of (2.4) and the introduction 
of the final state radiation factor in the Z leptonic width. 

5. RENORMALIZATION 

If we now want to deal with the full electroweak corrections, we need to 
go through the renormalization procedure. In principle, this opens the 
way to many possible different schemes. In a weak coupling theory, 
however, as the one that we are dealing with, one procedure emerges 
above all, which avoids useless intermediate steps and speeds up the 
necessary calculations in a significant way. Technically, it is itself a 
renormalization scheme. 

First, we focus on the basic observables 

(5.1) 

and we compute the radiative corrections to them 

(5.2) 

In this way we obtain the renormalized basic observables ai(a~) as 

(divergent) power selies in n, which can be formally inverted to 



(5.3) 

In the same way we have to consider the loop corrections to the derived 
observables~ or rather to the S-matrix elements that allow to compute the 
derived observables. As an effect of these corrections, any tree level S-
matrix element So (a6) goes into the renormalized one 

(5.4) 

again as a formal (and divergent) power series in 11. 
Finally we get the desired (finite) connection between the renormalized 

S-matrix elements, needed to compute the derived observables, and the 
renormalized basic observables ai, by considering the expansion in 11 of 

s(a~ (ai 
)) both in S(a~) and in the a~ (a i ) themselves. For example, at 

one loop, one will have 

S(a~(ai)) == So(a~)+ 8(1)S(a~) 

== So(ai
) +8(l)S(a i

) - I ~~~ 8(l)a i (5.5) 
I 

== So(ai)+dS<l)(ai), 

which shows explicitly that the finite one-loop shift M<l)(a i ) gets both a 

direct contribution 8(1)S(ai) and an indirect one, - I(aso/ dai)8(1)ai, 
i 

from the shifts of the basic parameters. I shall follow this procedure 
consistently throughout these lectures. The fact that~ in a two-loop 
calculation, other parameters come in which need to be renormalized~ 

simply requires an enlargement of the basic observables. 

6. RADIATIVE CORRECTIONS IN THE "GAUGE-LESS" LIMIT 

We have already seen how significant the electromagnetic corrections 
are. With the purpose of dealing with the other corrections in order of 
importance~ we now consider the radiative corrections to the various 
precision observables that grow like powers of the top-quark mass. From 
the early work of Veltman!!, it is well known that such effects do arise 
from top/bottom loop corrections to the Wand Z vacuum polarization 
amplitudes~ making the p -parameter deviate from one. Relatively more 
recently~ an analogous effect has been pointed out12, which leads to the 
presence of a GIM-violating Z ~ bb vertex, also violently growing with 



mt Following Reference 13, one can deal with these effects by means of 
a Lagrangian that knows nothing about the gauge couplings. The point is 
that, at least for a very heavy top, the leading corrections both to the p-
parameter and to the GIM violation Z ~ bb vertex can be viewed as 
power series in the "top fine structure constant" at = g; /41t, where gt is 
the top Yukawa coupling. These corrections have clearly nothing to do 
with the gauge couplings. 

With this in mind, let us consider the SM Lagrangian for the third 
generation of quarks, with the vector bosons treated as external classical 
currents and the bottom Yukawa coupling neglected: 

where QL = (t, b)Land qJ is the Higgs doublet. As usual, to minimize 

V( qJ), we set 

_(v+ ~(H+iX)J
qJ - "12 , (6.2) 

iqJ­

so that we obtain 

(6.3) 

The dots in (6.3) stand for all the interactions among the Goldstone 
bosons qJ-, X, the physical Higgs fields H, and the t,b quarks, dependent 
upon the top Yukawa coupling gt and the quartic Higgs coupling A. 

Suppose now that we perform loop corrections with this Lagrangian. 
We can compactly describe their results in terms of the following 
effective Lagrangian 



which contains several (divergent) constants Zi =Zi(gt' A,). The� 
important points about (6.4) are:� 
i) the presence of the xlib coupling, which must be of the derivative type� 
in the X field, because the b-quark is massless (the bR does not interact);� 
ii) the fact that the derivative terms in the Goldstone boson fields keep� 
the covariant form in terms of the classical fields W,u and Z,u' as it can� 
explicitly be shown by means of the Ward identities of the SU(2)XU(1)� 
global invariance13.� 

In terms of the constants Z/s appearing in (6.4) we can now express 
the renormalized 0 bservables. The gauge couplings do not get any 
corrections, so that, in particular 

(6.5) 

The Z and the W masses, from (6.4), become 

2 2 2 2 

M 2 =Zx ~ M2 - Zrp ~ (6.6)
Z 2 2c2' W - 2 2 . 

The J1-decay, or the Fermi constant, is only affected through the 
corrections to the W mass, namely 

(6.7) 

One may also be interested in the neutral-current Fermi constant GNC 
, 

defined in an analogous way to G, for example, from the elastic electron­
neutrino amplitude at q2 =0 

(6.8) 

Finally, for the GIM-violating Z ~ bb vertex, always from (6.4) and 
taking into account the renormalization of the bL field, one has 



VGIM(Z~bb)=~~r 1-r5 ==~rr 1-r5 (6.9) 
Jl 2c Z; Jl 2 2c Jl 2 

According to the procedure outlined in Section 5, we have to express 
all the derived observables in terms of a, G and Mz. We have therefore, 
from Equations (6.5-8)14: 

ztp
GNC =G-2 =Gp (6.10)

Zx 
2 

2 2 na zt na 
s c = =-=,.....--- (6.11)

..fiGMi Z;' ..fiGMip 

(6.12) 

Knowing p == z;'/zt and -r= Zl/Z; only, we can in fact express all the 
radiative effects that we are dealing with in this section. Since, from (6.6­
7), 

g2 2 
-2 =..fiGMzp, (6.13)
2c 

for the Z widths into any pair of fermions other than b one has 

- -) GMi (2 2) r (Z ~ If *bb =NcP r;;; gVI + gAf (6.14)
6n-v2 

where gv/, gAl have their tree level value with S2 given by (6.11). On the 

other hand, for the Z ~ bb width, taking into account of the GIM­
violating contribution (6.9), one has 

-) 3GMi (2 2) r (Z ~ bb =P 6n.J22 gVb + gAb (6.15) 

g =-!(1- 4 S2 + -r) g =-~(1 +-r) (6.16)
Vb 2 3 'Ab 2 

Finally, for the asymmetries at the Z-pole again the tree level 
expressions hold with S2 given by (6.11). (The inclusion of 1: in A%B 



according to (6.16) gives a numerically irrelevant correction due to the 
smallness of gVe). 

7. ROW REAVY CAN THE TOP BE? 

Now that we have seen how the large mt effects spread out, via p and 'f, 

in all the precision observables, we can compute p and t' themselves in 
the SM using the Lagrangian (6.1). At one-loop level, the only diagrams 
that contribute to p and 'f, are shown in Figs.la and b respectively. 

t 

--cp-O-~-- a) 

b 

b) 

Figure 7.1 Relevant one-loop diagrams contributing to p (a) and t' (b). 

From them it is immediate to get the well-known leading-order 
contributions11,12 

P -1 ~ 3x, t' =-2x (7.1) 

where we have set 

(7.2) 

which, in leading order, coincides with at /8n. 
Quite a few more diagrams contribute at the two-loop level. 

Nevertheless, the simplification achieved by working with the Goldstone 
Lagrangian rather than the gauge Lagrangian itself makes even the two-
loop calculation quite manageable l3. At this order, also the Higgs quartic 
coupling A comes in, which can be traded for the Higgs mass 11tH by 

means of the lowest-order relation m~ =4AV2 
• In other words, expanding 



in X, the second-order coefficients of both p and r are functions of 
m~/m; .For m;[/m; «1, they are(f4) 

p - 1~ 3x(1+ x(22 - 2Jr2 ) ) (7.3) 

r ~ -2x(1 + x(9 - n;2/3)) (7.4) 

whereas, for r== m; /m~« 1, 

P-1 =3X(1 + ~ (61 +4n' +541gr+61g' r)) (7.5) 

t" = -2X(1+ 1~ (311 + 24n' + 2821gr +901g' r)) (7.6) 

Needless to say, we have obtained finite second-order coefficients 
because we have expressed at in favour of the basic observables G and 
mt • It is 

(7.7) 

m

where the top renormalization constants have the usual meaning, as in 
(6.4), except that they are computed at the pole of the top propagator, 
since mt is defined as the position of the pole itself. 

Figures 7.2 show p and r as functions of mt for different values of 
mH 13. The expansion up to second order is well convergent for all 

t ~300 GeV, mH~ 2 TeV. This gives us confidence in the use of the 
perturbative calculation to get an upper bound on mt from the 
comparison with the experimental data, since the bound that one obtains 
is well inside this region. If we use, say, mt =300 GeV (and any mH~ 2 
TeV), where p and r give the largely dominating corrections, and plug 
their values in the expressions for any at the observables given in the 
previous section, we obtain in all cases striking deviations from the data 
(see Table 1, column C). To get an accurate determination of the bound­

(f4) Equation (7.3) conftrnlS a previous result obtained in Reference 15. 



itself, one actually needs to take into account all the other electroweak 
corrections that do not grow like powers of mt (see Section 10). 
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Figure 7.2 The p parame~er (a) and the GIM:-violating Z -7 bb coupling r (b) as 
functions of the top mass, for different values of the Higgs mass. 

8. GENERAL ONE-LOOP EXPRESSIONS OF THE 
ELECTROWEAK RADIATIVE CORRECTIONS 

It is time that we discuss the full electroweak radiative correction effects. 
To this purpose, I give in the following the general expressions of the 
derived observables in terms of the one-loop corrected Green functions. 
in such a way that one will no longer have to worry about the 
renormalization procedure. In doing this. I closely follow the scheme 
outlined in Section 5. 

The relevant quantities, or the needed ingredients. are: 
i) the vacuum polarization amplitudes for the W, Z and r 



where i,j = W,. r, Z or possibly i,j = 3,0 for the W3 or the B-boson 
respectively; 
ii) the contributions to the vector and the axial form factors at q2 =M~ in 

the Z ~ f 1 vertex from proper vertex diagrams and fermion self 
energies only 

(8.2) 

iii) all the one-loop corrections except the vacuum polarization (boxes, 
vertices and fermion self-energies) to the J1-decay amplitude at zero 
external momenta 

(8.3) 

Before proceeding further, several comments are in order. There is, in 
principle, no special reason to isolate the vector boson vacuum 
polarization amplitudes (8.1) from the remaining terms: the motivation 
for doing this will be clear in the following. In the expression (8.2) for the 
Z ~ f 1 vertex, also a magnetic form factor might be introduced. We 
assume that the chiral symmetries associated with the various fermions, 
in the theory under consideration, are controlled by their masses (or their 
Yukawa couplings). This assumption makes the magnetic form factors 
negligible to the present purposes. The various functions defined in (8.1­
3) have in general some imaginary parts. In vie~ of the present 
phenomenological constraints, we assume that possible further 
contributions to the imaginary parts from new relatively light particles 
give negligible effects. Finally, there is the obvious comment that any of 
the individual form factors defined in (8.1-3) is in general neither finite 
nor gauge-invariant. It is only when their different contributions are 
grouped together in the derived observables that finiteness and gauge­
invariance will be restored. 

In terms of the quantities defined in (8.1-3), we can first express the 
shifts of the basic observables (or the input parameters) as defined in 
Section 5. They are: 

a= ao +oa; oa =-Frr(O) _ 2 s A
1Z 

(O) (8.4)
M 2a c Z 



(8.6) 

The derived observables of interest to us are: the Z width into a pair of 
fennions, Z ---7 f J, the asymmetries at the Z pole and the W mass. At 
one loop, these observables receive direct contributions from the 
amplitudes (8.1-3) as well as corrections due to the shifts (8.4-6) of the 
input parameters. For the W mass one immediately obtains 

where 

[ ( )
Y2]2 2 1 4na 

s =1-c =2 1- 1- ..fiGM~ (8.8) 

and 
(8.9) 

To obtain the Z widths and the asymmetries, one first has to write 
down the e+e- ---7 f J amplitude close to the Z pole 

A(e+e- ---7 f 1) = -v'2GoM~o(1- Fzz(M~) - M~F~(M~)) 2 1 2 
q -Mz 

xv,rp (( - ~ +2s5 +2SCFzAMi)+8gv )- rs(- ~ +8gA )}, (8.10) 

xVfrp ((T3f - 2s;Qf - 2scQf Fzr (M~) + 8gvf ) - r5 (T3f + 8gAf ))Uf 

from which, using the shifts (8.1-3), one gets 

r(z ---7 f f-) = GM; N (1- 8G - 8M~ - F (M2 ) - F' (M2 ))
6n-fi C G Mi zz Z zz z 

X((gvf + i\gvfr+ (gAf + i\gAfr) (8.11) 

(8.12) 

where 



(8.13) 

(8.15) 

Both in the amplitude (8.10) and in the forward-backward asymmetry 
(8.12) we have neglected possible box diagram contributions, which is 
legitimate for observables at the Z pole. Analogous expressions hold for 
A;ol and A;B' with the lepton couplings gvl' gAL replaced by gvz + i\gvz 
and gAL + i\gAl as in (8.12). We have already mentioned that the forward­
backward b-asymmetry is practically insensitive to (reasonable) 
corrections to the Z - bb couplings. For them one can then simply take 
the tree level expressions with S2 given in (8.8). 

It is customary, and useful for later purposes, to define three auxiliary 
dinlensionless parameters i\rw, i\p, i\k' which are in direct 

correspondence with three derived observables Mw , r(z ~ rr) and 

Al via16,17FB 

(8.16) 

(8.17) 

(8.18) 

where 

g gv =1-4s2 (1+8/(') (8.19)=-.!(1 + i\P)
A 2 2' gA 

and S2 given in (8.8). Notice that gv and gA defined in (8.17,18) have 
only an auxiliary role, being related to i\p, i\k' through (8.19). By 
looking at Eqs. (6.14) and (8.17-19), notice also the relation between i\p 

and the p parameter defined in Section 6, p::: 1+ i\p. In r(z ~ rr) 



we have inserted the final state radiation factor, whereas by A~B we mean 
the asymmetry at the pole, after extraction of the rZ interference effect. 
From these definitions one obtains18 

(8.20) 

(8.21) 

(8.22) 

This is as much as one can do in general, without specifying the actual 
theory that one wants to deal with: the SM or something else. 

9. THE e-PARAMETERS 

In any given theory of the type defined in Section 2, it becomes now a 
rather straightforward matter to compute explicitly from the various 
equations in Section 8 the one-loop electroweak corrections, without 
having to worry about the different subtleties of the renormalization 
procedure, since everything has already been taken care of. Let us take 
however a further general step, still with the purpose of being able to 
deal with different models in an efficient, unified way17,19,20. The 
main purpose, apart from avoiding the restriction of the analysis to the 
SM only, is to try to isolate, in the measurements, effects of some 
special significance, related to particularly delicate sectors of the theory 
of the weak interactions. This may help to clarify the physical origin of 
any deviation from the Standard Model that will possibly be found, or to 
discard theories that require some specific pattern of radiative effects, 
which turns out to be incompatible with the data. 

To serve this purpose, under suitable hypotheses, I will write any of 
the precision observables as 

(9.1) 

where:� 
i) 0iG is the corresponding prediction of the theory in the Born� 
approximation and including the QED radiative-corrections effects;� 



ii) Cj are four dimensionless parameters containing all the "genuine" 

electroweak radiative-correction effects, dependent, as such, on mt or 
mH , or on any other parameter of similar nature; 
iii) aij are fixed numerical constants. 

Up to now, the only restriction on the possible theories is that they 
should all give the same 0;° as the SM. By now, in view of the present 
data, this is a very interesting set of theories. To define the Cj' j = 
1,2,3,b, one picks up four observables of particular interest, 
M w / M z , r z (the Z leptonic width into charged leptons), A~B (the 
forward-backward asymmetry at the Z peak for charged leptons) and r b 

(the Z width into a bb pair) and puts them in suitable correspondence 
with the four cj" Such correspondence is set according to the following 
principles: 
i) Two sectors in the physics of the electroweak interactions are 
considered as more likely to deviate from the SM and, as such, more 
interesting: the gauge-boson vacuum polarization amplitudes and the 
Z ~ bb vertex. 
ii) In defining the Cj, one should avoid having to specify the top-quark 
mass, which is at present a main source of uncertainty in the comparison 
of theory and experiment. 

With this in mind, in an effective Lagrangian description, 4 coefficients 
are of particular interest, three of them related to the masses and the 
kinetic terms of the gauge bosons 

(9.2) 

and a fourth one to the GIM-violating Z ~ bb vertex 

VGIM(Z~bb)=Le y l-Ys (9.3)
JL 2c b JL 2 

(In the SM, and keeping only the power law corrections in mt , eb 

coincides with 't', defined in Section 5). The Cj are in a one-to-one 

correspondence with these ej , j = 1,2,3,b, in the sense that 

C1 =e1+···, 
c2 =e2+···, 



£3 = e3+···,� 
£b=eb+···, (9.4)� 

where the dots stand for other effects, related to higher dimensional 
vacuum polarization operators, vertex corrections, etc. Their precise 
definition is as follows. 

For £1' £2 and £3' we introduce the following linear combinations of 
Ap, Ak' and Arw' given in the previous Section17,19: 

£1 =Ap 

2 A S2Arw 2 2 A I.' 
£2 = C up + (2 2) - S ilJ(" (9.5) 

C -S 

£3 =c2Ap+(c2 -s2)Ak' 

We further define £b from r b' the inclusive partial width for Z -7 bb, 
according to the reiation20 

2 

2GM~ f3( 3- 13 2 132 J ( a)r b = .[";;. gVb + gAb RQCD 1+-- (9.6)
21Cv2 2 121C 

where 13 = ~1- 4m;/m~, with mb=4.8 GeV, RQCD is the QeD 
correction factor given by 

(9.7) 

(for as (Mz ) = 0.118, RQCD = 1.0428) and gVb' gAb are specified as 
follows 

(9.8) 

gVb 1- 4/3(1 + Jik'}S2 + £b 
-=----:....~-~:....-...._..:;.,. (9.9) 
gAb 1+ £b 

The physical meaning of the £i can be understood by looking at their 
explicit expressions in terms of the amplitudes defined in Section 8. 
After linearization, one obtains 



8GYB ~ 
E1 = e1 - es - --'- - 4ugA1 (9.10)

G 
2 2 8Gy B ~ ~ 

E2 =e2 -s e4 -c eS ---'--ugVl -3ugAl (9.11)
G 

2
2 2 C - S2 1+2s2 

E3 =e3 +c e4 - c es + 2 8gvz- 2 8gA1 (9.12)
2s 2s 

Eb =eb + (9.13) 

1 [(1- 4s2)80 +80 +~(1- 4s2)80 -~(-5+~S2)80 ]4 2 3 OYd OAd 3 3 oVZ 3 3 OAl 
2--s 

3 

where, for the contributions of the vacuum polarization amplitudes, we 
introduce the cOlubinations 

~3(0) - Aww(O) (9.14)e1 = M2 
w 

e2 = Fww(M~) - F33(M~) (9.15) 

e3 =EF30(M~) (9.16) 
s 

e4 = Frr(O) - Frr(M~) (9.17) 

_ M2 dFzz (M2 ) (9.18)es - Z d 2 Z q 

Notice that, for the first three of these coefficients, we have used the 
same notations as for the parameters defined in the effective Lagrangian 
(9.2). Indeed they coincide, which clearly illustrates the connection 
between the Ej and the ei • The Ej are directly measurable quantities, 
which receive all sort of different kinds of corrections: constant and first 
(el' e2 , e3 ) and higher derivatives (e4 , es) of the vacuum polarization 
amplitudes, as well as vertex and box corrections(f5) . 

The relations between the basic observables and the epsilons can be 
linearised and inverted, leading to the formulae 

E1 =-Q.9882+0.011963-
r 1--0.1511x (9.19)

MeV . 

E3 =-Q.7146+0.009181-
r 1--0.69735x (9.20)

MeV 

(f5) The parameters el' e2 , e3 are proportional to the variables S,T,U, also used in the 

literature to analyze the electroweak precision tests21,22 



amount of model dependence is introduced by including other purely 
leptonic quantities at the Z pole such as A;ol' Ae (measured6 from the 

angular dependence of the -r polarisation) and AIR. At this stage, one is 
simply relying on lepton universality. Indeed, with the definition of 

x =gy / gA in Equation (8.18) in terms of A~B' the data on A;ol' Ae and 
AIR (f6) can be taken into account by using the simple formulae 

" A 2xApo1 =Ae = IR =--2 (10.4)
1+x 

with the same x as defined from A~B' apart from still negligible 
differences. With essentially the same assumptions one can also include 
the data on the b-quark forward backward asymmetry A;B. As 

mentioned, A;B is almost unaffected by the Z ~ bb vertex correction. 
As a result of the previous discussion, we can combine the values of 

x = gy / gA obtained from the whole set of asymmetries measured at LEP 
and we get the value: 

x =gy/gA =0.0725 ± 0.0033 (10.5) 

At this stage the best values of t1' t2, t 3 and tb are modified according 
to 

t 1 = (0.0 ± 3.4) 10-3 

t2 =(-8.3 ± 7.6) 10-3 

t3 =(1.6±3.5) 10-3
. 

t b =(-4.5 ±7.0) 10-3 

(10.6) 

All observables measured on the Z peak at LEP can be included in the 
analysis provided that we assume that all deviations from the Standard 
Model are only contained in vacuum polarisation diagrams (without 
demanding a truncation of the q2 dependence of the corresponding 
funtions) and/or the Z ~ bb vertex. A set of primary measurements at 
LEP contains r z' R = rh/r1, the hadronic peak cross section (J"h (with a 

(f6) Recently the SLD Collaboration at SLAC has published the first measurement of 
ALR with a polarised beam26. The result, ALR=0.100~ 0.044, is not included in the 

present analysis. It would change the average obtained at LEP from {Ol and Ae , 

which from table 3 is 0.138 '! 0.014, to 0.135 ~ 0.013. 



3x3 correlation matrix given in Reference 6), Rbh =r b/r h plus the 
asymmetries that lead to the- value of x in Equation (10.5). The relations 
between these quantitieiand the epsilons can be written down in the 
following linealised form: 

r z =r~(1+1.35el -O.46e3 +0.35eb) 

R =RO(l +0.28e1 -O.36e3 +0.50eb) 

(jh = (j~ (1- O.03e1 + 0.04e3 - O. 20eb ) (10.7) 
Rbh =R2h(1-0.06e1 +0.07e3 + 1. 7geb) 

x =xO(1+17.6e1 -22.ge3 ) 

The constant values are functions of as(Mz) and also of a(Mz). 
Defining 

we have, from the code of Reference 23: 

r~ =2488.1(1 + O. 738as - O. 358a)MeV 

RO =20. 812(1+ 1. 058as - O. 288a) 

(j~ =41.425(1- 0.418as + 0.038a) nb (10.9) 
R2h =0.21818(1+0.158as +0.068a)� 

XO =0.07526 -1.328a� 

As anticipated, at the one-loop level, all the dependence on mt and InH 
of the quantities in Equations (10.7) enters through the epsilons and not 
in the various numerical coefficients. 

One can now make a global fit of the data on Mw/Mz ' r z' 

R =r h/r1" (jh' Rbh =r b/rh' given in Table 4 and the results on the 
asymmetries, summarised by the value of x in Equation (10.5). The 
result of the fit is: 

e1 =(-0.3±3.2)10-3 -O.18as� 
e2 =(-8.5±7.6) 10-3 -O.118as +O.238a� 

e3 =(1.5±3.3) 10-3 -0.048as -0.778a.� 

eb =(3.1 ±4.5) 10-3 -1.428as� (10.10) 



mt(GeV) mH = 
50GeV 100 500 1000 

100 -5.30 -5.13 -4.82 -4.81 

125 -6.31 -6.04 -5.82 -5.69 
150 -7.15 -6.90 -6.59 -6.40 
175 -8.00 -7.70 -7.23 -7.07 
200 -8.83 -8.57 -8.03 -7.82 
225 -9.89 -9.55 -8.89 -8.61 
250 -11.2 -10.7 -9.90 -9.64 
275 -12.7 -12.1 -11.1 -10.7 
300 -14.6 -13.9 -12.6 -12.0 

mt(GeV) mH = 
100 500 100050GeV 

100 4.75 5.49 6.78 7.12 

125 4.51 5.34 6.47 6.88 
150 4.31 5.08 6.24 6.65 
175 4.07 4.85 6.07 6.42 
200 3.93 4.65 5.79 6.19 
225 3.69 4.45 5.59 5.92 
250 3.42 4.22 5.32 5.57 
275 3.16 3.94 4.98 5.27 
300 2.78 3.57 4.57 4.88 

Table 3. Values of eb 103 ob~ned from Equations (9.19-21) and the programme 

ZFITIER23 with as{mz)=0.118. 

mt(GeV) 
100 -1.12 
125 -2.82 
150 -4.88 
175 -7.13 
200 -9.79 
225 -12.8 
250 -16.1 
275 -19.9 
300 -23.9 

10. DETERMINATION OF THE EPSILONS FROM THE DATA 

The experimental results that will be used in the present analysis are 
collected in Table 4. We start by deriving from the data on the input 
observables the values of the epsilons that follow by directly applying 
their definition, with no dynamical assumptions. 



By combining the value of Mw/Mz 7 with the LEP values for the Z 
mass, the charged lepton partial width and the forward-backward 
asymmetry6, assuming e - p- 't' universality, given in Table 4, one 
finds, from Equations (8.16-19) 

Llr=(-16±16) 10-3 

Llp =(-D.3±3.4) 10-3 

(10.1) 
M' =(0.9 ± 5.0) 10-3 

and correspondingly, from Equations (9.5) 

£1 =(-0.3 ±3.4) 10-3 

£2 = (-7.6±7.6) 10-3 
(10.2) 

£3 =(0.4 ± 4.2) 10-3 
• 

Table 4. List of experimental values used in the text6,7 

mz(GeV) 91.187 ± 0.007 

mw/mz 0.8798 ± 0.0028� 

rT(MeV) 2488 ± 7� 

R = rh/r1 20.83! 0.06� 

Gh=12nrerh/m~r~(nb) 41.44± 0.17 

r1(MeV) 83.52± 0.28 

rh(MeV) 1739.7 ± 6.3 

rb(MeV) 383 ± 6 

Rbh =rb/rh 0.220 ± 0.003 

0.0164 ± 0.0021 A~B 
A;'l 0.142 ± 0.017� 

A 0.130 ± 0.025� 

0.098 ± 0.009 A:
e

B 

Finally from the value of r b listed in Table 4 one finds, by means of 
Equations (9.6-9) or (9.21): 

£b = (4.4± 7.0) 10-3 
(10.3) 

To proceed further, and include other measured observables in the 
analysis we need to make some dynamical assumptions. The minimum 



£b =-0.62£, +0.24£3 +0.43{~i -1) (9.21) 

£2 =1.43£1 -0.86£3 +0.43Arw (9.22) 

where x =gV/gA is defmed in Equation (8.18) from A~B. The quantity 

r~ is the value of r b in the limit when all epsilons are neglected. With 

as (Mz ) =0.118, r~ =379.4 MeV (more in general its value is given by 
Equations (9.6,7». 
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Figure 9.1 The quantities £1' £2 and £3 as predicted in the SM as functions of m •t 

The bands correspond to the dependence on mH in the range lnH =50 - 1000 GeV 

Equations (9.19-22) are also used to obtain, by definition, the 
behaviour of the epsilons in the SM as functions of 111( and lnH • By 
means of the latest version of the programme ZFITIER23, one can 
compute r1, r b , x and Arw as functions of mt and lnH . In this way one 
obtains the results for £1' £2 and £3 given in Table 2 and shown in figure 
9.1, while the result for £b , which is practically independent of mH , is 

given in Table 3 and plotted in figure 9.2 for as (mz ) =0.118. The above 
results were also checked by using the new code TOPAZ024. 
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Figure 9.2 The quantity cb as predicted in the 8M for as(Mz) =0.118. 

An important property of these parameters is that, in the SM, the 
dependence on mt and mH of all observables at the Z pole only enters 
through the epsilons (see Section 10). This is also true in any extension 
which deviates from the SM in vacuum polarizations and/or in the 
Z ~ bb vertex. This is an exact statement if one loop corrections are 
only considered. At two loops, some residual dependence on mt is 
induced in the various observables from terms of order a; 25 which can 
be reabsorbed in the epsilons only in an approximate but sufficiently 
accurate way. 

Table 2. Values of cj.103 obtained from Equations (9.19-22) and the programme 

ZFITIER23. 

mt(GeV) lnH = 
100 500 100050GeV� 

£ 1103 100 0.09 0.05 -0.87 -1.59� 

125 1.63 1.71 0.56 -0.05 
150 3.58 3.55 2.41 1.80 
175 5.83 5.80 4.67 3.94 
200 8.59 8.45 7.10 6.39 
225 11.6 11.5 9.95 9.12 
250 15.1 14.9 13.1 12.0 
275 19.0 18.8 16.5 15.4 
300 23.3 23.0 20.2 18.9 



where the dependence on the values of as(Mz ) and a(Mz ) has also 
been indicated. If we neglect possible contributions from 8a and add in 
quadrature the effect of a ±O.007 error on as (Mz) around the central 
value 0.118, we obtain: 

£1 =(-o.3±3.2) 10-3 

£2 = (-8.5±7.6) 10-3 

£3 = (1.5 ± 3.3) 10-3. 
£b = (3.1 ±6.5) 10-3 

(10.11) 

The errors induced from as(Mz) are only significant in the case of £b. 

Provided that all deviations from the SM are only contained in vacuum 
polarizations and/or in the Z ~ bbvertex, Equations (10.7) apply. For� 
that to be true, it is important that we focus on observables at the� 
intermediate gauge boson scale of mass. To include in the analysis lower� 
energy observables as well, a stronger hypothesis needs to be made: only� 
vacuum polarization diagrams are allowed to vary significantly from the� 
SM ones and only in their constant and first derivative terms in a q2_� 

. expansion21 , a likely picture, e.g., in technicolour theories. In such a� 
case, to Equations (10.7) one can add the linearized expressions, in terms� 
of the epsilons, of the ratio Rv of neutral to charged current processes in� 
deep inelastic neutrino scattering on nuclei27 

Rv = 0.3115+0.83£1 -0.27£3 (10.12) 

or of the "weak charge" Qw measured in atomic parity violation 
experiments on Cs 27 

Qw = -72,72 ± 0.13 -102£3 (l0.13) 

(with the error due to the theoretical uncertainties in the atomic wave 
functions) . 

It is now possible to include these low energy observables in an overall 
fit. Using, together with the data in Table 3, the present average value 
from vN scattering28 

(Rv )=0.312±O.003 (10.14) 

( which takes the recent CCFR result29 into account) and the result from 
cesium data30 



Qw = -71.04± 1.81 (10.15) 

one obtains the global fit 

t\ =(-0.1 ±2.7) 10-3 

£2 =(-8.2±7.5)10-3 

£3 = (1. 3 ± 3.1) 10-3
. 

£b =(2.9 ± 5.4) 10-3 

(10.16) 

Here the error induced from as (Mz) was taken into account in the same 
way as in Equation (10.11). 

The results of the various fits are collected in Table 5. For the fit to all 
LEP data, we also display in figures. (10.1-3) the projected ellipses in the 
planes £3 - £1' £b - £1' £3 - £b corresponding to 1(]' errors, togheter with 
the SM predictions.20 

Table 5. Summary of the different determinations of the epsilon parameters. 

Defming Defining AllLEP data "All data" 
Variables Variables + 

Asymmetries 

£ 103 
1 -0.3 ± 3.4 O.O± 3.4 -0.3 ± 3.2 -0.1 ± 2.7 

£ 103 
2 

-7.6± 7.6 -8.3 ± 7.5 -8.5 ± 7.6 -8.2 ± 7.5 

£ 103 
3 0.4± 4.2 1.6 ± 3.5 1.5 ± 3.3 1.3 ± 3.1 

£b 103 4.4 ± 7.0 4.5 ± 7.0 3.1 ± 5.5 2.9 ± 5.4 

Several comments can be made at this point: 
i) None of the £; is clearly different from zero. This means in tum that 
no "genuine" electroweak correction has clearly been observed yet. On 
the other hand, if they are there, which cannot be doubted, they must be 
small enough. Significantly smaller, for example, than those expected, 
in the SM, for a very heavy top, of 250 GeV or more, or in some 
technicolour theories (see below). To see the "genuine" electroweak 
corrections is a remarkable goal, per se, of the program of the precision 
tets. 
ii) At the same time, no clear deviation is seen from the SM expectation. 
In a sense, however, figures. (10.1-3) show that the specific pattern of 
radiative corrections in the SM has not quite emerged yet. It will, if it is 
the correct one, with the foreseen precision of the electroweak precision 
data at the end of the LEP1 phase. 



iii) The central values of E3 and Eb are respectively slightly lower and 
slightly higher than expected in the SM, for whatever value of the top 
and the Higgs masses. This observation has, at the moment, little 
statistical significance. Small E3 corresponds, in the SM, to a slight 
preference for light Higgs masses. High Eb is an indication that the top 
cannot be too heavy even in theories where the p parameter, or E1, 

deviates significantly from its value in the SM20,31. 
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Figure 10.1 Plot of E3 versus E1 from tbe fit of all LEP data. The projections of tbe 

ellipsis on the axis correspond to tbe 1 (j errors displayed in Table 5 
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11. COMPARISON WITH THE MINIMAL SUPERSYMMETRIC 
STANDARD MODEL 

The Minimal Supersymmetric Standard Model2 is a well-motivated 
alternative to the SM. From the point of view of the precision 
electroweak tests, however, the significant features of the MSSM make 
it clearly resemble the SM itself: i) in both cases one has a fundamental 
Higgs; ii) both the MSSM and the SM (with a not too heavy Higgs) are 
perturbative theories. 

The MSSM is really defined by two assumptions: i) it has minimal 
supersymmetric particle content; ii) the supersymmetry breaking occurs 
in a hidden sector and is transmitted to standard matter by universal 
supergravity couplings32. ( R -parity conservation plays no role in the 
following considerations.) Two basic properties are in tum implied by 
the previous assumptions: 
i)The MSSM has one dimensionless coupling less then the SM: the 
quartic Higgs self-coupling is not a free parameter but it is actually a 
gauge coupling. On the other hand, the MSSM has five parameters with 
dimension of mass, mi, in place of the only mass parameter appearing in 
the quadratic term of the SM scalar potential. In a standard notation2 

all of them being related to the scale of effective supersymmetry 
breaking(t'7); 
ii) By taking mj »mz' the light spectrum of the MSSM is identical to 
the SM one with a light Higgs. As is by now well known, the exact 
upper bound on the light Higgs depends critically on the top-quark 
mass33 . All the remaining particles predicted by the MSSM can be 
made arbitrarily heavy, although at the price of an increasingly unnatural 
fine tuning. 

These two properties imply that, in the mj » mz limit, all the 
superparticles "decouple" from radiative-correction effects and the 
MSSM becomes undistinguishable from the SM itself with a light Higgs. 
Notice that to reach this conclusion, both properties i) and ii) are 
essential. It is in fact essential that the mass terms of the particles that 
decouple be compatible with unbroken SU(2)XU(l). Needless to say, the 
top quark is the best example of a particle that does not "decouple" from 

(f7) Even the so-called J1 parameter, which, in the low-energy theory, appears as a 
supersymmetric term, may very well originate in a more complete theory, as a result of 
supersymmetry breaking, as many examples show. 



radiative corrections: also the top-quark mass can be made large, but, 
since the mass term is not consistent with unbroken SU(2)XU(1), a heavy 
top requires a correspondingly large Yukawa coupling. 

If, on the other hand, some of the superpartners are light, the pattern of 
radiative correction effects in the MSSM may deviate from the one of the 
SM. The relatively most interesting effects occur in vacuum polarization 
amplitudes and/or in the Z --7 bb vertex and can therefore be described in� 
term of the epsilon-parameters. They are:� 
i) a threshold effect in the Z-wave-function renormalization,� 
contributing to a positive es-term, Equation (9.18), mostly due to the 
vector coupling of charginos and (off-diagonal) neutralinos to the Z 
itself18 . Notice that this effect on es propagates in £1' £2 and £3 

according to Equations (9.10-12) and reduces all of them by a similar 
amount. Physically, all the Z widths would be reduced without affecting 
the asymmetries. This effect can be significant, but it requires the 
lightest chargino to have a mass below 60 GeV. 
ii) A positive contribution to e1, and therefore to £1' due to the virtual 
exchange of the scalar top and bottom partners, analogous to the 
contribution due to the top-bottom exchange34. The needed isospin 
splitting requires one of the two scalars (in the MSSM the stop) to be 
light. 
iii) A negative contribution to £b due to the virtual exchange of a 
charged Higgs35. If one defines, as customary, 

tgfJ =-
V2 

(11.1) 
VI 

this contribution is proportional to 

iv) A pOSItive contribution to £b due to a virtual chargino-stop 
exchange36, this time proportional to 

All the above effects are comulatively displayed in figures (11.1-3) 
where we give the pair correlations £3 - £1' £b - £1' £3 - £b in the 
MSSM, for mt = 130 and 190 GeV, in the form of scatter plots37. Also 
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shown are the 1 G contours obtained from present combined LEP data, as 
well as the SM predictions for mH ranging between 60 and 1000 GeV. 
The parameters of the MSSM are allowed to vary in such a way that: 
i) The lighest chargino mass is greater than 48 GeV (60 Gev in the 
darker area). This condition is relevant to effects i) and iv) above. 
ii) The charged Higgs mass, relevant to effect iii), is greater than 100
GeV. . 
iii) tgf3 > 1, relevant to iii) and iv). 
iv) The lightest stop and the ( approximately degenerate) sbottom 
masses are taken respectively greater than 50 and 150 GeV. 

Only this last constraint requires a further qualification. In the mass 
matrix of the two top superpartners, which has the following approximate 
form 

we take the supersymmetry breaking mass term m < 3m(b). This limits A 

the relative stop-sbottom splitting as m( b) gets large and, in tum, the 
size of the effect on £1' 

From the above discussion it should be clear that, for any given me: i) 
the lowest values of £2 and £3' which are correlated, are obtained for 
light charginos; ii) the lowest values of £1 are obtained for light charginos 
and heavy stop; iii) the highest values of £b are obtained for light 
charginos and stop, whereas, on the contrary, low £b requires a light 
charged Higgs and small tgf3. 

Figures (11.1) make clear that, relative to the current precision of the 
experiments, the deviations from the SM are not large. However, the 
situation will change with the increase of the statistic at LEP. One point 
can be noticed already at present: a top mass as high as 190 Gev, unlikely 
in the SM, can be made consistent with the precision tests in the MSSM 
if the chargino is sufficiently light, in fact visible at LEP237. 



15 r------~---------------

C3 
m =130GeVt12.5 

10 

7.5 ~ 
t 
I 

5 F-

r ~ 
2.5 

o r 
-2.5 ~ 

t 
-5 

. . . . I . . ,-7.5 . I 

-7.5 -5 -2.5 0 2.5 
. 

5 7.5 10 12.5 15 

C1 
15 r---------------------....., 

C3 
m =190GeVt

12.5 

10 

7.S l
L 
I mH=50GeV 
~ S.M. 

5 r:­
l.. /)I 

~ 
2.5 F­

e / // 
a 

,..

t.. 
C ..' 00' 

,� :lO~ 00:1� 

r ••' • 3 U ..
-2.5 ~ 

F 
-5 F-

t 
I 

-7" [. , , , I ! I . . I , , .. I I .... ! 1 I"!'" 

·...-7.5 -5 -2.5 Q 2.5 5 7.5 10 12.5 is 
C1 

Figure 11.1 £3 versus £} at fixed In[= 130 and 190 GeV in the MSSM, in the form of 

scatter plot, compared with the data (l (j ellipse) and with the SM. 



12. "HIGGS-LESS" THEORIES. 

12.1 THE SM FOR INFINITE HIGGS MASS 

In this section we start trying to tackle the hard problem of estimating 
the size of the radiative corrections in theories without a Higgs particle, 
that is to say in theories which deviate from the SM in the sector that is 
supposed to break both the local and the global symmetries of the pure 
SU(2)XU(I) gauge Lagrangian. Since the local symmetry has to be 
broken spontaneously, this sector must contain in general, among other 
things, the charged and neutral Goldstone bosons that provide the 
longitudinal modes of the Wand the Z bosons, respectively called qJ 
and X in Section 6. These Goldstone bosons could be composite states 
arising from some new strongly interacting dynamics. 

In this situation, it makes sense to assume that all possible deviations 
from the SM radiative correction effects be confined to' the vector boson 
vacuum polarization amplitudes, in particular to their low derivatives 
only. We then concentrate on el' e2 and e3 defined in Equations (9.14­
16). 

To deviate from zero, both e1 and e2 require a breaking of the 
(custodial) symmetry that is responsible, at the tree level, for p = 1, or 
the mass relations (2.1). This can be seen, for example, from the global 
SU(2) symmetry that is recovered in the effective Lagrangian (9.2) by 
taking e1 = e2 = 0 and neglecting mixing effects (s = 0 or g' = 0). With 
reference to figure (12.1) we then set 

(12.1) 

where e~2 are due to the B-boson exchange and e~2 to the remaining 
sources of isospin breaking, like the top-bottom mass difference. The 
blobs in this figure may have to be computed non-perturbatively in the 
symmetry breaking sector of the theory. In the case of e1 or I1p, we 
have actually seen in Section 6 how it can be viewed as the deviation 
from 1 of the ratio of the wave function renormalization constants of the 
charged and neutral Goldstone bosons, as explicitly indicated in figure 
(12.1). In other words, et will be independent from the gauge couplings 
(in leading order), whereas e~ will be proportional to g,2 ~ This is unlike 
the case for e2 , which requires the couplings to the external gauge 
bosons: e: in particular is proportional to the fourth power of the gauge 
couplings and is generally small. Unlike e1 and e2 , e3 does not need any 
custodial isospin breaking, which therefore can hopefully be neglected. 
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Figure 12.1 Contributions to e1, e2 , and e3 in an expansion in custodial isospin­

breaking (A) and in the gauge couplings. The dotted lines in e1 stand for the 
Goldstone bosons qJ, X. The blobs are to all orders in the non-perturbative couplings 
of the symmetry-breaking sector. 

A first step towards a "Higgs-less" theory can be made by considering 
the various Cj' s in the SM for an infinitely heavy Higgs38 namely when 
the Higgs is never excited. The relevant diagrams at one loop are shown 
in figure (12.2). In this approximation, there is in fact no diagram at all 
with a Higgs boson internal line that contributes to et and e~; these are 
therefore independent from the Higgs mass. There are, on the contrary, 
diagrams with internal Higgs boson lines that contribute to el

B and e3 , 

which would in fact be needed to make the pure Goldstone diagrams of 
figure (12.2) ultraviolet-convergent. In terms of an ultraviolet and 
infrared cut-off, A and J1 respectively, the diagrams of figures (12.2b) 
and (12.2e), both computed at q2 = 0, immediately give39 

B 3a A -3 A 
e :::::---lg-:::::-1.2xIO 19- (12.2)

1 8nc2 J1 J1 

a A 3 A 
e3 ::::: 'J Ig-:::::0.5xIO- 19- (12.3)

24n s- J1 J1 

The result for el
B is actually obtained by taking the B-boson propagator 

in the Landau gauge. This is the gauge that has to be used if one wants 
to compute el in terms of Goldstone boson properties only; the 
corresponding gauge-fixing term, although breaking the local symmetry, 



respects in fact the global symmetry that is responsible for the existence 
of the massless Goldstone bosons in the first place. 
This is at least a quick way to obtain, in the SM, the leading logarithmic 
dependence40 of e1 and e3 as the Higgs mass becomes infinitely large, 
since for that it is enough to replace A in Equations (12.2) and (12.3) 

with the Higgs mass. (The infrared cut-off in a complete calculation is 
replaced by the gauge-boson masses.) What the calculation actually 
shows is that, to compute the e-parameters (or the es) at the per mille 
level, which is the foreseen precision in their determination , it is 
necessary to specify how the divergences in Equations (12.2) and (12.3) 
are regularized in a theory without the Higgs as an explicit degree of 
freedom. Needless to say, it is quite clear what the counterpart of the 
divergences (12.2) and (12.3) is in an effective Lagrangian description of 
the Goldstone boson interactions. Unlike the case of the SM itself, where 
both the local SU(2) xU(l) and the approximate global custodial SU(2) 
symmetries are linearly realized in terms of the full Higgs doublet, the 
same symmetries can be non-linearly realized using the Goldstone bosons 
only39. The point now is that the corresponding (non-renormalizable) 
effective Lagrangian realizing these symmetries will have terms that 
contribute directly to e1 and e3 with unknown coefficients. Without 
independent theoretical or experimental inputs, this makes the e­
coefficients unpredictable. 

a) b) 

c) 

ql 
,'~--,\ 

+ ~ ~ , / 

'--~ 
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d) e) 

Figure 12.2 One-loop contributions to e1, e2 , and e3 in the SM without Higgs boson 
internal lines in the approximation discussed in the text. The B-boson propagator in 
(b) is in the Landau gauge. 

12.2 VACUUM POLARIZATION EFFECTS IN TECHNICOLOUR 
MODELS 

The divergences due to the Golstone boson exchanges that we have 
computed in the previous section are certainly cut off in models where 
the breaking of the gauge symmetry is produced by the condensation of 



a fermion bilinear, as in technicolour theories3. In such theories, it is 
therefore a challenge to compute the finite residual contributions to the 
e-parameters. 

Simply for orientation, let us first compute the contributions to e1, e2 

and e3 from the virtual exchange of one "technicolour" SU(2) doublet 
with mean mass Jnr »Mz and with mass difference,inside the doublet, 

~Jnr «Jnr. From simple one-loop diagrams, one readily obtains 

(12.4) 

(12.5) 

(12.6) 

(12.7) 

for NTC technicolours. What should be done with these equations is 
unclear, to say the least. Nevertheless we learn something from them. 
The heavy fermions do not "decouple" in the large mass limit. 
Furthermore, to make a numerical estimate of some sort, it is crucial that 
we know how many heavy fermions there are. 

The non-decoupling property of these effects is of course due to the 
fact that the mass of the technifermions (left-handed SU(2) doublets and 
right-handed singlets) is not compatible with unbroken SU(2)XU(1). 
(The discussion of the top-quark-mass effects given in Section 6 is an 
illustrative example in this sense.) As to the needed number of 
technifermions, one should not forget the gigantic global symmetry of the 
SM Lagrangian in the absence of Higgs interactions, which is supposedly 
broken by extra gauge interactions, shared between the standard fermions 
and the technifermions (the so-called "extended technicolour"). In actual 
model building, this is what generally requires a proliferation of 
technifermions. Finally, the parameter ~ hides the problem of 
generating, in technicolour models, the top-bottom mass difference. 

At least this problem of the custodial isospin breaking can be avoided 
if we stick to the parameters e3 (or to e~, although this contribution will 

always appear together with the uncertain et contribution). It is 
therefore interesting to see how an estimate of e3 can be attempted if one 
makes the extra assumption that the technicolour dynamics mimics QeD 
as much as it can21 ,41(f8). 

(f8) For an alternative view, see Reference 42. 



From the definition in (9.15), one sees that e3 is related to the Fourier 
transform of the correlation function (Lorentz and space indices omitted) 

(12.8) 

between the current coupled to the neutral W boson 

(12.9) 

and the current coupled to the B boson 

(12.10) 

where J3V' J3A and J y are the third components of the vector and axial 
isospin currents and of the (conventional) hypercharge current 
respectively. Since, as in QCD, technicolour is assumed to conserve 
parity and isospin, one has therefore 

(12.11) 

Precisely, taking the proportionality factors into account one has 

(12.12) 

where, in analogy with (8.1), 

n~.AA =Jd4x e-iqx(O~~.A (X)J~,A (0)10) 

=- igIlV[Aw,AA (0) + q2 FW'AA{q2)] +qllqVterms 
(12.13) 

In the strict QCD case, the right-hand side of (12.11) can be estimated 
reliably in several different ways. The quickest one21 , consists in using 
Vector Meson Dominance, together with the pion pole and current 
conservation, for the vector and axial vacuum polarization functions 

(12.14) 



and the convergence requirement, at large q2 43 

(12.16) 

which give 

M~ M~-=-+ F2 . (12.17)
I~ 11 1C' 

From (12.12-17), one then gets 

(12.18) 

where FTr,MV and MA are the analogues, in the QCD case, of the 1C 

decay constant, the p mass and the Al mass respectively. 
How can this QCD result be extrapolated to the technicolour case? 

Suppose that we continue to make the VMD assumption. The problem is 
not in the difference between the QCD and the TC scales, since Equation 
(12.18) is scale-independent. Rather it comes from the generally different 
numbers of colours and flavours. For ND doublets and NTC 

technicolours, planar QCD (or TCD)44 gives 

(12.19) 

where now we use the lower case letters for the real 1C decay constant 
and p mass. Other considerations, that give more weight to the 
threshold behaviour of the vacuum polarization amplitudes, or the 
Goldstone boson contributions, suggest different estimates, such as45 

(12.20) 

where N is the total number of technicolour flavours, so N ~ 2ND 
Together with 



(12.21) 

and (12.18), the two estimates (12.19) and (12.20) lead respectively to 

(12.22) 

(12.23) 

The comparison of (12.22) and (12.23) is a bit embarrassing. For a 
"realistic" technicolour model with Nrc=4 and 1 technifamily (ND=4, 
N = 8), the two results would differ by about a factor of 2, which is 
perhaps not an untolerable discrepancy, but is also a rather fortuitous 
"agreement". On the other hand, only the estimate (12.22) is in accord 
with the free techniquark estimate, (12.7), and this for quite obvious 
reasons. 

12.3 THE Z ~ bbVERTEX IN EXTENDED TECHNICOLOUR. 

In absence of Higgs Yukawa couplings, the source of the fermion 
masses can be identified in the couplings to heavy "Extended 
TechniColour" (ETC) bosons of both the standard (QvtR ) and 
technicoloured (TL,UR ) fermions3 

(12.24) 

At lower scales than the typical ETC vector boson masses, M ErC' ETC 
vector exchanges give rise to the following (Fiertz transformed) 
effective 4 fermion-interactions 

(12.25) 

(12.26) 



These interactions, as an effect of technicolour condensation, originate 
respectively the standard fennion masses (e.g. of the top quark) 

2 2 
m = gETC (U U):::::: gETC 41t'V3 (12.27)

t M 2 M 2 
ETC ETC 

as well as the anomalous Z ~ bbcoupling46 

(12.28) 

This coupling results in a modification of gLb' or in an additional 
contribution to eb 

/1e ETC = (12.29)b

of significantly large size. All of these estimates assume a QCD-like 
behaviour of the TC dynamics. 

12.4 CONCLUSIVE REMARKS. 

I draw the following conclusions from these considerations. It is 
obviously difficult to make a sensible estimate of the radiative 
correction effects in a technicolour model. The difficulty is partly 
technical (the necessity of dealing with a strongly interacting field 
theory) and partly fundamental (related to the undefiniteness of 
technicolour models in solving the flavour problem). Nevertheless, I 
believe that the various estimates in the previous subsections make it 
hard to maintain that, in view of the relatively weak dependence on the 
ultra-violet cut-off of the radiative correction effects in a "Higgs-less" 
model [Equations (12.2) and (12.3)], the electroweak precision tests are 
insensitive to the symmetry-breaking sector of the theory. 

In the case of the vacuum polarization parameters, at least in 
technicolour models, for "realistic" choices of No, Nand NTC, one finds 
corrections close to or bigger than the per cent level, to be compared with 
the per mille level attainable by the experimental detennination of the 
relevant quantities. Furthermore, one can rather clearly identify the 
source of these potentially large corrections in the way models without 
the Higgs-Yukawa couplings try to solve the flavour problem, namely by 
a proliferation of extra degrees of freedom that do not decouple in their 
radiative correction effects. The situation is similar in the case of the 



z ~ bb vertex corrections due to ETC vector boson exchanges. In fact, 
the various estimates discussed indicate a pattern of the corrections in 
technicolour models clearly disfavoured by present data, both in sign and 
in size. 

13. SUMMARY AND CONCLUSIONS 

The following is a summary of the main physics points that I have 
discussed in the course of the lectures, more or less in order of 
presentation. 
i) The bulk of the radiative correction effects that are clearly seen at LEP 
is still of pure electromagnetic origin (Section 4). 
ii) The dominant top quark radiative correction effects, in an 
approximation which gets better as the top gets heavier, can be 
discussed without ever making reference to the gauge theory (Section 6). 
The two quantities most sensitive to the top mass, the p -parameter and 

the Z ~ bb vertex, have been studied independently in the SM and both 
shown not to be compatible with too heavy a top. (Sections 6 and 7). 
iii) By introducing suitable parameters, it is possible to make a rather 
model-independent analysis of the "genuine" electroweak radiative 
correction effects, not of pure electromagnetic origin (Section 9). The 
LEPl programme may show clear evidence for these effects, which at 
the moment, are constrained to be small enough. The SM is at present 
compatible with these constraints (Section lO). 
iv) All the extra particles introduced in the MSSM fulfil a decoupling 
property in their virtual contributions to the electroweak precision tests. 
The SM with a light Higgs is mimicked in most of the MSSM parameter 
space. Four possibly significant effects have, however, been identified, 
requiring either a light stop or light gaugino-higgsinos or a light charged 
Higgs (Section 11). 
v) For intrinsic and technical reasons, it is difficult to make a reliable 
estimate of the radiative correction effects in theories without 
fundamental scalars, such as technicolour models. In the considered 
examples, however, these effects attain values that are about one order 
of magnitude larger than the sensitivity expected at the end of the LEP1 
programme (Section 12). To the extent that technicolour models are 
representative cases, these semi-quantitative considerations indicate no 
reason why theories with or without a Higgs should show the same 
pattern of radiative correction effects at the level of precision attainable 
in the experiments. In view of all this, I believe that the experimental 
programme that is being carried out at LEPl may shed light on the 
symmetry-breaking issue in electroweak physics. To this end, it would 
be very important to have also a direct determination, with sufficient 
precision, of the top-quark mass, a goal within reach at Fermilab. 
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