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Abstract 

A non-minimal coupling for spin 3/2 fields is obtained. We use the fact that the Rarita­
Schwinger field equations are the square root of the full linearized Einstein field equa­
tions in order to investigate the form of the interaction for the spin 3/2 field with gauge 
fields. We deduce the form of the interaction terms for the electromagnetic and non­
abelian Yang-Mills fields by implementing appropiate energy momentum tensors on the 
linearized Einstein field equations. The interaction found for the electromagnetic case 
happens to coincide with the dipole term found by Ferrara et a/ by a very different pro­
cedure, namely by demanding 9 = 2 at the tree level for the electromagnetic interaction 
of arbitrary spin particles. The same kind of interaction is found by using the resource 
of linearized Supergravity N=2. For the case of the Yang-Mills field Supergravity N=4 
is linearized, providing also the already foreseen interaction. 
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1 Introduction 

The standard treatment for elementary free masless spin 3/2 fields is achieved by means of 

the Rarita-Schwinger (R-S) lagrangian [1,2], 

L 1 Ilil p<1 ~ () \II (1.1) RS = -2€ I/Y5/1-' P <1. 

This lagrangian gives us the field equations 

(1.2) 

It is however well known that the usual minimal electromagnetic prescription for the Dirac 

field does not work adequatelly for this spin 3/2 field. In fact if one couples minimally this 

field with electromagnetism, then several physical inconsistencies arise of which the most 

remarkable is the appearance of superluminal speed for the particles [3]. 

By demanding that the scattering amplitudes should have a good high energy behaviour, 

Weinberg [4] showed that the gyromagnetic ratio should be 9 = 2 for arbitrary spin particles. 

Following a consistent procedure for constructing the lagrangians for higher spin massive 

particles interacting with the electromagnetic field, Ferrara et al [5] obtained a gyromagnetic 

ratio 9 = 2. As a result, their equations of motion contain an extra dipole term that can be 

implemented at the tree level, thus modifying the usual minimal electromagnetic coupling. 

A very important feature of this extra dipole term is that, as shown by Ferrara et al, it 

avoids the physical inconsistencies for spin 3/2 particles described in ref. [3]. 

On the other hand, recently two of the authors have constructed a theory of the classical 

supersymmetric spin 3/2 particle [6J in analogy with the classical supersymmetric spin 1/2 

particle formalism developed by Galvao and Teitelboim [7]. The usual / matrices were 

realized as grassman variables and it was shown that the generalized Poisson bracket of 
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the Rarita-Schwinger constraint in fiat space-time gives the full linearized Einstein field 

equation. 

If in the spin 3/2 field differential operator we preserve the I matrices then the same 

result follows, but instead of the generalized Poisson bracket, the anticommutator of the 

R-S operator must be used. This is not a consequence of the well known result in canonical 

supergravity [8,9J, where it was shown that the supersymmetry constraint is the square 

root of the usual constraint in canonical general relativity. This last procedure involves only 

those dynamical equations corresponding to these constraints, in contrast with the relations 

found in ref. [6J which relates the complete set of linearized Einstein field equations and 

the Rarita-Schwinger field equations by means of Poisson brackets. 

The result of the paper mentioned above showed that the Rarita-Schwinger equation 

IS related with linearized gravity as the Dirac equation is related to the Klein-Gqrdon 

equation. Thus, following this analogy and knowing how gravity should couple with matter 

(in particular gauge fields) one would expect to be able to find out the way that gauge fields 

(matter) couple with the spin 3/2 field in fiat space-time. 

The last point is the main guide for this work, because in principle we can add a matter 

tensor (describing the gauge fields of interest) on the right side of the linearized Einstein 

field equations and investigate its "square root" in a similar manner to that developed in 

[6]. As a result of this procedure a modified R-S equation will arise. Obviously, this "square 

root" must include the terms of interaction with the gauge (and matter fields), and these 

terms of interaction will give us the information for the coupling of spin 3/2 fields with any 

kind of gauge fields and matter, particularly electromagnetism or Yang-Mills fields. 

This paper is organized as follows: in section 2 we generalize the four indices differen­

tial operator representing the linearized general relativity equations [6J in order to include 
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electromagnetism and non-abelian Yang-Mills fields. Based on the particular form of this 

extra gauge fields terms in the linearized Einstein field equations we search for the corre­

sponding extra terms in the Rarita-Schwinger equation which when squared will produce 

the implemented gauge fields terms. As a result, we find the interaction for the spin 3/2 

field with electromagnetism and Yang-Mills fields. It is to be remarked that this modified 

R-S equation when squared does not reproduce only the desired extra term in the linearized 

gravity equations, but there appear extra terms. This is not surprising because the relation­

ship between the R-S equation with interaction and the linearized Einstein field equations 

with matter is similar to that existing between the Dirac equation with interaction and the 

Klein-Gordon equation with a potential, where the LS coupling term appears. What we 

get is a kind of generalized "hamiltonian", for the linearized gravity equations with a four 

indices generalized gauge field energy-momentum tensor. 

Our result shows that the R-S equation is related in a direct manner with linearized 

gravity. Formally, the latter is the "hamiltonian" and the former one is its corresponding 

linear differential equation. On the other hand our spin 3/2 equations play the role of some 

kind of supercharges (not only the equation corresponding to the zero component). It is 

then natural to think in Supergravity (SG), being the theory that incorporates gravity, the 

spin 3/2 field and gauge and matter fields. 

We expect that by linearizing Supergravity we will be able to obtain the same kind of 

results that in the case without gauge fields (matter) [6], and also when the interaction 

is present. As mentioned, the relation we want to get is between the full linearized R-S 

equations and linearized gravity and not between the can(~mical constraints of supergravity 

[8,?). The free case (without interaction) should correspond to linearized Supergravity N=l. 

This is performed in section 3. 
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In the next two sections we also linearize Supergravity N=2 (section 4) and N=4 (section 

5). We show that the interaction found in section 2 for the electromagnetic field is similar to 

that obtained from supergravity and is essentially also the same that Ferrara et al [5] found 

by a very different proccedure. For the case of N=4 by imposing the scalar field equal to 

zero and neglecting the spin 1/2 field, we get the interaction term for a non-abelian Yang­

Mills field which has the same structure as that announced in section 2 . However, in these 

cases there are correspondingly two and four spin 3/2 fields. The appearance of more spin 

3/2 fields is directly related with the fact that in these last two cases we are treating with 

an enlarged supersymmetry. 

The R-S equations resulting from supergravity are a very similar alternative to that of 

taking the square root of linearized gravity in section 2. However, they ar.e very much more 

complicated to deal with. 

Very probably, the existing -relation between the full R-S and the linearized Einstein field 

equations with gauge fields had not been discovered from SG because of its complicated 

structure when one includes matter and also because of its necesary linearization. Given 

that gravity couples with all kinds of matter, and being in our approach the spin 3/2 field 

the square root of its linearized limit, it is possible to extend our procedure in order to 

include in the interaction with the R-S field any kind of gauge and matter fields, obtaining 

in this way much more simple models than those obtained from supergravity. However, 

both proccedures result essentially in the same kind of non-minimal interaction. 

Following this prescription, it is in principle possible to construct particular models 

considering interactions of phenomenological interest including the mass of the spin 3/2 

field. This is the subject of fu~ure work. 
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2 Non-Minimal Coupling for Spin 3/2 Fields� 
from Linearized Gravity with Gauge Fields� 

As mentioned in the introduction, we have on one hand the linearized Einstein field equa­

tions and on the other hand, we have the Rarita-Schwinger equations as their square root. 

Thus it is natural to think that we can put an energy momentum tensor for these Einstein 

field equations and obtain its square root in order to investigate the possible coupling of 

the spin 3/2 field with gauge fields. 

It has been shown in ref. [6] that if one associates to the R-S equation the constraint 

(2.1) 

A A.

where (} p =
1 

and PO' = -tau. Then the square of this constraint turns out to beh,5,p 

Aex{3 ex pO' {3 A'Y p~ pA1-{p,v = f p, f v 'rJPA 0' 'Y' (2.2) 

and this term is the "hamiltonian" operator that acts over hex f3 in standard linearized gravity, 

z. e., 

(2.3) 

We first note that in the hamiltonian (2.2) the momenta PO' appear quadratically. Now we 

want to add a potential term to il~e, obviously, this must also be a four indices tensor Tp,a.,!, 

it should also have units of energy (same as P;) and it should be possible to take its square 

root in terms of the fields characterizing the gauge and matter fields under consideration. 

In particular, for the electromagnetic case, there are two tensors at our dispossal, Pp,v 

and its dual Fp,v. We know that with them it is possible to construct expressions with units 

of energy in order to get a potential term. On the other hand, the mathematical structure 

of Eq. (2.2) dictate us to accompany theP2 terms by two Levi-Civitta tensors, i. e., 

(2.4) 
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where F ptj is the usual dual of F ptj , A, Band C are constants products of "/ matrices 

(perharps of the Grassman type). This expression fits the requeriinents of being quadratic 

in the electromagnetic field and its dual. Besides the mathematical structure of (2.4) is 

analogous to that of (2.2), so the combined system of expressions allow us to factorize the 

Levi-Civitta symbols in the computation of the square root of the resulting generalized 

hamiltonian containing the free plus the potential parts il~e + ~'1. 

The square root of this hamiltonian plus potential terms must give us the R-S equations 

with the interaction term, and it is obvious that when we square this modified R-S equation, 

it must give the full "hamiltonian" that will result in the hamiltonian (2.2) plus the potential 

7;:1, but also new interaction terms as happens in the Dirac and Klein-Gordon equations. 

Nevertheless, "/ matrices should appear in the generalized R-S equation, analogous to 

the O's in Eq. (2.1) since we are computing the squares also by means of anticommutators, 

besides we are applying these constraints to four spinor fields of four components. 

Then the desired interaction term in the 3/2 field operator ought be of the form 

F/.LI/+rj'/.LI/, (2.5) 

where r is in general a product of Dirac matrices. For convenience we will take this r as "/5 

because of the algebra we are working with [6] and the fact that when we square this term, 

it will give us directly quadratic terms in the electromagnetic field tensor and its dual. 

A natural generalization of this result to the case of non-abelian Yang-Mills would be 

the tensor 

T OI{3 01 P17 {3 >''Y(AFa Fa + BFa F-a + CF-a F-a ) (2.6)/.LI/ cv f /.L f 1/ ptj >''Y P17 >''Y ptj >''Y ' 

where F;tj is the Yang-Mills field tensor. The corresponding interaction term will also be 

of the form of (2.5). 
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We are now in a position to generalize the R-S constraint (2.1) by implementing the 

interaction (2.5). For the electromagnetic case it turns out to be 

(2.7) 

where we have factorized the Levi-Civitta symbol and introduced a coupling constant gl 

which should be related to the gravitational constant K, since this accompanies the general­

ized energy momentum tensor in linearized gravity, 

As already mentioned, we expect that the square of expression (2.7) should give us the 

generalized hamiltonian containing the free plus the potential parts il~e +T:;!, besides it 

must give us an extra interaction term i~e, 

The free hamiltonian is clearly the one given by (2.2), the next two terms are given by 

(2.8) 

and 

i~e = gl (Op( - iF>.'Y,u +F>.,.J)u - v'2iOsF>.'Y,u) +(h( - iFpu,'Y +Fpu i\ - v'2i1JsFpu,'Y») . (2.9) 

Here we have made the identification Os == ,fi/5' Because of the appearance of the terms of 

the type F>.'Y,u in (2.9), we identify these terms as the analogous to the extra term appearing 

in the Dirac equation when minimal electromagnetic coupling is introduced, namely the 

spin-orbit interaction for the magnetic moment of the spin 1/2 particles. This analogy may 

lead to interesting physical interpretation and it is the subject of future work. Besides it is 

interesting to comment that ~a.f may be understood as part of a total energy-momentum 

tensor which contains also i~e. 

When considering the Yang-Mills case we will necesarily handle some internal symme­

tries proper of the non-abelian field under consideration, namely 

rJ//3 - A 01/3 £uk 
- k '-' , (2.10) 
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where the (}:k are the generators of the symmetry under consideration and 

(2.11) 

is the non-abelian Yang-Mills field and /t = eAfijk are the structure constants of the 

group. Then the R-S corresponding constraint must have a similar structure to that of 

(2.7),namely 

(2.12) 

where also 92 must be related to the gravitational constant. The same previous procedure 

is followed in order to find out the corresponding generalized hamiltonian. In this case 

the potential and the interaction terms turn out to be essentially the same than in the 

electromagnetic case, only we have to replace 91 by 92 and the electromagnetic field for the 

Yang-Mills field (2.10), that is 

(2.13) 

and 

notice that the internal index a of (2.6) does not appear in these expressions, since it is 

already taken into account in (2.10). As in the electromagnetic case, the coupling terms in 

i~g are to be investigated in future work. 

In the next three sections we will show that linearized Supergravity N=l, 2 and 4 

provide similar results for the free case, the electromagnetic one and the non-abelian Yang-

Mills field correspondingly. However, the enlarged supersymmetries involved in the last 

two cases enforces the appearance of more spin 3/2 fields and the rising of much more 

complicated expressions than those obtained in this section. Both proccedures provide, 

however, the same kind of non-minimal interaction and deserve further study in view of 

possible phenomenological implications for specific gauge fields of interest. 
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3 Spin 3/2 and Linearized Einstein Fields� 
from Supergravity N=l� 

We begin by using the langrangian for Supergravity N==l given in ref. [10] 

(3.1) 

where e is the determinant of the tetrad, n is the curvature, WJ-L is the gravitino field (spin 

3/2), and D p is the covariant derivative including the spin connection. 

We linearize the field equations by dropping quadratic and higher terms since the spin 

connection in D p contains w2 and ha /3 we find that DpWJ-L goes to {}pW After that we findw 

once more 

(3.2) 

We can associate to Eq. (3.2) the operator 

(3.3) 

where iJ p and Pu are given in the preceding section. 

Then, by using the algebra of the anticommutators of iJJ-L [6] namely 

(3.4) 

we obtain 

(3.5) 

where 

-ua/3 _ a pu /3 >..-y p.~ p~ 
I LJ-L/,I - f J-L f /,I 'T/p>.. u -y, (3.6) 

is the "hamiltonian" operator that acts over ha /3 in standard linearized gravity as described 

in the preceding section and in ref. [6]. 
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As claimed before, the Rarita-Schwinger equations in flat space-time turn out be the 

square root of the linearized Einstein field equations. Obviously, we have no contribution 

of any matter or gauge field. 

Electromagnetic Interaction for Spin 3/2 Fields� 
from Supergravity N ==2� 

We present the electromagnetic coupling of spin 3/2 fields by using Supergmvity N=2 [10], 

since it naturally incorporates the graviton, the electromagnetic field and two gravitinos. 

The lagrangian for Supergravity N=2 is 

£ -~R - !q,i fJ.Lvpa,... ,... D Wi - ~F Fo:/3 (4.1) 2 2 J.L 15 I V P a 4 0:/3 

+ 40q,~[e(FJ.LV + FJ.LV) + t5(FJ.LV + FJ.LV)]wtij 
, 

where the elements of this lagrangian are the same that in the precceding section and 

FJ.LV = t f J.Lvo:/3 Fo:/3 is the dual of the usual electromagnetic fields strenght tensor and 

FJ.LV = oJ.LAv - ovAJ.L - 2~[W~ wt - wt Wt]fij is the supercovariant curl. The appearance of 

the fij in the lagrangian and in the above equation has to do with the fact that, as mentioned 

in the introduction, we are leading with a larger supersymmetry. This is reflected in the 

above expression, in which the fij mix up the interaction of the two gravitinos. 

After linearizing the resulting field equations by following the same proccedure as in the 

previous section, we find 

K,fij .
LCO:J.Lv/3,...,... !:) ,T,i _ _ [Fo:/3 + 1,... LCo:/3pa F ]wJ - 0 (4.2) 
'" I 5 I J.L U v 'i' /3 0 '2 15'" pa /3 - . 

Notice that the term in squared brackets F+o:/3 == Fo:/3 + t t 5fo:/3pa Fpa is exactly the inter­

action previously found in section 2. This term has been also deduced from a consistent 
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gauge field theory and is precisely the dipole term found by Ferrara et at [5] following a 

lagrangian procedure based on demanding 9 = 2 for arbitrary spin paricles. In their article 

they have shown that this term cancells divergences and avoids superluminal velocities in 

systems of spin 3/2 particles. For these reasons the solutions associated to (4.2) and the 

previously proposed interaction (2.7) should not have any physical inconsistencies. 

Equation (4.2) can be shown to be the generalized Rarita-Schwinger equation 

(4.3) 

where 91 = i; is the coupling constant, and as mentioned in section 2, it is related to the 

gravitational constant K. 

Thus, we can associate to Eq. (4.3) the constraint 

(4.4) 

which is essentially the same constraint deduced in (2.7) but here 6's and f'S factors appear 

because of the enlarged supersymmetry we are working with. 

By using the anticommutators of section 3 and 

(4.5) 

we get the algebra 

2+ 2Y1 (Fpa F>'7 + ~05(FpaF>'7 + F>'7Fpa) + Fpa F>'7) (,j (/k 

+ y, (8'j (tkOp( - iF>'7.a + 2F>'7Fa - hi05F>'7,a) (4.6) 

+ (,j 8/k O>. ( - iFpa ,7 + 2Fpa F7 - V2i05Fpa.7) ) ] . 
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The first term in the last equation is the hamiltonian for linearized gravity discussed before 

up to delta factors 

(4.7) 

The second of these terms is precisely the generalized energy-momentum tensor for the 

electromagnetic field found in section 2 up to epsilon factors, that is 

(4.8) 

This result contributes to corroborate the proposed generalized energy momentum tensors 

(2.4) and (2.8). However, there is an extra term of interaction, this term is 

(4.9) 

as already mentioned in section 2 this expression contains the information of terms like the 

spin coupling and it deserves further study. 

Yang-Mills Interaction for Spin 3/2 Fields� 
from Supergravity N =4� 

Now we are in a position to explore the coupling of a Yang-Mills field with Rarita-Schwinger 

field. As a Supergravity model that involves a non-abelian Yang-Mills field we take Super-

gravity N=4 [10,?]. 
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In the philosophy of the preceding calculations we can associate a constraint to the field 

equations for the gravitinos, after eliminating the scalar and the spin 1/2 fields, it turns out 

to be 

'a{3 _ a{3 (I: O'J.L'V (F-J.LV ~2'0' FJ.LV)) iOi j ( + ~2' 0') a.{3S·, - E ViJ' P + 92 ('") - V L:t 5 (. ') + - eA V L:teB 5 CT , (5.1)
tJ - J.LV tJ tJ 2K 

where now the coupling constant i: and the contribution of the non-abelian field is given 

by 

F PO' k APO' ~2 '0' (3k BPO' (5.2)(ij) = ct(ij) k + V L:t 5 (ij) k , 

and 

(5.3) 

(5.4) 

are the non-abelian Yang-Mills fields. In Eqs. (5.1) and (5.2) the indices i and j refer to 

the four gravitinos and the components of the matrices alpha and beta that generate the 

SU(2) X SU(2) symmetry of supergravity N=4. Notice that in the constraint (5.1) we have 

preserved the notation of ref. [11] and the difference in the definition of /5 is obvious with 

respect to that of the preceding sections. In order to recover the notation used before we 

have to perform the sustitution -iB5 ~ B5 , thus the constraint (5.1) becomes 

'a.{3 - a.{3 (c. '0' J.Lp' v (F- J.LV ~2()' FJ.LV )) iOij ( ~2 0') a{3Sij = E J.LV VtJ + 92 (ij) + V L: 5 (ij) + 2K eA - V £€B 5 CT , (5.5) 

By using anticommutators as in the preceding sections, we get the algebra 

2 (FPO' F).."/ 1 0' (F- pO' F).."/ FPO' F- ).."/ ) F- pO' FA).."/ )+ 292 (ij) (kl) + .y2 5 (ij) (kl) + (ij) (kl) + (ij) (kl) 

c"o'P( ·F-).."/'0'+2F-).."/P'0' ~2·(}'F).."/'0')+ 92 ( v tJ - t (kl) (kl) - V L:t 5 (kl) 
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1: oA>,( ·F-pa,'Y + 2F-pa pA'Y ~2·0A FPa,'Y))]+ ulk - t (ij) (ij) - V L:t 5 (ij) 

(5.6) 

We can identify terms and the first of them is essentially the same tensor found in (2.2), it 

gives us the linearized operator for the Einstein field equations up to delta factors. That is 

vOl{3 1: •. 1: _ 01 pa {3 >''Y D D 1: .. 1: 
,tlJ.vU~JUlk - E IJ. E v 1Jp>.rar'YU~JUlk· (5.7) 

The second term is the Yang-Mills field energy momentum tensor obtained in section 2, 

corresponding to the one deduced in (2.13) by taking the square root of linearized gravity. 

This term is: 

2 01 pa {3 >''Y (F F292 E IJ. E v pa(ij) >''Y(kl) (5.8) 

in this case the latin indices refer to the components of the a and (3 matrices mentioned 

before, these indices apply over the different gravitinos. The following term is the Co!­

responding to the interaction term (2.14) for the Yang-Mills field in comparison to that 

obtained in section 2 (4.9) 
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I: o~.x( 'p-P<1,'Y 2P-P<1 p~"Y ~2'O~ PP<1 I"Y))]+ ulk - t (ij) + (ij) - V:L.t 5 (ij) . 

(5.9) 

+ 

Obviously these interaction terms are much more complicated than those obtained in (2.14). 

They provide however a different approach to our square root procedure developed in section 

2, and they should be the subject of future research. 

Conclusions 

We have discussed the problem of the non-minimal electromagnetic and Yang-Mills coupling 

for the spin 3/2 field. We took advantage of a precceding work where we showed the fact 

that the Rarita-Schwinger equations in flat space-time are the square root of the linearized 

Einstein field equations. This fact was used in order to find out the way gauge fields should 

couple with spin 3/2 fields by implementing appropriate generalized energy momentum 

tensors on the linearized Einstein field equations. In particular for the electromagnetic and 

Yang-Mills fields, these generalized energy momentum tensors were build up and inserted 

in the linear gravity equations. This proccedure allowed us to take the square root of the 

system consisting of linearized gravity plus matter (gauge fields), thus obtaining modified 

Rarita-Schwinger equations containing the pursued coupling with gauge fields. Similar R-S 
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equations were obtained by linearizing Supergravity which enforces our proposal and at 

the same time provides an alternate scheme. When we square these equations, linearized 

gravity plus the generalized energy momentum arise, but also expected interaction terms 

analogous to the spin-orbit coupling terms of the Dirac and Klein-Gordon equations. These 

interesting terms deserve future study. 

In the case of electromagnetic interaction, the coupling obtained by us coincides with 

the one found by Ferrara et al [5] by a very different procedure, namely by demanding 

g = 2 at the tree level for arbitrary spin particles. They obtained an extra dipole term in 

the equations for these fields. This dipole term avoids the bad energy behavior in systems of 

spin 3/2 particles and the physical inconsistencies discussed in ref. [3]. It is to be remarked 

that with our proccedure it was also possible to find out the interaction with Yang-Mills 

fields. 

The electromagnetic and non-abelian Yang-Mills fields interaction terms are both of the 

form 

Field + 'YsDual Field. (6.1) 

In our square root approach it is always possible to add to the above interaction any other 

gauge and matter fields. The fact that we were able to obtain the interaction with Yang­

Mills besides the electromagnetic field for spin 3/2 fields allows us to construct a variety 

of models with possible interesting phenomenological implications. This is the subject of 

future work. 

It is interesting to mention that a term of similar structure was implemented by Cuc­

chieri, Porrati and Deser [12] by analyzing the gravitational coupling for higher spin massive 

fields, where the Field of the above expression (6.1)is the Riemman tensor itself. This hap­

pens, in particular, when spin 5/2 is considered. 
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