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Abstract 

A serniclassical approach to study pure Coulomb excitation of 
20!lPb giallt dipole isovector resonance is examilled. We consider medium 
energy projectiles and assume the target excitation to be described by 
a simple Goldhabcr-Teller model. It is shown that the main features 
concerning the a,lIgular distribution are obta.illcd in the angular range 
described by the model and an estimate is made of tile pure Coulomb 
dipole contributioll to the measured cross sections. 

• SUIJlJorted by eN 1'" - Brazil 

The use of medium energy heavy iOlls to excite giant resonances in nuclei 
has provided new perspectives for the study of that sort of nuclear collective 
motions. In particular, there have been extensive discussions of thc eJfect 
of the Coulomb excitation by nlcdium cnergy projectiles Oil giallt reSOllauce 
cross sections [1 J. 

The result of the analysis of the Coulomb excitation process in terms 
of the equivalent virtual photons have pointed out to the very interesting 
fact that at incident energies aroulld or higher than 50 MeV/nuclooll, the 
giant resonance cross section with excitation energy between 10-20 MeV is 
dominated by the Coulomb interaction. Thus, within that rallge of energy 
the large enhancement of the observed giant resonance cross section is mainly 
due to the strollg increase of the Coulomb excitatioll. 

In this paper we intend to show how one could calculate the giant dipole 
resonance angular distribution using a semiclassical approach for the pure 
Coulomb excitation of 208Pb induced by deuterons or alpha particles with 
incident energies in the region of interest and how one could estimate the 
contribution of that sort of giant resonance to the measured cross sectiolls 
for forward angles. The method [2] makes use of the quantum phase space 
Wigner function [3J associated to a simple model describing all isovector 
Goldhaber-Teller dipole vibration degree of freedom for the target lJuclei [4], 
while the projectile is treated as a strudureless particle lllovillg under a pure 
Coulomb force. 

Although the present method could be applied to any killd of reactions, 
for convenience we are considering a 1I0ureactive collision represented as 

A + BC(n) ------+ A +BC(m) , (1 ) 

where n and Tn refer to any quantum vibrational numbers to oe specified 
later. 

On what concerns the target nuclei, we assume that it is constituted of two 
masses, Ale (neutrons) alld Mb (protons) vibrating along the x-axis. Through 
an adaptation of a coorJillate transformation and an appropriatc scaling 
proposed by Secrest alld Johnson [5], the two body oscillator system plus 
projectile can be replaced by an equivalent one body vibrator plus projectile. 
Therefore, in the present model, the Coulomb interaction term is considered 
as the ordinary one associated to ollly two point charges, cZtZpe2 /(1 QI-1~ I), 
being the whole system described by an appropriate kinematics where c is a 



constant [5]. 
If we assume that the vibrational motion can be described by a harmonic 

oscillator ill a n-state, the corresponding Wigner function is written as [6] 

W(fl) = (_I),,(2-):l .. (-2Eela·)L(2)( 4Eela.) (2)
TLtarget 1rh exp nw nw ' 

where Bela•• dud ware the classical energy and frequency of the harmonic 
oscillator respectively. The last term L~;)(x)  is the associated Laguerre poly­
nomial. Furthermore, since we want to consider the projectile as a struc­
ture1ess particle, its corresponding pha"e space distribution function will be 
taken as a classical distributiou : 

p(i:,P) = e5[i - ro(t)]e5[P - ~(t)] . (3) 

This indeed means that the distribution function for the projectile does not 
introduce any quantum correlation between rand p, contrary to (2) where 
the Wigner function describing the target vibration embodies at least the 
Heisenberg uncertainty correlation. In this way, at t = -00, when the 208Pb 
target is considered in its ground state, the distribution for the whole system 
is written as a direct product 

n(Q,p,p,P) = Wt~)~et(Q,P)Ppr()j(i,P). (4) 

As it is kllown, the quantuUl full time evolution of the Wigner function 
is governed by the Wigner representative of the quantum von NeumanIl­
Liouvillt~  equation [7]. In this work, however, we shall restrict ourselves 
to a semiclassical versioll of that equation which is equivalent to keep only 
the lowest order term of the corresponding n-power series for the Liouville 
operator while the quantum character is preserved in the Wigner function. 
IIcnce, the sernicla:;sical time evolution of the Wigner function is given as 

nt(Q, P,r,]1) = ap( - (t - to)Lcla.)nto(Q, P, 'r, P) . (5) 

The subscripts in n refer to time at which the system is considered and Lela.. 
is the classical Liouville operator which is defined as 

--- ()11 () ()Jl a ()11 i!- oJI 0
f (Q P1-;<P~--\---(-- - ~£l) + (DQ:1P"cia. , , , 'I - La,. :'1 ) up. ur" u DP DQ)' (6)

n U u U 1U. 7 
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H is the model Hamiltonian written in terms of the variables defined by the 
proper kinematics [5], 

p 2 p2 l\Q2 .... 
H = -,- +- +- +VCuul(c I P - Q I) , (7)

2J.lBC 2HZ 2 
where /ABC is the target reduced neutron-proton mass and m is the reduced 
projectile-target mass. The spring constant A" is our only free parameter, 
which was fitted to the 13.5 MeV isovect.or dipole giant resonance of 2O!lPb. 

In order to calculate the time evolution of the Wigner function, we could 
observe that the classical equations of motion lead to the followiug ideutity 

Ot(Q(tO ),P(tO),1-;«to),p(tU» == Oto(Q(t), P(t),'r(t),p(t), (8) 

where {Q(t),p(t),r(t),p(t)} are the phase space points at an arbitrary 
time obtained by solving classical e(!uations of Illotion for the Hamiltonian 
(7) taking {Q(to),P(to),r(to),p(to)} as the initial conditions. In fact, the 
value of the Wigner function at time t at corresponding phase space point 
{Q(to), P(to),r(to), p( to)} is idelltical to the value of the Wiguer function at 
time to calculated at a phase point generated by the classical equations of 
motion taking {Q(to), P(to), 7-;«to),p(tu)} as initial conditions. In this fo I' III , 

the calculations can be performed ill the following way. Fin;t, we assulue 
the projectile trajectory to be fixed on the x-y cartesian plane aud the time 
propagatioll is carried out by considering a mesh of poillts in the relevant do­
main of the target phase space. Each of these points (Q, P) is time evolved 
according to the six Hamilton difI"ercntial equations for the previously cho­
sen asymptotic initial conditions for the projectile, i.e., a set of parameters 
describing the laboratory energy E1ab1 momenta p"'o,pyo, impact parameter 
Yo = b, asymptotic position (xo) and mass of the projectile 7/t. In our calcu­
lations the set of 30x30 time evolved mesh points characterizillg the Wigner 
function at t = -00, allows us to calculate the target fin<\1 Wigner function 
and the excitation probability as [9] 

Pi! = Pex.: = C JWdQ, P)Wtj(Q, P)dQdP , (9) 

where Wt; is the target Wigner function corresponding to the initial state, 
while Wtj corresponds to the final one aud C is a norJllalizatioli factor. III 
particular, for the present study we have only considered the target prepared 
in its ground state at t = -00. 

:3 
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Calculations were performed for E1u.b = 218 MeV and 172 MeV alpha 
particles and E1ab = 108 MeV deuterons for the one phonon excitation case. 
The first interesting result can be seen in Fig.(l.a), where in the intermediate 
range of impact parameters (b ~  8 fm), the calculated points for the giant 
dipole resonance excitation probabilities are fitted by an exponential of the 
form 

Pexc = Ae- Db , ( 10) 

where A and D are two adjustable parameters. The fitting correlation coef­
ficient is 0.999 in all cases. 

In this semiclassical picture, the incident particle trajectories can be seen 
as cla:ssical so that we are allowed to use the standard relation for the impact 
parameter as a good approximation 

2
b = Zt Zpe _1_ (11)

2E tan(~)  

Hence, the excitation probability can be easily obtained as a function of 
the projectile scattering angle and the Coulomb excitation differential cross 
section is the direct product of the Rutherford differential cross section, cal­
culated within the Secrest and Johnson kinematics, and the excitation prob­
ability. We may observe that the location of the angular distribution peak 
within the intermediate range of impact parameters (b ~  8 fm), is given by 

. 2 

olab = r .', [(MBCZte )ZpD (12)
peak a cst t 4mc E'J 

In particular, a = (MBC Z t e2 )j(4mc) = 48.7 MeV.fm for 208Pb. Some re­
sults from our model are presellted in Table I where they are compared to 
experimental data. 

4 

Table I. The values for the experimental and calculated angles refer to the 
center of mass system. The data for E=108 MeV d - 208Pb is found in 
Ref.(8), while for E=172 MeV a - 208Pb was extracted from Rcf.(10). 

In spite of the simplicity of our model, Table I shows the good agrcemeJlt 
of the data for the peak. Furthermore, the angular distributions presented 
in Fig.(2) confirm such agreement within the range for which eq.( 10) is ap­

plicable. 
The calculated Bpeu.k for the E = 218 MeV a_ 208 Pb is verified tu lie at 

8.7° but it is not presented in Table I since the experimental angle cannot 
be conclusively inferred from data. For large angles lllore accurate results 
depend on small values for b and our model is not reliable in this region since, 
besides the vibration degree of freedom, no other structure was assigned to 
the target, no nuclear force is prescnt in our Hamiltonian and our projec­
tile is a classical punctual object. Near the calculated peak the Coulomb 
contribution is expected to be dominant and this may explain the obtained 
good agreement in the present calculation even though nuclear effects can 
contribute in that region [10]. 

Our calculations estimate the pure Coulomb contribution - for the present 
strongly collective model - of the isovector dipole giant resonance to he of 
the order of 65% of the experimental cross section for a_ 20l5 PL and 35% for 
d_ 208Pb at angles about the peak (Fig. 2). This supports the suggestion that 
the excitation of that sort of giant resonance is the dominant contribution to 

20l5 Pb,the forward angle spectra for large incident energies [8], at least for a_

in contrast to the monopole giant resonance whose excitation energy almost 
coincides with that of the former and also cOlltributcs in the saHle region. 
Calculations using the Alder and Winther approach [11] for the present model 
predict a cross section lower than ours ill the whole relevant angular domain. 
A comparison between the Alder and Winther method and ours will appear 
in a forthcoming publication. 

As a conclusion we want to note that, although assuming only an ex­
tremely simple collective nuclear Goldhaber - Teller mudel for a 2Ul!Pb vi­
brating system, the location of the peak in the illterrnediate range of the 

5 
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experimental angular distributions is well described and the above results be­
sides being a relevant argument in favour of the present semiclassical scheme 
as a method for giving estimates of the pure Coulomb excitation probability 
for the giant dipole resonance predicts the dominance of this kind of collective 
motion in the small angle medium energy experiments. 
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Figure Captions 

Fig.l (l.a) shows the numerical results for the excitation probabilities POI 
as obtained by our method and the fitting according to Eq.(9) for the 
E1&b=218 MeV a- 208 Pb case. (l.b) depicts the fitted excitation prob­
abilities POI for: 
i) E1ab=218 MeV a_208Pb; A = 0.387x 10-3 and D = 0.322 fm-\ 
ii) El&b=108 MeV d_ 208Pb; A = O.l03x 10-3 and D = 0.328 fm- I. 

20Il PbFig.2 (2.a) shows the angular distribution for the E1,,1.>=172 MeV a_

case (A = 0.487 x 10-3 and D = 0.358 fm- I) and (2.b) EIaI.>=108 MeV 
d_208 pb. Experimental data were extracted from ref.(8) and re£.( 10) . 
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