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Abstract 
Employing the Feyllman procedure of ordered exponential opera­

tors and the stationary phase method to evaluate the mult.iple integrals 
involved. we calculate the level-uossiDg probability and analyse the 
role of a resonance in t.he evolution of a two-level neutrino 8ystem. We 
compare t.hls procedure with more conventional ones, like the Landau's 
method and the ansatz of Kuo and Pantaleone and Peteov. We verify 
that our results reproduce the correct extreme nonadiabatic Umit and 
give the standard solutions in the adiabatic regime for any arbitrary 
matter density distributions. We discuss In particular the case of solar 
neutrino propagation using the standard solar model predictions for 
the matter distribution in the Sun. 

t i 
I. Introduction 

Neutrinos propagating through matter oscillate in a different way than 
neutrinos propagating in vaccum [1)-(4). This is because interactions in a 
medium modify the dispersion relations of particles traveling through. In 
quantum mechanical language, a different dispersion relation signifies a dif­
ferent Hamiltonian of the system, which gives a differcllt time evolution (~(lua­
tion for the corresponding physical system. 

Probably the most interesting consequence of the propagation in mat­
ter is the possibility of large neutrino mixing occur when neutrinos cross a 
resonance region. Such effect can be better appreciated observing the neu­
trino evolution equations in matter, which, for the two generation case, after 
neglecting irrelevant overall phases, can be written as (2) 

.~ ~ sin 20 (1 )(lie) _(0 ) (ve) 
I dt lilA - ..'1 sin 20 2'}; cos 20 - V2GF Ne ( t) vIA' 

fj, =ml-m~  is the squared mass difference of the vacuum mass eigenstales, (J 

is the neutrino mixing angle in vaccum and y'2GFN.(t) is the consequence or 
electron neutrino coherent forward scattering from electrons in matter which 
number density at the region reached by neutrinos at instant t is N.(t}. 
The physical eigenstates in matter VI and V3 are obtained from the current 
eigensta.tes Ve and VIA through a convenient two-dimensional rotation which 
di4gonalizes the 2 x 2 evolution matrix appearing in Eq. (1). Such rotation 
can be parametrized by the mixing angle in matter 9and one can write 

1I1(t) = lIe(t)COS!(t) - vlA(t)sin~(t) (2) 
v:z(t) = v.(t)sin9(t) +VIJ(t) cos O(t), 

where 8(t) is such that 

2 ]-1
sin2 28(t)=sin2 20 (2E~:~:.{t) -C0820) +sin2 20 (3)[ 

Thus 6is substantially modified by the neutrino coherent sca.ttering from the 
medium. 1£ Ne(t) .... Ot 9.... Band we recover vacuum expressions. When the 
brakets in the denominator of Eq. (3) vanishes, a resonance occurs, 9-t 7r/4 
and the mixing between flavor eigenstates is maximal. Finally, when N.(l) 
is extremely large, 9-4 11"/2. 
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It is well known that any physical information about the system of evolu­
tion equations (1) can be easily obtained if the following condition is satisfied: 
the difference of off-diagonal elements of the evolution matrix written in the 
matter physical eigenstate basis (VI, V2) are negligible compared with the dif­
ference of diagonal elements of this same matrix. In this case, matter mass 
eigenstates propagate without mixjng and one has the so-called adiabatic 
propagation. It can be verified [4) that this adiabaticity condition is hardest 
to be satisfied at the resonance point. That is why one defines the adia­
baticity parameter "1 [1), on which the evolution equations crucially depend, 
as the ratio between off-diagonal over diagonal entries of the matter mass 
eigentates evolution matrix at the resonance point: 

2 
_ 6sin 20 1!!lnNe(t)I-1 . (4)

'Y = E cos20 dt R•• 

When "1 » 1, the propagation is adiabatic everywhere. Nevertheless, if'Y is 
of order 1 or smaller, off-diagonal and diagonal elements can be comparable 
and transitions between 111 and 112 or vice-versa can occur. 

We are typically interested in calculating quantities like the averaged 
probability of finding an electronic neutrino at an instant t, if it was created 
at an instant to as a given combination of "1 and V2 [5) 

1 -­P(ve --t Vejt,to) = 2(1 +(I-2P)cos20(to)cos20(t)), (5) 

where one has introduced the level-crossing probability of one matter mass 
eigenstate to be converted into another in the vicinity of a resonance region: 

P = I < v2(t+)lvI(L) > 1
2 (6) 

and Land t+ refer to two far-away points on either side of the resonance, 
localized in regions where the propagation is adiabatic. Note that unitarity 
guarantees that P is also the crossing probability for 112 -+ III transition. 
One expects that for "1 » 1, no level-crossing occur, i.e., the propagation 
is completely adiabatic and, consequently, P = O. In this particular case, 
one easily obtains all the relevant informations about the evolution of the 
physical system just using adiabatic equations, like Eq. (5) when P = o. 
Nevertheless, if "1 is of order 1 or smaller, P ::f 0 and one bas to calculate it. 

The purpose of this paper is to discuss an alternative way to calculate 
the level-crossing probability P. We use the Feynma,n procedure of ordered 

exponential operators [6)-[8) and the stationary phase method [91 to evaluate 
the multiple integrals involved, to write a solution for the system of equations 
(1) valid for any parametrization of the matter density distribution Ne • We 
compare the obtained result for P with more conventional ones, like the level­
crossing probability from the Landau's method and from the ansatz of Kuo 
and Pantaleone and Petcov to verify a rather accurate coincidence for a large 
range of the relevant physical parameters. 

II. Conventional methods of calculating P 

The usual procedure to obtain the level-crossing probability P consists in 
solving exactly the wave equations derived from Eq. (1). One uses the flavor 
eigenstates II. and II" to write two coupled first order differential equations. 
It is possible then to decouple this system of equations eliminating one of the 
flavor eigenstates from these equations and obtaining a single second order 
differential equation involving only the resulting flavor eigenstate. 

Having the solution of the second order equation, one can calculate, for 
instance, the electron neutrino survival probability. After making asymptotic 
approximations around the production and detection points and discarding 
non-classical oscillating terms, the result, compared with Eq. (6), shows an 
expression for the level-crossing probability P. ' 

Nevertheless, exact, analytic solutions of this second order differential 
equation are not easy to be found in its most general form. It has been 
found that they exist for only a few functional forms of the matter density 
distribution: the linear (5)[10)-[13), exponential [141-[17), hyperbolic tangent 
(18) and l{r density distributions [191. These density distributions are not 
always those ones that appear in Nature. We can quote some examples. 
Supernova density distributions approach a l{r form which can not be sat­
isfactorily described by any of the above distributions. For the solar case, an 
exponential function can fit the matter density distribution predicted by the 
standard solar model [20)(21 Jfor a large range of the radial distance. But for 
the inner 15% of tbis distance, as well as for regions dose to the solar surface 
this exponential fit does not work well. 

The difficulty for obtaining general exact solutions of the evolution equa­
tion has motiv~ted  the search for alternative methods of calculating the level­
crossing probability. In fact, nonadiabatic transition probability between 
two states was calculated much time ago {Jl]-[J3] in the context of atomic 
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physics. What is called now the Landau's method was applied to neutrino 
case [5][1O}[I2}(I9} to obtain a simple expression for P: 

P = exp( -"(F), (7) 

where the quantity F depends on how N.(t) varies near resonance. However, 
this equation gives only the leading exponential piece of the level-crossing 
probability, the dominat part for large 1. In the opposite case, when "( is 
close to zero and the transition is extremely nonadiabatic, there may be other 
conbibutions to P. In fact, in reference II9), the extreme nonadiabatic limit 
for P was evaluated: 

lim P = cos2 O. (8) 
"-00 

Obviously this indicates that, at least in this limit case, the Landau's expres­
sion (7) fails. The same author developed then an ansatz for P based on the 
Landau's formula that evades this problem [22}[19} 

P = exp( --yF) - exp(-1F/sin2 9) (9)
1 - exp( -"(Fj sin2 9) 

For -y greater than order sin26 this expression for P is dominated by the first 
term in the numerator which coincides with the Landau's expression, Eq. 
(7). 

I ~ " , 
III. The Feynman procedure of ordered exponential operators 

To obtain the level-crossing probability P, the wave equations (1) have to 
be solved. We use the Feynman procedure of ordered exponential operators 
[6}-IB) to write a formal solution for any parametrization of the evolution 
matrix elements (1), in particular, for any arbitrary matter density distribu­
tion. Using Eqs. (6) and (2), it is easy to calculate the relevant level-crossing 
amplitude of probability around a resonance 

< v,(I+)lvI(L) >=� 
= AR(Ve -+ ve)sini(t+)cosi(L) - AR(v" -+ ve)sin6(t+)sin9(L)+ (10)� 
+An(ve -+ vjI)cosO(t+)cosO(L) - An(vjI -+ v,,)cos9(f+)sinO(L),� 

where the subscript R indicates transitions around resonance. 
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In order to evaluate the level-crossing probability P we have to calculate 
the amplitudes of probability appearing in Eq. (10). Therefore, we want to 
obtain a solution of the system of equations (I) hI a time interval (L, t+) using 
an arbitrary boundary condition (lie (L), 11/.(L». Let us assume that eledron 
and muon neutrino states are described by a two-component colullln spillor 
¢(f) = (Ve(t),II,,(t». In order to simplify our expressions we will introduce 
a new spinor "'(f) related to </I(t} through the following convenient phase 
transformation: 

</I(t) = exp {-~  J' dt' [~COS20 - J2GFNe(t l )] (1 - a31} tI'(l), (ll) 

where we have introduced the basis or Pa.uli matrix (l,£1i), i = 1,2,3. Since 
we are interested in transition amplitudes around resonance, and the quantity 
t1/2EC0829 - v'2GF Ne] is negligible in this region (see Eq. (3», the phase 

Jactor relating'" to </I reduces to just an irrelevant phase factor. ("JOnsequently, 
all the relevant informations about the physical system we are int.erested in 
ace !totally given by ?/J(f). It can be shown, substituting Eq. (11) into (1), 
that 

iit/J(t) = 4~ sin 29 (ei,,(I)a_ +e-i,,(/l£1+) .p(t). (12) 

£1+ and £1_ are the lowering and raising operators and 

l'(f) =I' dt' [~ cos 20 - .hGFNe(fl)J . (13) 

We can now apply the Feynman procedure to write a formal solution ror 
Eq. (12) 

.p(t+) = Exp {-i l~t dt' 4~ sin20 k"CI'la_ +e-il/(I')a+)} .p(L), (14) 

where Exp indicates an expansional defined as a sum of multiple ordered 
integrals (6}-(B). 

If we now assume that U(t) is large, as it is the case for a large range of 
values of the physical interesting matter distributions Nc(t), the integrand 
in Eq. (14) oscillates very quickly leading to vanishing contributions to the 
integration unless some 8tationary phase fR can be found in the interval of 
integration L < tR < t+. The value of the stationary phase is obtained 
through the relation [9} 

d 6.Idiu(t) t=IR = 0 ==> 2E c0820 = V2CFNe(tn). (l5) 
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Note that this stationary phase condition coincides with the resonance con­
dition for which the mixing angle in matter 9, given by Eq. (3), is maximal. 
The major contribution to the value of the integrals appearing in Eq. (14) 
arises from the vicinity of the resonance point, i.e., the point where condition 
(15) is satisfied. This is the main result from the method of stationary phase 
and that is why we believe the Feynman procedure of ordered exponential 
operators together with the stationary phase method is indicated to analyse 
what happens around the resonance, even if the propagation in this region 
is in nonadiabatic regime, which is, according to our previous discussion, 
difficult to analyse through other procedures. 

Assuming that the condition (15) for the existence of a stationary phase 
is satisfied, Le., there exists a resonance, we can write expressions for the 
amplitudes of probability which enter in Eq. (10). Thus the amplitude of 
probability AR(lIe -+ II,,) in a resonance region is simply given by the upper 
off-diagonal term of the 2 x 2 matrix of the Eq. (14) calculated through the 
stationary phase method [9]. The other relevant amplitudes, AR(lIe -+ vel, 
AR(V" -+ Vel and AR(II" -+ v,,) are given, respectively, by the upper diagonal, 
lower off-diagonal and lower diagonal elements of the same matrix. 

Let us now calculate the first order contribution of these amplitudes. If 
we want to evaluate the lie -+ II" transition, terms accompanying 0'+ in Eq. 
(14) have to be considered and we can write 

I An(ve - V,.) = -i 211" 1":,~1')r~CR& sin 28exp [ie(tR) +i~]  . (16) 

I We have applied the stationary phase method (9] to evaluate the relevant 
Iintegral. Observe that this result is only valid if condition (15) is satisfied 
Isomewhere along the neutrino trajectory, otherwise AR(ve -+ II,,) is negligibly 
Ismail. 
I Eq. (16) is just a first order approximation. It can be improved analysing 
Ithe upper order terms in the expansion of the expansional (14). It is not 
Idifficult to verify that contributions to lie - II" transitions come from terms 
lof order odd in this expansion. Since we are assuming that we have only 
one stationary phase, the expansion in all orders can be calculated and we 
lobtain: 
I 

AR(Ve -+ v,,) = -i2{{1 - e+e- {6 + ...}exp [ie(tR) + i~], (11)I 

where 

1r lePe(t) 1-1 A .
{= \1 2 "di2 4E s1029. (18) 

C='a 

For t2 < 1, the series appearing in Eq. (17) is convergent (23] and the 
whole amplitude can be written as 

AR(ve -+ v,,) = -i 1 ~{{2 exp [ie(tR) +i~] . (19) 

In a completely analogous way we evaluate the opposite v,. _ V transitione 
amplitude 

AR(II" - vel = -i 1 :{{2 exp [-ie(tn) - i~]  , (20) 

as well as the survival amplitudes of probability, given now by terms of even 
order in the expansional 

1 -e2 

AR(Ve - lie) = AR(V" -+ v,,) = 1 +ei ' (21) 

Note that the electron and muon neutrino survival amplitudes are equal to 
each other while "_ -+ Vp and v" -+ "_ transitions differ by one phase factor. 

Finally we can put Eqs. (19)-(21) into (10) and (6) to obtain the final 
expression for the level-crossing probability: 

(l_t2 )2 - ­p = tw sin2[8(t+) - 8(L)) 

+(1.:i~)2  {cos2[9(t+) - 9(L)) + cos2[9(t+) + 9(L)J} , 
(22) 

where we have again neglected oscillating terms. Supposing that the neutrino 
production and detection positions are far above and below the resonance 
region, respectively, it is natural to consider 

- 1r ­
8(L) = 2 and 8(t+) =6. (23) 

Furthermore, since the second derivative of e(t), Eq. (13), is essentially the 
first derivative of the matter density distribution Ne(t), we compare Eqs. (4) 
and (18) to conclude, after evaluating the involved quantities at the resonance 
point through Eq. (15), that 

,
I 1r 

t - -"'(.
'a 

3 
- 16 (24) 
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lnteresting enough, we observe that in the extreme Donadiabatic limit, when 
1 = (16/?r)e2 -. 0, we recover from Eqs. (22)-(23) the correct limit for P 
presented in Eq. (8), differently from what happens with Landau's expression 
(7). Without any ansatz, we have obtained the correct nonadiabatic limit. 

This result is shown in Fig. 1 where we compare our expression for P, Eq. 
(22), with the usually accepted expression for this same quantity, Eq. (9). 
We assume an electron density distribution decreasing exponentially along 
the neutrino trajectory [20J[21] 

Ne(t) = 2.4 X 1026 e-C/(O.09 Solar Radius) crn-3 , (25) . 

which is in good agreement with the standard solar model predictions for 
the matter density distribution inside the Sun, except for regions close to the 
solar center or t.o the solar surface and implies that F appearing in Eq. (9) 
is F = 1 - tg20[14}-(11]. 

We observe from Fig. 1 that our expression (22)-(23) for P coincides 
with the conventional expression (9) for small values of 1, i.e., in the extreme 
nonadiabatic regime. For '1 of order 1, three cases have to be consider. For a 
large range of values of 9 (9 of order or smaller than O.2), this agreement is 
rather accurate everywhere. For 9 J::f 0.5, a disagreement becomes appreciable 
in the region where 1 is around 1. Finally, for maximal neutrino mixing angle 
in vacuum, 0 -+ ?r /4, both expressions (9) and (22) coincide again and are 
approximately equal to 1/2 independently of 1. Obviously, this is not an 
interesting physical case and is usually discarded. 

It should be noticed that the conventional expression (9) differs from the 
numerically calculated values of P (16] in regions where 1 $:::S 1 and 0 is large 
(0 ~ 0.4 - 0.6). We believe, furthermore, that our expression (22) does not 
have a strong dependence with 8. Thus we expect the same accuracity of 
our expression for small or large 9. Our main limitation comes from the lack 
of an expression for P if (2 = (x"/16)7 > 1. Nevertheless, this is exactly 
the begining of the adiabatic regime and we know that in this region P goes 
quickly to zero. 

I 

IV. Conclusion 

Using the Feynman procedure of ordered exponential operators and the 
stationary phase method to solve the multiple integrals involved, we have 

9 

analysed the role of the resonance in a nonadiabatic neutrino propagation in 
a concise and general way. We have obtained an expression, Eq. (22), for 
the level-crossing probability valid for 1 of order or smaller than 1, which 
reproduces the correct extreme nonadiabatk limit and coincides with the 
conventional expression for P, Eq. (9), for a large' range of the involved 
parameters. 
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Captions 

Figure 1: Comparison of our expression for the level-crossing probability 
P, Eq. (22), (solid line), with the usually accepted expression for this same 
quantity, Eq. (9), (dashed line), as a fundion of the adiabaticity parameter 

21, Eq. (4), for various values of the vacuum mixing angle () and for e = 
(11" /16), < 1. We have assumed that the electron number density varies 
exponentially according to Eq. (25) and taken O(L) =11"/2, 6(t+) == D. Note 
that for the limit case when D --+ 11"/4, both curves coincide presenting a 
constant value 1/2, independently of 1. 
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