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The result of few-particle ground-state calculation employing a two-particle non

local potential supporting a continuum bound state in addition to a negative-energy 

bound state has occasiona.lly revealed unexpected large attraction in producing a 

very strongly bound ground state. In the presence of the continuum bound state the 

difference of phase shift between zero and infinite energies has an extra jump of 11' as 

in the presence of an additional bound state. The wave function of the continuum 

bound state is identical with that of a strongly bound negative-energy state, which 

leads us to postulate a pseudo bound state in the two-particle system in order to 

explain the unexpected attraction. The role of the Pauli forbidden states is expected 

to be similar to these pseudo states. 
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1. INTRODUCTION 

Usually, in quantum mechanical problems with short-range local potentials theIi 
,I 

binding energy of the two-particle system reflects the strength of the underlying 

potentia1.[l] Qualitatively, the stronger the potential, the larger the two-particle 

binding. For an S-wave square-well potential the quantity VoR could be considered 

a measure of the strength of the potential, where lfo is the depth of the square

well and R is its range. [1] Whenever Vo and/or R increase the potential becomes 

stronger and the two-particle binding increases. Though, for a realistic local poten

tial the depth and the range parameters, Vo and R, cannot always be unambiguously 

defined, the two-particle ground state binding serves as an useful parameter to indi

cate the strength of the potential. One also has the very useful Levinson's theorem 

in this case. Levinson has shown that for a short-range local potential the phase

shift at zero energy 8(0) and the phase-shift at infinite energy 8(00) are related by 

the condition[l] 

8(0) - <5(00) = N-rr, (1) 

where the quantity N == [(8(0)-8(00))/-rr] is the number of bound states and should 

be directly related to the strength of the potential. 

The above simple argumentation does not necessarily work in the case of a 

general partly attractive and partly repulsive non-local potential. Such non-local 

potentials are common in various areas of physics and usually they appear when 

an effective interaction, suppressing certain internal degrees of freedom, is derived. 

This happens, for example, for an intercluster potential in nuclear physics, where 

the nucleonic degrees of freedom are suppressed. Such a potential between clusters 

appears naturally in the resonating group method.[2) Non-locality of the effective 

interaction also appears naturally in the Feshbach unified theory of nuclear reac

tions.[3] The non-local intercluster interaction in the resonating group method seems 

to be, in general, stronger than an equivalent local counterpart. For example, the 

resonating group calculation of the relative motion between two alpha particles often 

requires the wave function to have additional node(s) at small distances indicating 

the presence of excited states in the system.[2,4} Also, the expression [8(0) - 8(00)] 

may have an extra jump of -rr (or several -rr's) not dictated by the Levinson's theo

rem. This is true for the S wave a - a scattering in the resonating group method[2] 
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and for the S wave spin quartet neutron-deuteron scattering[5] using the Faddeev 

equations.[6,7] These facts suggest the existence of excited state(s) not present in 

the system. They are the so called Pauli forbidden states[4, 5] which contribute to 

N on the right hand side of Eq. (1).[5} 

All the above mentioned features of a forbidden state can be simulated in a sim

ple non-local rank-one potential model possessing a continuwn bound state (CBS)[4, 

8] in addition to the usual negative-energy bound state(s). We shall occasionally 

refer to a usual negative-energy bound state simply by bound state. In order to 

possess a CBS the potential should, however, be partly attractive and partly re

pulsive.[9] The difference [6(0) - 6(00)} for such a potential has the required extra 

jump of 'lr.[4, 5, 9] Also, the wave function for relative motion has a node at short 
; I 

distances. Somehow, the behavior of the phase-shift or the wave function suggest 

the presence of an excited state of the system. In the presence of a CBS the bind

ing energy of the usual bound state does not necessarily reflect the strength of the 

potential. Whenever this potential is used in a multi-particle system it produces 

stronger binding compared to that produced by an 'equivalent' local potential which 

produces the same negative-energy bound state.[lO, 11] However, we recall that a 

local potential cannot reproduce all the peculiarities of the non-local potential.[4] 

We study this potential model yielding a CBS in some detail with a view to 

understand the origin of this unexpectedly large attraction. Also, as this potential 

mod.el simulates the essential features of a non-local intercluster potential which 

excludes the Pauli forbidden state(s) our study will shed light on the unexpected 

behavior[4] of such a potential. 

A CBS is an S-matrix pole on the real positive energy axis.[4,9] The association 

with the bound state lies in the fact that the corresponding wave function, 4>, has 

no outgoing propagation. It is in fact a localized function of momentum 4>(p) and 

its Fourier transform 4>( r) decreases exponentially like a bound-state wave function. 

The number N in the Levinson's theorem (1) should include all exponentially de

caying states - bound state(s) and CBS. A virtual state is exponentially growing 

and does not contribute to the Levinson's theorem, although it implies attraction. 

Tabakin[12] constructed a rank-one separable N N potential with a two-term 

form factor, capable of reproducing S wave N N phase shifts upto moderately high 

energies where these phase shifts become negative in agreement with experiment. 
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This potential supports a CBS in addition to a bound deuteron. A class of similar 

potentials has been identified later. The use of these potentials in (three-nucleonf 

3N and four-nucleon bound-state calculations[lO] leads to ground states of unusually 

large binding of several hundred MeV's in addition to a weakly bound excited state. 

This puzzling result has eversince been studied by several group of workers. [10, 11, 

13,14] 

One may ask if the Tabakin potential reproduces the experimental N N phase

shifts reasonably well why does it fail drastically in the 3N bound-state problem? 

Strictly speaking, the experimental N N phase-shifts become negative at higher en

ergies and eventually goes to zero at infinite energy in accordance.with the Levin

son's theorem reflecting the presence of a single bound deuteron. On the other 

hand, the Tabakin phase-shift becomes negative and goes to -1r at infinite energy 

reflecting the presence of a CBS in addition to the bound deuteron in violation of 

the usual Levinson's theorem (1); for a Tabakin-type potential [0(0) - o(00)] = 21r. 

It is this CBS and the associated behavior of the phase-shift which is responsible 

for the collapse. The collapse becomes more drastic, contrary to expectations, as 

the CBS moves to higher energies. [10,11,14] 

This problem is best studied using the momentum-space connected-kernel three

particle dynamical equations.[6] The input to such calculations are the negative

energy two-particle t matrix elements. The presence of the CBS, or the unusual 

behavior of the positive-energy phase-shifts has a dramatic effect on the positive

energy t matrix elements but does not have a direct consequence on the negative

energy t matrix elements. It is interesting to investigate how does the presence of 

a CBS manifests at negative energies leading to the collapse. 

We shall see that because of an unexpected pole cancellation the momentum

space CBS wave function is found to be independent of the energy of the CBS and 

be identical with that of a negative-energy bound state of a one-term separable 

Yamaguchi potential.[15] Both the binding-energy and the potential parameters 

of this negative-energy bound state, which we shall call a pseudo bound state, are 

determined by the parameters of the original potential. There are no free parameters 

in defining the pseudo bound state. We shall see that whenever the energy of this 

pseudo bound state is large the three- and four-particle systems experience bound 

state collapse (BSC). In other words, as in the case of the local potentials, if we 
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would like to use a single energy to reflect upon the strength of these non-local 

potentials in situations of collapse, it is not the binding energy of the bound state 

but the binding energy of the pseudo state which should reflect the real strength 

of the potential while calculating the binding energy of the ground state of tpe 

few-particle system. 

First, we illustrate the idea of the pseudo state in the case of the S wave spin 

triplet N N channel. We use a partly attractive and partly repulsive non-local 

separable potential, possessing a CBS but no real bound state, to simulate the 

bound state and scattering properties in this channel. This non-local potential 

simulates a pseudo-deuteron at the correct energy. Consequently, the phase-shifts 

and the Fredholm determinant for the model containing the CBS simulates the 

actual state of affairs reasonably well except near the deuteron pole. If this non

local potential containing the CBS is used in a three-boson bound-state calculation 

it will produce an energy comparable to that obtained in a three-boson calculation 

employing a Yamaguchi potential with the range parameter 1.4fm- 1
, supporting a 

deuteron of 2.225MeV. 

We suggest that the BSC could be understood in terms of the pseudo bound 

state. Whenever the energy of the CBS increases, more dramatic is the collap~e.  

As we would like to understand the strength of a potential in terms of its discre.te 

spectrum, we hope that a simple model which includes the negative-energy bound 

state of the original non-local potential and replaces the CBS by the pseudo bound 

state should suffice. Usually, the collapse is most dramatic when the B" >> Bb, 

where B. is the binding energy of the pseudo state and Bb is the binding energy 

of the original bound state.[10, 11] As one of the objectives is to understand how 

a CBS leads to BSC, we shall be limited to the simple case where B" >> Bb, and 

in this qualitative study just to simplify the model we neglect the physical bound 

state in the presence of the very strongly bound pseudo state. We find that the 

presence of this pseudo state alone in a simple model with no free parameters is able 

to explain the essential features of the BSC. The parameters of this simple model 

are determined by the parameters of the original non-local potential. 

Recently, the general phenomena of BSC in the presence or absence of CBS 

has been interpreted to be a short-range mechanism.[14] Here we make a special 

model in the presence of the CBS in order to understand the BSC in terms of a 
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pseudo bound state. It is to be noted that the present model is consistent with the 

above interpretation in possessing a short-range in situations of BSC in addition to 

the pseudo bound state. For a fixed pseudo state energy the increase of the three

particle ground-state binding with a decrease of the range of potential is shown to 

be an approximation to the Thomas effect[16] as in Ref. [14] 

In Sec. II we present the separable potential model that we employ. We also 

consider in some detail the problem of the CBS in this case and provide arguments 

for replacing the CBS by the pseudo bound state. In Sec. III we illustrate our 

idea in the case of the N N problem in the S wave spin-triplet channel. In Sec. IV 

we present the alternative model incorporating the pseudo bound state. We also 

compare the results for the original non-local separable potential model and the 

alternative model both for the two- and the three-particle systems and find that 

the alternative model provides a realistic description of the actual state of affairs in 

situations of collapse. Finally, in Sec. V we present some concluding remarks. 

II. THE MODEL 

The phenomenon of BSC has been observed for many separable two-particle 

potentials of the Tabakin-type.[12] A Tabakin-type separable potential is mainly 

identified by a momentum space form-factor g(p) which may change sign as a func

tion of p2. Consequently, the two-particle phase shift changes sign at higher energies. 

The phe~omenon  of BSC is common to all Tabakin-type potentials. The BSC is 

not only observed for rank one potentials, it has also been observed for higher rank 

potentials. [IO] 
We consider the following Tabakin-type S-wave two-particle potential in the 

momentum spacerS] 

V(p, q) = >.g(p)g(q), (2) 

with 
Q'} Q'2 

(3)
g(p) = (p2 + f3f) - (p2 + f3i)' 

_ K(p2 _ p~) (4) 
- {p2 + f3f)(p2 + f3D ' 

where K == (o} - 02) and p~  == (Q'2f3~ - Q'lf3D/ K is the position of the CBS. We 

consider this potential with attractive and repulsive parts because of its simplicity 
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which allows us to understand the origin of the additional strength in the presence 

of the CBS. All the equations of this study are written in units n= 2J.L = 1, where 

J.L is the reduced mass. For the N N system the calculation was performed with 

n? /2J.L = 41.47MeVjm2 •� 

The two-particle t-matrix for this potential, at energy E = P, is given by� 

2t(p, q, k ) = g(p) T(~2)g(q), (5) 

where 

r(k2) =1 - (2/7r)>.lXl g2(p)p2dp/(k2 - p2 + iO) (6) 

>.a~ >.a~ 2>.al a2 7 
=1 - 2/31(k + i/31)2 - 2f32(k + i(32)2 + (k + if3t}(k + i(32)(f31 + (32)' () 

The phase-shift 0 is defined in this case by 

(k k k2) __ ei6sino 
t " - k' (8) 

For potential (2) the momentum space Schrodinger equation for a bound state or 

CBS at energy Eb, described by the wave function <p, is given by 

1 2 roo 
<p(p) = (Eb _ p2 + iO)g(P)>':;;: 1 q

2
dqg(q)<p(q), (9)

0 

= C g(p) 
(10)(Eb - p2 + iO)' 

The normalization constant C is determined by the condition 

2 {CO
:;;: 1 <p2(p)p2dp = 1. (11)

0 

If the system has a bound state at Eb = -'Y2 its wave function is given by 

g(p) 
<I>(p) = -C ("12 +p2)' (12) 

In the present study the binding energy 'Y2 of the N N system is always fixed at 

the value (2.225/41.47) jm-2
, when we vary the parameters of potential (2). This 

corresponds to a deuteron binding of 2.225 MeV. 

If the potential (2) possess a CBS at energy p~,  in addition to g(pc) = 0 we also 

have T(p~)  = 0, and its wave function <Pc(p) is given by 

g(p)
<l>c(p)=-C--2-2)' (13)

1 
P - Pc 

=-C K. (14)
(p2 + f3l)(p2 + f3i) , 

where we have substituted for g(p) from Eq. (4). Unlike the bound-state wave 

function (12) which depends on binding energy 'Y2 , the CBS wave function (14) is 

independent of energy p~.  We note that at large distances the CBS wave function 

decays exponentially as exp(-f3ir) and not as exp(-pcr). A comparison between Eqs. 

(12) and (14) reveals that the CBS wave function (14) is identical with the. bound

state wave function (12) provided that we identify the binding energy 'Y2 with f31 
and the form-factor g(p) with (p2 + f3j)-1 , where f3i (f3j) is the smaller (greater) of f31 

and f32' This association is made because in the configuration space the bound-state 

wave function of binding 'Y2 should behave as exp( -'Yr) asymptotically. 

The original potential which supports the CBS has an attractive and a repul

sive parts. However, because of pole cancellation the CBS wave function (14) has 

the behavior of a normal negative-energy bound-state wave function with a purely 

attractive separable potential. It is this negative-energy bound state which we call 

a pseudo bound state which will be seen to playa crucial role in predicting the 

collapse. The parameters of this pseudo state is given completely by the original 

non-local potential. 

The phase-shift difference [0(0) - o(oo)J of potential (2-4) has an additional 

jump of 7r not accounted for by the normal bound state, or its wave function has a 

node[4} at short distances reflecting the presence of a second bound state. This is 

the pseudo bound state predicted by the CBS. 

Rupp, Streit, and Tjon[l1] considered a local potential equivalent to a potential 

of type (2-4) and calculated the two-particle bound-state wave function with this 

potential. The wave function showed a node typical of an excited state. This fea.ture 

is consistent with the introduction of the pseudo state in addition to the original 

bound state. 

III. ILLUSTRATION IN A SIMPLE MODEL 

We would like to illustrate in a simple model that the presence of a CBS could 

simulate a pseudo bound state. We consider the N N problem in the S wave :spin
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triplet channel employing a purely attractive Yamaguchi potential[15). This is the 

special case of potential (2) with a2 = O. The parameters of this potential are 

determined by fitting to a deuteron binding of 2.225MeV and aNN spin triplet 

scattering length of 5.4fm. This results in >.a~  = -7.45fm-3 and /31 =1.4fm-1. 

We would like the full non-local potential (2-4), possessing only a CBS and 

no true bound state, to simulate the results of the above Yamaguchi potential 

via a pseudo deuteron of 2.225MeV binding. For this purpose the parameters of 

the Tabakin-type potential (2-4) have to be appropriately chosen. The discussion 

related to Eq. (14) suggests that we choose PI = O.23fm-1 , and /32 =1.4fm-1 ; /3; 
is the deuteron binding. The parameter a2 is taken to be 1. We would like this 

potential to have a CBS. The position of this CBS, p~,  is still arbitrary. Once t4is 

position is given the other parameters of the potential, >. and all are determined 

using the conditions g(pc) = 0 and 1"(p~)  = O. We varied the position of the CBS 

a little in order to have a good agreement between the calculations of the two 

potentials. Finally, we used Pc = O.lfm- l , al = 0.032 and >. = -9.57 fm- 3. The 

result is very weakly sensitive to the value of Pc provided that for p~ we choose an 

energy smaller than deuteron binding. 

It is interesting to comment at this stage that once a separable non-local po

tential possessing a CBS is given, the passage to the separable potential possessing 

the pseudo bound state is unique as we have commented in the last section. In this 

section we would, however, like to predict a CBS which simulates a given (pseudo) 

bound state. In this situation there is some arbitrariness in defining the position of 

the CBS. 

In Fig. 1 we plot the phase-shifts of the original Yamaguchi potential possessing 

a deuteron and those simulated via the Tabakin-type potential possessing a CBS. 

In Fig. 2 we plot the function r(P) of Eq. (7) for the two potentials. It should be 

noted that this function is the usual Fredholm determinant. The agreement between 

the two calculations is good except near zero energy. In both cases [8(0) - 8(00)) 

= 11". For the Yamaguchi potential the bound state contributes to N and for the 

Tabakin-type potential the CBS contributes to N in the Levinson's theorem (1). 

For the Yamaguchi potential, 1"(P) has a zero at the deuteron energy; for the 

Tabakin-type potential, 1"(P) does not have a zero at negative energies. As the 

low-energy t matrix is dominated by the presence of the deuteron pole, it is natural 
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that the two results be different near the deuteron pole. If we exclude a small 

domain, -lOMeV to lOMeV, the results for the two calculations are surprisingly 

similar. For a multi-particle ground-state calculation the two potentials should 

produce similar results. We performed a three-boson calculation with this Tabakin 

potential and find a three-boson binding of 38.8MeV to be compared with 24.7l\1f eY' 

for the Yamaguchi potential.[17] These two numbers are in qualitative agreement 

with each other. The Tabakin-type potential supports no two-particle bound state; 

yet it produces a reasonable result for three-boson binding energy. 

The Tabakin-type potential in this section has a CBS and no real bound state 

and simulates a pseudo bound state at the deuteron energy. The original Tabakin 

potential has a bound deuteron and also a CBS. The CBS of the original Tabakin 

potential simulates a strongly bound pseudo state, as a consequence the triton has 

a binding of several hundred MeV's as we see in the next section. 

IV. RESULTS AND DISCUSSIONS 

In order to demonstrate the plausibility of our hypothesis we performed numer

ical calculations in a simple separable potential model including this pseudo state 

both for the two- and the three-particle systems and compared them with the orig

inal potential model supporting the CBS. On the one hand we have potential (2-4) 

supporting a regular bound state and a CBS, on the other hand we consider the 

following form-factor to be used in potential (2): 

1 
(15)g(p) = p2 + /31' 

where /3j is the greater of PI and /32' By adjusting the strength parameter>. in 

Eq. (2) the alternative potential given by Eqs. (2) and (15) is made to reproduce a 

(pseudo) bound state at energy /3?, where /3i is the smaller of (31 and /32' The pseudo 

state and the potential (15) follows uniquely from the original non-local potential, 

there are no free parameters. 

As the energy of the pseudo state is much larger than the energy of the normal 

state in situations of collapse, in order to illustrate our idea of the dominance of the 

pseudo state we have neglected the normal state and considered only the pseudo 

state in the alternate potential model. 
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In the two-particle case we compare in Fig. 3 the function T( k2) at negative 

energies for potentials (4) and (15) with {31 = 1.4fm- l , (32 = 5.73fm- l , al = 0.1, 

a2 = 1, and..\ = -1096fm-3 • In this case the original potential (4) produces a two

particle bound state at energy 2.225 MeV in addition to a CBS at pc = 1.213fm-1 

or at p~  == 61.02MeV. The alternate potential (15) has a pseudo bound state at 

f3r == 81.28MeV and a range parameter of 5.73 fm- l • We also show in Fig. ' 3 

T(P) for a nonna! Yamaguchi potential[15] with range parameter 1.4 fm- l fitted 

to the deuteron binding of 2.225 MeV. For energies smaller than about -lOOMeV 

the results for the original potential (4) and the alternate potential (15) are very 

similar. The result for the normal Yamaguchi potential fitted to deuteron binding 

is very different from the above two. 

In order to reproduce the three-particle ground state using the Faddeev equa

tions one needs the two-particle t matrix elements between energies -00 to -B3 , 

where B3 is the binding energy of the three-particle ground state. We find from Fig. 

3 that in this energy domain the function T(k 2 ) for the original potential and the 

alternate potentials are quite similar and hence it seems plausible that the alternate 

potential will be able to simulate the collapsed state of the original potential. 

With the separable potentials given by (4) and (15) we calculated the three

boson binding energies by solving the usual Faddeev equations in a routine fash

ion. [6] 

We consider the full potential (4) with a2 = 1 and {31 = 1.4fm- l
, which allows 

for the possibility of a CBS to appear. The constants al and {32 were varied arbi

trarily, and then ..\ is adjusted to yield a fixed two-particle binding of 2.225 MeV 

and a CBS. In the calculation we have maintained the parameter {31 constant (=1.4 

fm- l ) and the parameter {32 is always larger than {31' The pseudo state always 

has a binding of {3~,  or 81.28MeV produced by the alternate potential (15). The 

three-boson binding in this model should be typically about several times the two

particle binding. This puts a threshold for the three-boson ground state binding of 

about couple of hundred MeV's. Qualitatively, this explains a large binding for the 

three-particle ground stat~  via a pseudo state. 

In Table 1 we exhibit the potential parameters all {32, the position of the CBS, 

jJ ;,n,l thp cnl"'I""nl'll<lill!" tl'J""'1J:n'tid,' hilldill'" n fnr th .. r",t"ntj~ll (')".11 :,,),1 

calculation on B3 , from Ref. [18], given by 

3 (16)(B3 )LB = 2B2( 2..\) 

for the two potentials. Here B2 stands for the two-particle binding energy, calcu

lated when the potential strength is 3..\/2. The LB calculations are shown in the 

parenthesis in the last two columns. The exact results for the three-particle ground 

state for both these potentials are qualitatively similar; the LB calculations provide 

good approximations to the exact calculations. Hence the presence of the pseudo 

state explains the principal features of the collapse of the three-particle system. 

In a previous study[14] the increase of the three-particle binding for the original 

non-local potential (2-4), as the position of the CBS moves to higher energies, 

has been claimed to be a short-range effect similar to the Thomas effect.[16] The 

Thomas effect causes the three-particle ground state to collapse when the range of 

the potential is reduced while maintaining the two-particle binding fixed. 

In Table 1 the increase in the three-particle binding in the case of the origi

nal non-local potential is due to the Thomas effect. In order to demonstrate this 

point we needed to consider in a previous study[14] the average kinetic energy of 

the two-particle bound state in the case of the original potential (2-4). This av

erage kinetic energy was used to indicate the range of the potential. For a partly 

attractive and partly repulsive non-local potential (2-4) neither {31 nor {32 provides a 

precise measure of the range.[14] It is interesting to note that the Thomas effect also 

manifests in the case of the alternate potential (15), where there is only one range 

parameter {32 and this parameter should reflect the range of the potential. An in

crease of (32 denotes a passage to a smaller range while maintaining the two-particle 

(pseudo) bound-state energy fixed at 81.28MeV; consequently, the three-particle 

system tends to collapsedue to a manifestation of the Thomas effect.[16] Hence the 

present interpretation of the collapse via the pseudo bound state is consistent with 

that of Ref. [14]. 

More quantitatively, there is an interesting scaling property indicating an ap

proximation to the Thomas effect. It was demonstrated in Ref. [11] analytically 

through a consideration of the momentum space Faddeev equations that in the pres
". r'1-)C'; ~  



~---------------_._--.~  .. _..- ...._." 

B3 "" p~.  (17) 

This was also confirmed in their numerical calculations. It has also been numerically 

demonstrated{14] that for a simple Yamaguchi potential of range parameter P2' 
scaling (17) is accurately obeyed. The analytic scaling arguments of Ref. [11] 

can be trivially extrapolated to the case of a simple Yamaguchi potential, so that 

Eq. (17) holds good, in accordance with the numerical study of Ref. [14]. In 

the presence of a pseudo bound state the alternate potential (15) has the simple 

Yamaguchi form and Eq. (17) holds true in this case. This scaling has been shown 

to be a manifestation of the Thomas effect in Ref. [14]. Hence the increase of 

the three-particle binding in Table 1 with the increase of Pc and P2 is due to an 

approximation to the Thomas effect. 

V. SUMMARY 

Here we have investigated the origin of the unusual strong attraction, known 

as BSC, in the problem of multi-particle ground state while using two-particle non

local potential that supports a CBS. The presence of the CBS requires that the 

non-local potential be partly attractive and partly repulsive.[9] In this situation 

the Levinson's theorem (1) requires modification in that the number N should be 

modified to include the CBS. [4,5] 

We analyse the wave function of the CBS in a simple separable non-local poten

tial model (2-4) and find that it is identical to the wave function of a negative-energy 

bound state which is called a pseudo bound state. The energy and the separable 

potential that defines this wave function are given by the parameters of the original 

potential. The inclusion of this pseudo bound state in a simple potential model 

explains the unusual attraction in the presence of the CBS. 

Delfino et al.[14] claimed the BSC to be a short range phenomena as in the 

Thomas effect.[16] The present interpretation of the collapse in terms of the pseudo 

bound state is also a short-range phenomena as in the Thomas effect as the moqel 

that incorporates the pseudo state is found to possess a short range in the case of 

collapse. 

The pseudo bound state provides excess binding for the multi-particle bound 

state but it cannot really explain the whole multi-particle spectrum. For example, 

13 

the presence of the strongly bound pseudo state eliminates in the simple model 

the appearance of the weakly bound excited states of the multi-particle system 

present in the original potential. The original non-local potential provides this 

excess binding for the multi-particle bound state in a nontrivial fashion via the 

CBS. The purpose of the present study is not to simulate all the subtle intricacies 

of a non-local potential with attractive and repulsive parts via a simple potential 

model but just to understand how to visualize some 6f the consequences of a CBS. 

It is also to be noted that the mere presence of a CBS or an associated pseudo 

state, although, imply some additional binding for the multi-particle ground state, 

but does not obviously imply a dramatic effect as in the BSC. One has to consider 

the parameters of the pseudo state to see if it leads to a dramatic effect. 

We studied the simple separable potential model containing a CBS because such 

a potential model simulates the essential features of a non-local intercluster potential 

which excludes the Pauli forbidden states. Though we can not provide a general 

proof, it seems quite plausible that many of our conclusions should catTy over to 

the case of Pauli forbidden states. Such a proof, or even a rigorous demonstration, 

will be an welcome addition to the literature. 

LT thanks 1. R. Afnan for the kind hospitality at the Flinders University of 

South Australia and AD thanks E. F. Redish for the kind hospitality at the Uni

versity of Maryland. The work is supported in part by the Conselho Nacional de 

Desenvolvimento - Cientifico e Tecnol6gico (CNPq) of Brasil. 

14 



REFERENCES 15 Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). 

16 L. H. Thomas, Phys. Rev. 47, 903 (1935). 

1 L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968; R. G. Newton, 

Scattering Theory of Waves and Particles, Second Ed., Springer-Verlag, New 

York, 1982. 

17 R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136, B650 (1964). 

18 J. W. Humberston, R. L. Hall, and T. A. Osborn, Phys. Lett. 27B, 195 (1968). 

2 Y. C. Tang, M. LeMere, and D. R. Thompson, Phys. Rep. 47C ,167 (1978); K. 

Wildermuth and Th. Kanellopoulos, Nuc1. Phys. 7, 150 (1958); 9,449 (1958). 

3 H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958). 

4 B. Mulligan, L. G. Arnold, B. Bagchi, and T. O. Krause, Phys. Rev. C 13,2131 

(1976); B. Bagchi, T. O. Krause, and B. Mulligan, ibid. 15, 1623 (1977). 

5 I. H. Sloan, Phys. Lett. 34B, 243 (1971). 

6 See, for example, S. K. Adhikari and K. L. Kowalski, Dynamical Collision 

Theory and Its Applications, Academic Press, Boston, 1991; W. Glockle, The 

Quantum Mechanical Few-Body Problem, Springer-Verlag, Berlin, 1983. 

7 L. D. Faddeev, Mathematical Aspects of the Three-Body Problem in Quantum 

Scattering Theory, Davey, New York, 1965. 

8 P. Beregi, Nuc!. Phys. A206, 217 (1973). 

9 S. K. Adhikari, Phys. Rev. A 42, 6 (1990). 

10 G. Pantis, H. Fiedeldey, and D. W. L. Sprung, Z. Phys. A291, 367 (1979); A294, 

101 (1980). Ii 

11 G. Rupp, L. Streit, and J. A. Tjon, Phys. Rev. C 31, 2285 (1985). 

12 F. Tabakin, Phys. Rev. 174, 1208 (1968). 

13 J. E. Beam, Phys. Lett. 30B, 76 (1969), V. A. Alessandrini and C. A. Garcia 

Canal, Nuc!. Phys. A133, 950 (1969). 

14 A. Delfino, S. K. Adhikari, L. Tomio, and T. Frederico, Phys. Rev. C 46, xxxx 

(1992). 

15 16 



TABLES 

TABLE I. The three-boson binding B of the original Tabakin-type potential (2-4) ~d  

that calculated in a simple Yamaguchi model (15) incorporating a pseudo state dictated 

by the Tabakin-type potential with 02 =1 and 131 =1.4!m-1. The simple Yamaguchi 

model has the range parameter given by 132 and is fitted to a bound state at energy 

1.4!m-2• The numbers in parenthesis in the last two columns refer to LB calculation 

employing Eq. (16) 

01 132(fm-1 ) pc(fm-1 ) B(MeV)(Tabakin) B(MeV)(Yamaguchi) 

0.05 8.47 1.307 930.5 (1173) 902.3 (1086) 

0.1 5.73 1.213 545.3 (698) 644.8 (748) 

0.13 4.92 1.167 446.1 (576) 578.5 (660) 

0.15 4.53 1.149 396.3 (518) 539.4 (619) 

0.2 3.82 1.097 317.3 (420) 486.5 (549) 
I 

Figure Caption 

I,
: I 
I 

i: ' 
! . 

1. Phase-shifts of the Yamaguchi potential (dashed line) possessing a deuteron 

of 2.225MeV binding, and the Tabakin-type potential (full line) possessing a 

CBS, which simulates this deuteron via a CBS. 

2. The Fredhohn determinant r(k2 ) for the above Yamaguchi (dashed line) and 

Tabakin-type (full line) potentials at negative energies. 

3. The F'redhohn determinant r(k2 ) for the Tabakin-type potential (full line) pos

sessing a CBS and a deuteron of 2.225MeV binding, for the Yamaguchi po

tential (dotteded line) possessing the pseudo bound state of 81.28MeV bind

ing, and for the Yamaguchi potential (dashed line) possessing a deuteron ,of 

2.225MeV binding. See text for details of potential parameters. 
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