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Abstract 

A mapping scheme is presented which takes quantum operators 
associated to bosonic degrees of freedom into complex phase space 
integral kernel representativesj the procedure consists in using the 
SchrOdinger squeezed state as the starting point for the construction 
of the integral mapping kernel which, due to its inherent structure, 
is suited for the description of second quantized operators. Products 
and commutators of operators have their representatives explicitely 
written which reveal new details when compared to the usual q - p 
phase space description. The classical limit of the equations of motion 
for the canonical pair q - p is discussed in connection with the effect 
of squeezing the quantum phase space celular structure. 
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1 Introduction 

The representation of abstract operators (acting on proper Hilbert spa
ces) in terms of classical variables has attracted special interest since the 
pioneering works by Weyl [1] and Wigner [2]. Those approaches were later 
put on solid grounds [3] and constitute nowadays in a well defined tool to 
treat quantum mechanical problems in a phase space - like way. Besides 
being a particular manner of implementing semiclassical descriptions of 
quantum systems, the Weyl - Wigner scheme has interesting aspects of 
its own. In this connection the mapping procedure which generates the 
operator representative in the quantum phase space deserves a particular 
attention since it envolves the concept of decomposition of ail operator in 
an operator basis 

0== JOw(q,p)~(q,p) dq dp , (1) 

where Ow(q,p) is the well known Weyl - Wigner transform of operator 0, 
and a(q,p) is the suited operator basis for the degree of freedom we are 
treating. 

This point of view has been exploited in previous papers [4] in which 
the construction of operator basis has been studied for degrees of freedom 
that do not have a classical counterpart, mainly those manifested by a 
finite number of states. There it was shown how to generalize the starting 
definition, eq.(1), by using the Schwinger unitary operator bases [5), i.e., 

0== EO(m,n)S(m,n) , (2) 
m,R 

where now S(m, n) is the Schwinger conveniently constructed basis for the 
particular degree of freedom. The main result in that formalism was that 
O( m, n), although discrete, still is the Weyl - Wigner transform of operator 
0, which then represents it in a new discrete phase space. Besides drawing 
attention to general geometrical aspects of this discrete phase space [6], 
this formalism also points to the second quantization structure manifested 
in such quantum phase spaces. 

It is the aim of this paper to show how to implement a mapping scheme 
in such a way to produce representatives of operators in a holomorphic 
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phase space that may also describe second quantized operators. Although 
extensively used in studies on quantum optics [7], the holomorphic repre
sentation of quantum operators is also of great importance in general cases 
of low lying vibrational energy states in many - body physics [8] because of 
their inherent harmonic oscillator coherent state character, besides being 
used in path integration techniques in the context of gauge theories [9]; 
here we have adapted our mapping scheme so as to describe the quantum 
mechanical observables associated to spatial motion while emphasizing the 
second quantization character of the corresponding phase space. It was 
then developed a mapping kernel that simultaneously embodies all those 
characteristics through the use of the Weyl - Wigner transformation of the 
Bargmann's kernel [10]. Moreover, in order to allow for a possible defor
mation of the phase space cell, we explicitely kept the harmonic oscillator 
parameter, present in the Bargmann's kernel, as a free parameter. This in 
fact corresponds to using a ScluOdinger squeezed state [11] mapping kernel. 
With this new mapping scheme we are able to obtain the representatives 
of second quantized operators as well as the usual canonical pair q - p, in 
a complex variable representation. The inclusion of squeezing in the phase 
space cell, on the other hand, introduce new elements in this description; 
to study these new effects we obtain the mapped expressions of products 
and commutators of operators with which we can write the von Neumann 
- Liouville equation of motion for the mapped density operator. It is then 
direct to obtain the Ehrenfest equations for the expectation values of ope
rators in which case the squeezing manifests itself through genuine quantum 
effects in the corresponding equations of motion, which is to be compared 
to the classical ones [12]. 

Our paper is organized as follows. In section 2 we present the basic 
ideas and the holomorphic mapping scheme through which we obtain the 
operators representatives. The mapping of operators and commutators is 
described and the Wigner function associated to the unidimensional har
monic oscillator is discussed; the squeezing character of the mapping is 
clearly presented in this context. The von Neumann - Liouville equation is 
presented in section 3 where the Ehrenfest as well as the Hamilton - like 
equations of motion are explicitely written and the squeezing effects mani
fested in the classical limit of these equations are discussed. Finally section 
4 is devoted to a summary and the conclusions. 
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2 The holomorphic mapping 

The Bargmann treatment of the Fock space states as well as of the 
creation and annihilation operators in terms of entire complex analytic 
functions and their derivatives [10] strongly influenced the study of the 
harmonic oscillator coherent states of wide use in quantum optics and low 
lying vibrational states of many - body systems [8]. If it is known that the 
operators are mapped as at --+ z and a --+ 8/8z, on the other hand the 
Fock states are led to 

ZR

In) --+ Ci' (3)
vn! 

this new set constituting a Hilbert space of entire functions with a measure 
governed by the weight function 

Pr(z) =ezp(-zz·)/1rr (4) 

for a r - dimensional space. Furthermore, the mapping kernel connecting 
the square integrable space £r to the complex analytic functions Hilbert 
space:Fr is given by 

1 1 
Ar(z, q) = 1rr /(/i"/:lezP[-2(z:l +q:l /b:l) + v'2zq/b] (5) 

in such a way that 

oJAr(z, q)A;(w, q) d"q = e'lw , (6) 

where e'-wo is the Bargmann's reproducing kernel, which plays the role of 
a Dirac's delta in this new space and b is the usual harmonic oscillator 
parameter (here considered as a free parameter). Now, in order to connect 
this complex variable description of the harmonic oscillator with a two real 
variables picture describing the quantum phase space, we must establish 
a relationship between the Bargmann mapping kernel and that of Weyl 
- Wigner's [3]. In this way it is direct to see that (hereafter r = 1 for 
simplicity only) 

5 

Ow(q,p) = Jdydjj(z)djj(w·)eiJIY/IiA·(z,q - y/2)O,,(z,w·)A(w·,q + y/2) , 
(7) 

where O,,(z, w·) is the Bargmann representative of an operator 6 and 
djj(z) = p(z)ePz. Using (5) it is direct to see that 

Ow(q,p) = 2e-lol~ Jev'2('I°oo+wa)-zOWO,,(z,w·)djj(z)djj(w·) , (8) 

where we have called 

q .bp ( ) 
a= b+zr;' 9 

The inverse mapping is obtained in precisely the same way as we did before 
and is given by 

OO,,(z, w·) = ~e-zwo Jdq dp e-\aI2 ev'2(za+woa )Ow(q,p) . (10) 

These two expressions allow us to pass from the Bargmann description 
to the Weyl- Wigner one and vice - versa. 

It is important to remark that, since we are representing operators by 
integral kemels, the present procedure makes use of two complex variables 
instead of only one. This number of variables may seem excessive, but it is 
to be observed that, although all functions F(z, w·) of interest are required 
to be entire in z and w· so that they can be uniquely determined by its 
restriction to the diagonal [13], here we must pedorm the two complex 
integrations so as to take care of the quantum ordering effects embodied in 
the mapping process. 

Now, the Weyl transform of the operator Li(q,p}, that is an element of 
the (q - p) operator basis, is of fundamental importance and is given by [3] 

6 w(q,p) = h6(q - q')6(p - p') , (11) 

which is then mapped onto 

2e-zwo e-lal~+v'2(za+woaO)B(z,w·;q,p) 
h6(z, w·j q,p). (12) 
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This result is nothing but the mapping kernel already presented in (8) and 
(10) in such a form that we verify the correspondence between the element 
of the operator basis in the quantum phase space and the new mapping 
kernel ~(z,w·jq,p)j those equations are then rewritten as 

O,.,(q,p) =J~*(z, w*j q,p)Oh(Z, w*)dJ.'(z)dJ.'(w*) , (13) 

and 

Oh(Z,W*) = J~(z,w*jq,p)Ow(q,p)dq  dp (14) 

respectively. 
The simplest example for which we can apply this mapping is Ow(q, p) = 

1, which gives 

Oh(Z, w*) J~(z,w*jq,p)  dq dp 
e:aw*., (15) 

this result shows that the unity operator, (here represented by its Weyl 
- Wigner expression Ow(q,p) = 1) is directly mapped into the Bargmann 
reproducing kernel. 

With the help of equations (13) and (1), it is a simple task to obtain 
the mapped expression of any function /(q,p) through the use of its Weyl 
- Wigner transform /w(q,p). In this connection the harmonic oscillator 
Hamiltonian (without the zero - point energy) is written as 

Hh(z, w*) = ~e:aw'[(z  +w*)2 - (z - w*)2] 
= liGzw*e:aw* , (16) 

that together with the operators 

1 z"w*m 
(I n)(m I)(z, w*) = -h J::T:::'i ' (17)

yn!m! 
where (o)(z, w) stands for the holomorphic representation of (0), constitute 
the basic operators necessary to describe that system. The contact with the 
creation and annihilation operators description of the harmonic oscillator 
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is explicit here. On the other hand, it is interesting to note that the phase 
space usual operators mapped as 

(q)(z, w*) = ~e:aw'(z + w*) (18) 

and 

(p)(z,w*) = i ~ eZW'(z - w*), (19)
y2b 

give the usual construction of the a and at operators 

(a)(z, w*) = ([~(~ + ib:)])(z, w*) = w*ezw
' (20) 

and 

zw(at)(z,w*) = ([~(t - i~)])(z,w*)  = ze ' (21) 

respectively. 
The scalar product of two functions in the holomorphic phase space is 

defined in the standard way, i.e., 

(j,g) = JdJ.'(z)dJ.'(w*)j*(z, w*)g(z, w*) , (22) 

such that the expectation value of an operator is then given by 

(0) = hJdJ.'(z)dJ.'(w*)O(z, W*)Ph(z, w*) , (23) 

where Ph(Z, w*) is now the equivalent to the Wigner function [2] in the Weyl 
- Wigner representation of quantum phase space. Using (16) and (17) it is 
direct to see that for the harmonic oscillator the expectation value relation 

(II)" = hJdJ.'(z)dJ.'(w*)HHO(Z, W*)Ph,,,(Z, w*) = n1i11 (24) 

holds. 
In general, the mapping ofproducts of two operators is of fundamental 

importance; in this phase space description, using the standard technique, 
it is straightforward to obtain 
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ZwoeW1([Jl(q,P)J2(q,P)])(Z, W·) = e ,2 fl(Z, W·)J2(Z, W·) , (25) 

where 

81 81 82 82 

(26)'11 1,2 = (8s - 8d)(8s - 8d) . 

Here 

8 = z +w· , (27) 

d = z -w· (28) 

and the labels 1 and 2 refer to the first or second function respectively. 
With these results we are led to the description of the commutator of two 
operators. Similarly to what has been presented in other description [7], 
the commutator has the form 

([0 17 02])(Z, w·) = 2ezwoeel,2 sinhAI120~(z, w·)O:(z, w·) , (29) 

where 

81 82 81 82 

0 12 =---- (30) . 8888 8d8d 
and 

81 82 81 82 

A1,2 = 888d - 8d 88 (31) 

The functions Of(z, w·) represent the reduced mapped holomorphic ex
pressions for Oi(q,p), and are defined as 

O~(z,  w·) = e-zw
o Oi(Z, w·) . (32) 

Alternatively we could have written the new operators appearing in the 
commutator in the form 

1 81 82 81 82 

(33)0 1,2 = 2( Ow· 8z + 8z 8w· ) 
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and 

1 81 82 [)l 82 

A12 = -(-- - --) (34) 
, 2 Ow· 8z 8z 8w· 

respectively, thus stressing the fundamental role of the creation and anni
hilation operators in the construction of the commutator also, while (30) 
and (31) highlight the q - p description. 

It is a trivial matter to extend this procedure to the mapping of the 
anticommutator, which is then expressed as 

({0I,02})(Z,W·) =2ezwoeel.2coshAl,20~(Z,W·)O:(z,w·). (35) 

In both cases, eqs. (29) and (35), we have similar structures as those 
as the Weyl - Wigner q - P mapped expressions, since both have the sine 
and cosine series of derivatives of the fundamental operator heralding the 
symplectic structure embodied in that formalism. It is important to note, 
however, that here we have additionally the series associated to the 0 
operator. If the A12 operator takes into account the ordering of the q and 
Poperators, the 0 12 is responsible for the aand at ordering effects on the 
commutator. In this sense, if we consider the second quantization as the 
fundamental one, our description is wider than that of Weyl - Wigner. 

Of great interest, the holomorphic mapping of the Wigner function, 
associated to the minimum wave packet of width bo, is directly obtained 
through the use of equation (10) 

p(z, w·j bo, b1) = ~e-zwo Je-1a12 eJ2(az+aowO) Pw(q,Pj bo)dq dp , (36) 

where the ex' 8 associated to the mapping kernel, now embodies an oscillator 
parameter b1 , which must not be equal to boo This fact is of significance 
since now we have an holomorphic mapping kernel constructed out of a 
SchrOdinger squeezed state and a Wigner function associated to yet another 
squeezed state. Since the Wigner function for a minimum wave packet is 
known to be of the form [12] 

Pw(q,Pj bo) = N'(bo)e-(q-qo)2/bo2e-bo2 (p-po)2/1i2 , (37) 

where N'(bo) is a normalization constant, we get in the holomorphic repre
sentation 
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•. ) - ( [1 (q~  2b~p~  )P(z, w ,bo, f3 - N bo,/~)exp - (HIP) ft + f3 ~) 

exp[~tW(Z2 +w·2»)exp[~(az  +a·w·») (38) 

Here we made p = bt/bo, and N(bo,P) is another normalization constant. 
It is interesting to note that the holomorphic density depends on two pa
rameters, namely the harmonic oscillator width associated to the squeezed 
mapping kernel, b1, and the width of the starting wave packetj this fact 
gives rise to some interesting effects which are associated to the squeezed 
character of the mapping. This has been studied in the Weyl - Wigner 
representation of the density operator of a many - body nuclear system, 
which has shown some semiclassical features when f3 is conveniently chosen 
[14]. In particular, if we consider fJ =1, we get 

N(bo) .I2f. «ut~·"'·)
p(z, w·j bo) = -2-e- 2 e, (39) 

which is an expression akin to the holomorphic mapping kernel, as expected. 
On the other hand, when lit > ho, i.e., P > 1, we note that the presence 
of terms in z2 and w·2 in the exponential is an indication of the squeezed 
character of our particular holomorphic representation of the minimum 
wave packet. 
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3 The von Neumann - Liouville equation 
and the classical equations of motion 

Lets consider now the case of the time evolution equation for the density 
operator in the holomorphic representationj it is completely clear that it 
corresponds to the mapped version of the von Neumann - Liouville equation 
and is expressed as 

inp(z,w·) = 2[e91 
,2 sinhAl,2)H~(z,w·)p2(z,w·)  . (40) 

It is important to notice here that the density operator representative does 
not carry the exponential factor exp(zw·) in such a way that the equa
tion above is slightly different from the one expected from the previous 
commutator calculations. Since in the present case p(z, w) plays the role 
of a density in this holomorphic phase space, it is the associated Wigner 
function [2) in this space. 

One interesting point to be discussed here concerns the time evolution 
of a density function representing an eigenstate of the Hamiltonian. In this 
case it is expected that the time evolution of the density labels will describe 
a particular trajectory in the phase space so as to keep the density constant; 
each one of these curves will define a section of equal density known as an 
equi - Wigner [15]. For example in the harmonic oscillator case, we have 

(H)(z , w·) = nOzw·eZw
• (41) 

and 

(A)( .) = (zw·t 
p z,w hn! (42) 

for the Hamiltonian and density operators respectively. If we put these 
results in eq. (40), we get 

z w· 
(43)

z w· 
which clearly admits the solutions 

z(t) = z(to)eiO(t-to) (44) 
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and 

w*(t) = w*(to)e-iO(t-to) (45) 

respectively. In this way, when eqs. (44) and (45) hold, the curves are 
in an equi - Wigner, i.e., the form of the distribution function does not 
change with time. This means that these equations for z and w* are the 
equivalents to the classical description of the points q and P in the Lee and 
Scully's picture for the associated problem in Weyl - Wigner scheme [15]. 

In a general form, we define the Liouville operator 

-2i
.c(z,w*) = T[e8 sinhA]HR (z,w*) (46) 

with which we rewrite the time evolution equation for HR(z, w) that are 
not explicitly time dependent 

p= -.c(z, w*)p(z, w*, t) (47) 

It is then direct to obtain the formal solution 

p(z,w*,t) = e-£(.I,wO)(t-to)p(z,w*,to) . (48) 

These results are extremely important since they permit us to write the 
time evolution of equations for the expectation value of any given operator, 
namely 

(~(6)(z,w*)  == hf dl'(z)dl'(w*)O*(z,W*)~Ph(Z,W*,t),  (49) 

or, in an alternative form, 

d ~(dt (O) )(z, w*) = -h fdp(z)dl'(w*)[.c*(z, w*)O*(z, W*)]Ph(Z, w*, t) , (50) 

which is extremely useful in obtaining the classical limit of this equation. 
Thus, for example, we get for the harmonic oscillator 

d A -+ . z* - w °fdt(q) +- - dp(z)dl'(w*)[abO V2 e.l W]ph(Z,W*,t) (51) 

and 
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~(P):  - f dp(z )dp(w*)[n~ Z*~weZoWlPh(Z, W*, t) , (52) 

respectively, which are the holomorphic phase space version of the Ehrenfest 
equations for the expectation values of the canonical operators. If we use 
now the mapped expression of the minimum wave packet associated to the 
SchrOdinger squeezed state, eq.(36), with the proper normalization for our 
density function, we obtain 

d -+ PoA 

(53)di(q)mwp +- ;;;/3 
and 

2.!!(A) -+ -m0 qo (54)
dt P mwp +- /3 

respectively. One sees that only in the particular case of /3 = lone gets the 
usual expressions in agreement with the classical equations. These results, 
however, indicate the genuine quantal character of the canonical pair q- p, 
since, due to the Heisenberg principle, if one tries to define a sharp q 
representation (a wave packet completely localised at q = qo) the center of 
the wave packet in the p coordinate, Po, is completely lost. This effect of 
squeezing in the phase space cells is revealed in the equations (53) and (54) 
through the parameter /3, i.e., when /3 --+ 0 ( sharp q - representation) one 
doesn't have the center of the wave packet, Po, at all and when /3 --+ 00 

( sharp p - representation) we have a plane wave in q. Hence, in this 
context, we will have classical - like equations only when the widths of the 
wave packet and that associated to the phase space descriptions coincides, 
i.e., /3 = 1. It is very interesting to observe that the same structure as 
those of eqs. (53) and (54) is obtained in the context of quantum algebras 
[16]. This also strongly suggests us to look for the classical limit of the 
Hamilton's equations for these results through the use of eq. (49). We can 
easily obtain the classical limit by simply putting the mapped expression 
of the minimum wave packet in eq. (49) for an arbitrary Hamiltonian; in 
this form we use /3 = 1 so as to obtain the classical limits 

d ~ -+ 2ibo 8� 
di(q)mwp+- nV28dH *(a, a*) (55)� 
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and 

~(P)mtll":  bo-~~H*(a,a*)  , (56) 

where again d = a - a* = 2ilma and s = a + a* = 2Rea respectively, 
thus showing exactly the form of the Hamilton's equations. This is to be 
compared to a result presented several years ago by Strocchi [17]. It must 
be stressed, however, that these equations are in fact quantal in its very 
nature since the mapped Hamiltonian may still present typical quantum 
features. These expressions in the form of Hamilton's equations are not 
surprising at all since it is well known [6] that the quantum phase space is 
endowed with a presymplectic structure which guarantees the existence of 
a Poisson bracket in the 1i --+ 0 limit. Again, for the particular case of a 
harmonic oscillator those forms are exactly the classical ones. 
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4 Summary and Conclusions 

It has been shown in this paper how to implement a squeezed state 
holomorphic phase space representation of quantum mechanics related to 
bosonic degrees of freedom. Its main virtue is to take into account the 
second quantization nature of the quantum description of bosonic phy
sical systems in a natural way, i.e., closely paraleling the procedure by 
Bargmann [10] we were able to construct the integral kernel that maps o
perators onto functions. in the holomorphic phase space in such a form to 
depend explicitely on the squeeze parameter. The complex structure of the 
corresponding phase space embodies the particular features of the algebra 
of creation and annihilation operators but also contains the information 
associated to the squeezing described by the width of the harmonic oscil
lator which generates the mapping kernel. In this sense, the mapping of 
products of operators exhibits some new ingredients when compared to the 
standard q - p quantum phase spaces, namely, the ordering of creation and 
annihilation operators gives rise to additional terms in the corresponding 
holomorphic phase space representatives. The mapped expression of com
mutators is directly obtained which are extremely important in the study of 
genuine quantum effects. In this connection, the von Neumann - Liouville 
equation for the time evolution of the density operator is mapped onto the 
holomorphic phase space and some particular cases are studied. The equi
valent holomorphic Wigner function is presented and the time evolution in 
the phase space description of stationary states is discussed; the resulting 
equations characterizing the stationarity are discussed in connection with 
the concept of curves preserving the form of the Wigner function. For the 
harmonic oscillator case those equations are the well known time solutions 
for the creation and annihilation operators respectively. Also in that con
text we have presented the equivalent equations for the time evolution of 
expectation values of operators which enabled us to write the Hamilton 
- like equations. Although of similar structure as the classical ones, the 
present equations are still of quantum nature. They preserve the original 
content through the mapped expression of the Hamiltonian which depends 
on quantum operators and, besides, through the quantum squeezing effect 
embodied in the parameter describing the deformation of the fundamental 
cell in the phase space while preserving its volume. This result is extremely 
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... 

interesting since it draws attention to the inherent entanglement of the time 
solution of the canonical pair in the original quantum description through 
the Heisenberg principle; the canonical-like equation is only attained when 
one uses the minimum wave packet for the calculation of the expectation 
value, being the classical case then obtained in the usual Ii. --+ 0 limit. 
This result shows us explicitely that the classical structure of the equations 
of motion has its roots already in the quantum phase space and that the 
classical limit consists, besides considering Ii. --+ 0, in ignoring the cellular 
character of the quantum phase space, as obtained by the assumption (:J = 1 
in eqs. (53) and (54). 

The present formal scheme can be used in a large variety of physical 
processes, in particular the excitation process of giant resonances of nuclear 
targets by Coulomb interaction is under investigation and will appear in a 
future communication. 
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