
I _� 

Instituto de Fisiea Teariea1FT U niversidade Estadual Paulista 

Junej95 ,':ERMILAf IFT-P.030j95 

1tT 

QBRAP~ 

Limit on a heavy Dirac neutrino through oblique 
radiative corrections 

A. A. Natale and P. S. Rodrigues da Silva 

Instituto de Fisica Teorica� 

Universidade Estadual Paulista� 

Rua Pamplona LI5� 

01405-900 - Sao Paulo, S.P.� 

Brazil� 

i 

_ ••~_•• ". __ .••• • L 
1 _•....•.. ,,;.~,..... 1 

I 
.' 1 ......_._,_.,._- j 
. I 

•.•• ,,, , 'm. ~ __·o,.,,~ ~, 
, 

... { 
l .._ .. ~-j 

I 
--~ -1 

! ..... ---'-"'''·'1 
I 

-., .•_" ~, 

I 
. '. '-c..-.ro~.,,~•. ,,....J 

http:��~_��".__.���


Instituto de Fisica Teorica� 
U niversidade Estadual Paulista� 

Rua Pamplona, 145� 
01405-900 - Sio Paulo, S.P. 

Brazil 

Telephone: 55 (11) 251.5155 
Telefax: 55 (11) 288.8224 
Telex: 55 (11) 31870 UJMFBR 
Electronic Address: LIBRARY@IFT.UESP.ANSP.BR 

47553::LIBRARY 

mailto:LIBRARY@IFT.UESP.ANSP.BR


Limit on a heavy Dirac neutrino through oblique radiative 

corrections 
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Abstract 

We compute the one-loop oblique corrections in a typical model with neu

trino masses due to the see-saw mechanism. We verify that a Dirac neutrino 

mass up to 178 GeV is still allowed by the experimental data. 

There has been recently some interest on the implications of one-loop corrections 

due to majorana particles on the electroweak measurements [1, 2, 3]. Most of this 

interest was focused on the consequences of the Hill and Paschos model [4], where 

it is introduced a fourth generation of leptons, which accomodates a heavy neutral 

member with a majorana mass of O(G;1/2), and where the light neutrinos obtain 

small masses through the see-saw mechanism. Computing the oblique corrections for 

such a model, it was verified that a heavy majorana neutrino in the third generation 

decouples from electroweak physics and cannot be excluded experimp,ntally [3]. 

The one-loop corrections in these type of models have been parametrized in 

terms of the heavy (or fourth generation) charged lepton mass, and of the light and 

heavy neutrino mass eigenstates (see, for instance, Refs. [2, 3]), and they show some 

intricate behavior as these masses are variated [2]. Although the introduction of 

a new generation is phenomenologically attractive [5], there is a much wider class 

of models, where we have majorana neutrinos without the company of the fourth 

generation charged lepton, and where we expect that the contribution of the new 

physics to the oblique parameters S, T and U [6], will be described only in terms 

of the light and heavy neutrino mass eigenstates. Therefore, we expect to constrain 

directly the neutrino masses, when we compute and compare their contribution to 

the radiative corrections with the experimental data. 

Grand-unified see-saw models [7] are typical examples of the models we have in 

mind. They have a neutrino mass matrix given by the see-saw relation 

mll = mDMN1m'b, (1) 

where mD(MN ) is a Dirac(Majorana) neutrino mass matrix, which can be naturally 

of O(mu), i.e. the up-type quark mass matrix, and where all the heavy sector 

decouples from the low energy physics. With the evidences for a heavy top quark 

we may wonder about the effects of having a quite large Dirac neutrino mass! The 

relation given by Eq.(l) is also the case for many majoron models [8], whPTf' most 
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of the new physics is concentrated in the neutrino mass matrix mil, and where there 

is not much hope to detect the remaining physics of the model. 

The question we want to address in this note is a very simple one: Which is 

the limit that present experimental data put on the Dirac neutrino masses (mD) 

given in Eq.(l)? We certainly have an upper limit of few TeV on mD coming from 

unitarity, however, we will see that the oblique corrections are more restrictive. The 

limit on mv is directly translated into a constraint on the physical mass mil' and, 

obviously, for large Majorana masses we will have very small upper limits on mil' 

Any model with the see-saw mechanism will be suitable for our calculation. As 

we expect that the most interesting limit on mil will come from a model with large 

Majorana masses, we will select one where MN is obliged to be large. Therefore, we 

consider a model proposed by Shin [9], where besides the standard generations of 

quarks and leptons, it contains three generations of right-handed neutrinos (NOR), 

one superheavy quark, and one SV(3)c ® SV(2)L ® V(l)y singlet complex scalar 

(J. One of the interesting points of the model is that the (J boson carry nonzero 

Peccei-Quinn charge [10], i.e. the (J boson will acquire a large vacuum expecta

tion value (vev), which will be identified with the scale of Peccei-Quinn symmetry 

breaking, which resolve the strong CP problem. At the same time the (J will give 

large Majorana masses to the right-handed neutrinos (NOR), therefore, as it carries 

lepton-number and PQ charge, the Goldstone boson associated with this symmetry 

breaking was called "majoraxion". As occurs with the ordinary axion, the vev of 

this scalar boson (VPQ ) will be limited to 1010 _1012 GeV [11]. Notice that we could 

have chosen a GUT for our calculation, but the only difference would be a possible 

larger particle spectrum and values of the Majorana masses. Further details about 

the model can be found in Ref. [9], and here we will restrict ourselves only to what 

is necessary to compute the oblique corrections in this model. 
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In a general way, we can write the neutrinos mass matrix as follows, 

mv] (-) [0 )(VOL N~L T v~R +H.c. (2) 
mD MN NOR 

This procedure allows us to consider an arbitrary number of lepton families, i.e., for 

n families the mass matrix elements, mv and MN , are indeed n x n matrices, with 

_ v (II) _ VPQ . (N)
(mv)ij = (J2)Yi j e (MN)ij = ( J2) x exp(tOO)Yij , (3) 

where 00 is the vev phase of (J, which must be fixed according to the strong CP 

problem. 

In the case we want to deal only with the three Standard Model generations, the 

matrices mD and MN will assume a 3 x 3 form. In order to obtain the neutrinos 

mass eigenstates, we have to diagonalize the mass matrix in Eq.(2). This call be 

done introducing a 6 x 6 matrix, V, in the following way 

[0 mv]VT V=dwg(mlle,mV,.,mvr,MI,M2,M3). (4)
m'b MN 

where mil; « Mi. Then, we can write the relations between the mass eigenstates 

and interaction ones, 

[ v~ ] = VT[ VO: ], [Vh] = vt [ v~R  ]. (5) 
NL NOL NR NOR 

Defining de mixing matrix by 

V = V" == [V; Vb], (6)[~ li] == 
~ Vd V; lIJ 

where \Ii and Vt (i = a, b, c, d) are 3 x 3 matrices. Now, we are able to write the 

interaction Lagrangian, describing the coupling between leptons and gauge bosons 

1 (GFM 2 )l { LZIIN = - J2 J2 Z ZIJ v')'IJ(V!l!a)(l - ')'5)V +N')'IJ(V:Va)(l - ')'5)V 

+v')'IJ(V!Vb)(l - ')'s)N +N')'IJ(V:Vb)(l - ')'s)N} , (7) 
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and 

I 

LW±//N _(G~a.) 2 w;{r-')'Il(Ua)(l -l'S)V 

+1-l'll(Ub)(l - l's)N} + H.c.� (8) 

In order to make the computation of the diagonalization matrix feasible, we need to 

introduce some assumptions on the model proposed by Shin [91, which are summa

rized in the following. Only the taLI lIcutrino (vT ) will acquire mass via the seesaw 

mechanism. The heavy neutrinos (Nt, N2, N3 ) are expected to have masses of the 

same order of VPQ (the Peccei-Quinn symmetry scale). We will assume mixing just 

between V T and N3 , and the mass matrix of charged leptons is assumed to be diago

nal. These assumptions retain most of the physics of the problem, and at the same 

time greatly simplify the calculation, because we get rid of a complicated mixing 

matrix, which, if we do have a mass hierarchy in the Dirac neutrino sector, will not 

modify significantly our results. Therefore we arrive at the following diagonalizing 

matrix 

0 0 o 0 0 

o 1 0 o 0 0 

o 0 tco o 0 Sll
V=I� (9) 

o 0 0 1 0 0 

o 0 0 o 1� 0 

o 0 -islI 0 0 CII 

yelding the mixing angle as a function of the V mass (m.) and N3 mass (m2),T 

2 _ml '2 _m'2
and� (10)

SII- ml + m'2 Co - ml + m2 

which are related to Dirac and Majorana masses by 

mD = y'm lm2 and M N = m2 - mi· (11 ) 
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With these results we can rewrite the interaction Lagrangian in terms of these mixing 

angles, recalling some properties of majorana particles, which lead us to 

LZ//N = - ::ZIl{ -dV')'1l1'5V - S~N31'1l1'sN3  + 2is8c(JN3 1'JlV} 

(12) 

and, 

LW±vN - ~w; {-iclIl-l'll(l -l's)v +s91-')'Jl(1 - ')'s)N} + /-I.c. 

(I:n 

Now we are able to compute the oblique radiative corrections to this model. We 

will adopt the parametrization given by Kniehl e Kohrs [31, where the independent 

parameters S, T and U are determined through 

as = 4s2c2 {nz~(o) _ Re nz~(z)} , (J.1 ) 

aT = nzz(O) _ llww(O) , (Jrl) 
z w 

aU = 4s2 {nw:(o) _ Re nw:(w)} - as, ( 16) 

where we are abbreviating the notation for the weak mixing angle and gauge boson 

masses, C = cos Ow, S = sin Ow, w = M~, and z = M;. 

In Eqs.( 14) to (16) the nonrenormalized vector boson self-energies (llvv) can be 

written as a function of the transferred moment q2: 

2e
llWW(q2) = 8s2� [c~(nV  + llA)(q2, ml, m T ) 

+s~(llv  + llA)(q2, m2, mT)J ' (17) 

and 

2e
llZZ(q2) = 16c2s2� [2c:ll A(q2, mil m.) +2s:nA(l, m2, m2) 

+4.c;~c~nV(q2,m .. m2)J . ( IR) 
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where 2as 12:Z {(mt ~  m2)2 [16m~m~ - mtJn'2(m~ + mn + 2 
mt (Jn~  - m )2]m2 2 

V,A 2 _ 1 {[ 2 Jn~ + Jn~  (Jn~ - Jn~)2]  2 2 2n (q , Jnt, Jn2) - 1271"2 q - 2 (+,-) 3JntJn2 - ~f- Bo(q , Jn t ,Jn2) 
z [m: 20m~  mt zm~]+ 2- - -- +6Jnlm2 -4z- --

The function Bo(q'2, Jn~, mn is one of the scalar Passarino-Veltman coeficiellts 

_i..+ (Jn~-mn2}. 

3 2q2 

[ 
2 2] r 2 2]2 Jn t - Jn2 ' 2 2 2 Jn2 - Jnt 2 2 

+Jn t -1 + 2 
q 
2 Bo(O,Jnt,md + m2l-1 + 2 

q 
2 BO(0,m2,Jn2) 

[12], 

(19) 
2z [m2 m2 

]+ m2ln-j +mtln-i 
mt + m2 m T m T 

(mt + m2)2 m2 3 

m~ 2 Z z 
+2 ( )2 (z  4m t )ln2 - 2zln2mt + m2 mt m T 

m2 3 m~ 

where f is the deviation from the four dimensional space-time and /' is the Euler 

which contains an ultraviolet divergent part that in the dimensional regularization 

scheme can be fixed as 

(20) 
2 

~=--/,+ln(471"), 

f 

aU 

+ 2mlm2 
'mt + m2)2(mf _ m2) [z(m~ + m~) + m~m~] lnm~}.

2 m~ , 

a 1 {mt mlm; 1 Jnt 2 m2 (2 2)2+-w+--w---w +- mt-m 
7I"W(Jnt+m2) 2 6m~ 3m~ 6w T 

(23) 

constant. The function Bo is written as 

t 2 2 (2 + 2 2) + 2 . 
B ( '2 ) _ A 1d l x q - x q Jn1 - Jn2 m t - If 

o q , In t , Jn2 - L1. - X 09 2 ' 
o ~ 

(21) 
m4 

1 (m2 m4 
)-----!.(ml + Jn2) + -(mt + m2) w - -!. - --!

6w 3 2 2w 
x I 

The finite part of the above equation can be found in Ref. [13J. 

We can now compute the oblique parameters, and after some algebra we obtain 

m2 2 2) mt 2 2) mt (2 2)2
+12(mt + m T -12(m2 + m T + 6m~ m 2 - JnT 

the analytic form of S, T and U 

a {m; JntJn2 [aT = -- - + 6JntJn2 
161rws2 3 (Jnt + m2)2 

mt + m~  - 2mtm2(m~ + mD l m~]+ 2 2 n2mt- m2 m2 

[ 
m 2( 2 2) m2 (mt + m~)  m2w 

+ 6 m T - m t + 4 (mf _ m~)  + -6- + 

[ 
mt( 2 2) mt (m~  + m~) mt w 

+ 6"" m T - m 2 + 4 (m~  _ m~)  + -6- + 

m2 (4 4)] l m~ 

12w m t - m T n m~  

mt (4 4)
12w m2  m T 

mtJn2 [( Jn~  + Jn~) l Jn~+ m2-Jnt n-
Jnl + Jn2 ml - Jn~ m~  

( 
m2+m2) m 

2 
]}+ ml - Jn2 ~ ; In-i ;

m2- m T JnT 

(22) 

mt (m~  + mn (2 _ ( 2 + 2) _ (m~ - m;)2)]l m~  

12 (2 2) W m T m2 n 2 
~-~  W ~ 

m [ (m
2 

m 
2)2] w}+--..2 2w  (m~  +m~) - t - T In- - as. 

6 w mlmT 

(24) 
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where 

I = - -if)J.Re [ (:; I) in (I - :~ 

Notice that we subtracted in these parameters the contribution of the massless 

v.,. to avoid double counting. To compare these expressions with the experimental 

results we may recall that these variables are related to the fi of Altarelli and 

Barbieri[14] by: 

as = 4.'l~f3  ,� 

01' = t:l ,� 

aU = -4.'l~t:2  • (25)� 

Considering the results of a very recent fit of the f parameters for the experimental 

data[15], with mt = 175 GeV and the Higgs mass varying between MH = 50 - 1000 

GeV, 

fl X 103 4.8 ± 2.2,� 

f2 X 103 -7.0 ± 5.3, (26)� 

f3 X 103 3.5 ± 3.0,� 

we may obtain the values of S, T and V, due to some new physics, subtracting from 

these the main contribution of the Standard Model [161. 

In the model we are discussing the heavy Majorana mass is related to VPQ, and we 

have naturally that m2 :::::: MN = O(VPQ ), therefore, when we computed numerically 

the values of S, T and U, we assumed m2 to be in the interval 1010 
- 1012 GeV. 

The parameter S gives the most stringent limit on the mass ml, and our results are 

displayed in Fig.(l). In these figures we show the values of the S parameter, due to 

the new physics, as a fundion of ml and m2' In Figs.(la) and (Ib) we show the 

surfaces of the allowed values of S for different ranges of ml and m2, and in Figs.( Ie) 

and (td) we present a cut of these surfaces at S = 0.3, wich is the maximum value 
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of S due to the new physics that is allowed by the experimental data. The minimum 

value of S does not give any constraint for this model. For m2 = 1010 GeV we 

obtain that ml ~  3.2 KeV, whereas for m2 = 1012 GeV we obtain ml ~  32 eV, 

which is a limit sma.:.!er than the experimental value of the II.,. mass. This limit is 

a direct consequence of the fact that the experimental data still allow for a heavy 

Dirac neutrino with mD :5 178 GeV. With the U parameter we obtain a limit that 

is at least one order of magnitude worse, whereas the T calculation does not give 

any meaningful result. 

As the Majorona mass is of the order of the Peccei-Quillll scal(~  we obt.ain an 

extremely small mixing angle between the neutrino eigenstates, therefore our limits 

can be easily related to a limit on the Dirac neutrino mass. If we had a much lighter 

Majorana mass we would have the same constraint on the Dirac one, however, no 

limit would be obtained for the v.,., i.e. better than the present experimental limit on 

milT' Notice that even if we had not simplified the mixing matrix we would obtain 

a similar result, as long as there is a mass hierarchy for the Dirac neutrino masses. 

In conclusion, through the computation of the oblique parameters, we verified 

that a heavy Dirac neutrino with mass up to 178 GeV is allowed by the experimental 

data. The stronger constraint comes from the analysis of the S parameter. In the 

particular model that we considered, the Majorana neutrino mass is of the order 

of the Peccei-Quinn symmetry breaking scale, therefore, from the constraint on the 

Dirac neutrino mass, we obtained a limit on the v.,. mass. 
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Figure Caption 

Fig. 1. Figure (a) and (b) show the behavior of the S parameter as a function of 

mJ and m2 for different ranges of these masses. In figure (c) and (d) the shaded 

area is the one allowed for ml and m2 by the experimental data, they were obtained 

by a cut of the surfaces shown in (a) and (b) at 5 = 0.3, the lIIaximulII va.llIc of S 

permitted to the new physics. 
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