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Abstract 

Operator bases are discussed in connection with the construction 
of phase space representatives of operators in finite-dimensional spaces 
and their properties are presented. It is also shown how these operator 
bases allow for the construction of a finite harmonic oscillator-like 
coherent state. Crea.tion and annihilation operators for the Fock finite
dimensional space are discussed and their expressions in terms of the 
operator bases are explicitly written. The relevant finite-dimensional 
probability distributions are obtained and their limiting behavior for 
an infinite-dimensional space are calculated which agree with the well 
known reslllts. i 

Introduction 

An elegant mathematical way of treating quantum systems characterized 
by a finite number of states has long been proposed by Weyl in his descrip
tion of the quantum kinematics as an Abelian group of ray rotat.ions in the 

system space[1]. One of the important results of this approach, in tIl(' par
ticular case of finite spaces, is that pairs of unitary rotation operators obey 
special commutation relations -entailing roots of unity- which are the unitary 
counterparts of the fundamental Heisenberg relations. From a mathematical 
point of view, the ray representation of the Abelian group of rotation::; can 
be associated to the representations of generalized Clifford algebra and, in 
this connection, some physical problems have been extensively studied by 
Ramakrishnan and coworkers in this context [2). On the other hand, the 
same results have also been obtained in a different approach by Schwinger 
[3] who has shown in a particularly transparent way that a set of unitary 
operators, defined through cyclic permutations of finite state vector spaces 
coordinate systems, can be constructed such that they will be identified as 
the generators of a complete operator basis and that will also obey the same 
commutation relations obtained by Weyl. As a basis, this set will suffice to 
construct all possible quantities related to the physical system charactcri7.cd 
by those finite state vector spaces. 

Although Weyl and Schwinger have shown that in the case of a system 
exhibiting an infinite number of states one gets back the well-known pair of 
canonical complementary quantum variables with continuous spectra, it has 
been also emphasized that the operator bases are of special interest for the 
description of any physical system characterized by discrete finite state vector 
spaces. In this sense, this approach permits one to treat in the same footing 
quantum systems described by a two-dimensional space (spin one-half) as 
well as the canonical q - p variables. 

In recent years some authors have addressed the problem of discussing 
finite-dimensional quantum mechanics [4) and the related commutation rela
tions associated to the pair of variables playing the role of coordinate and mo
mentum. The problem of finite-dimensional spaces has been also treated al
ternatively by an approach which aims the construction of finite-dimensional 
phase spaces, which are connected to the original vector state spaces through 
a discrete Weyl-Wigner transformation [5,6). In this approach it was shown 
that the Schwinger unitary operators are of fundamental importance so as to 
define operator bases in the related operator spaces and, from this starting 
point, new bases were constructed sHch that they directly allow the mapping 
of operators to functions of discrete c-numbers, which are now the represen
tatives of the operators in the discrete phase spaces. One of the import.ant 
features of this phase space description is that it can also accomodate the dis
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crete cases without classical counterparts, as well as the continuous canonical 
case[5] and, in this form, it is possible to represent any physical system by 
its operator basis which is now dependent on the dimension of the space N. 
The expressions for the phase space representatives then constitute a power
ful tool to the discussion of the behavior of quantum observables in the limit 
of large N without any direct reference to the underlying finite Hilbert space. 
In this connection, the classical limit can also be discussed as a special case; in 
particular this limit was studied in a soluble many-fermion model, namely, 
the Lipkin model[7], through the use of discrete angular momentum-angle 
variables[8]. It is important to stress that in this finite-dimensional phase 
space description, the Wigner function, being the Weyl-Wigner representa
tive of the density operator, naturally emerges as a function which assumes 
values only at the points defining the discrete mesh of the phase space al
though preserving all the properties that make it a special object of quantum 
mechanics; in this sense it is always possible to construct a discrete Wigner 
function in the finite-dimensional phase spaces once the density operator is 
given. This kind of generalization for the Wigner function has been discussed 
also by Wooters in another context [9]. 

In the present paper we intend to show how the discrete phase space 
formalism can be used to discuss the connection between the defined finite 
discrete harmonic oscillator coordinate and momentum states and a finite 
space of Fock states; using the Schwinger construction scheme, a finite set 
of angle states also appears which are related to the finite Foek states by a 
discrete Fourier transformation. The previously defined harmonic oscillator
like coherent states, written in terms of the finite discrete coordinate and 
momentum variables[6], are reexamined in the present context and some 
important properties are diRcussed. The results thus obtained for the finite 
discrete Fock and angle states (and their connections to the finite discrete 
coordinate and momentum states) clearly indicate that the discrete phase 
space formalism is not only a valuable tool for the treatment of quantum 
systems described finite number of states but, in particular, it is also suitable 
for the discussion of the related Pegg and Barnett scheme of treating quantum 
optics [10]. In orde~ to establish the basic results to construct the grounds 
for a future more detailed comparison we have also deduced the associated 
quantum probability distributions and we have discussed their continuum 
limits. 

Our paper is organized as follows. In section 2 we present a review of 
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the fundamental concepts of oper~tor  bases and the transformations which 
allows for the phase space representation for finite dimensional cases. The 
discrete coherent states and some of their important properties are presented 
in section 3 where also the related creation and annihilation operators arc 
presented. The probability distributions are presented in section 4 together 
with the Wigner function associated to the n-th finite Fock space state in 
the finite coordinate and momentum phase space representation. In section 
5 we draw attention to the continuum limit which is obtained for large N 
for previously discussed distribution functions and in section 6 we present 
our conclusions. Finally in the Appendix we discuss some finite dimensional 
results which are related, in the continuum limit, to the finite version of 
the dispersion relations and we exhibit some interesting features which are 
directly connected to the finite character of the state space. 

2 Operator Bases and Discrete Phase Spaces 

As has been already shown [5,6], when one is given a N-dimensional state 
vector space it is always possible to construct a finite discrete phase space 
associated to the physical system described by the starting state space. To 
this construction, it is of fundamental importance to have an operator basis 
in terms of which the decomposition of any operator acting on the state space 
can be directly given, being the coefficient function identified as the discrete 
Weyl-Wigner transform of that operator [5,6]. Since it was also shown that 
the Schwinger unitary operator formalism [3] is the starting point for that 
description, it is important to present a brief review of its main aspects. 

Let us consider the Schwinger unitary operators U and V defined by the 
general properties [3] 

k ) k I (21ri .)U IU j = u j U j) , U j = exp N J , (1) 

21ri )V
k IVI) = vt IVI) , V, = exp ( NI (2) 

Uk IVI) =1 VIH) , (3) 

V k IUj) =1 Uj-k) , (4) 
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UN IVI) =1 VI) (5) 

v N IUj) =1 Uj) (6) 

where the sets of orthonormal eigenvectors {I Uj)} and {I VI)} are related to 
each other by the Fourier coefficients 

1 (21ri , ) (Uj IVI) = .,IN exp trJ1 , (7) 

The discrete labels i and I assume integer values in the definition domain 
of the state space which may assume values depending on the symmetry prop
erties of the physical interpretation we assign to the labels. In the general 
discussion that follows, we will not especify the range of the labels unless nec
essary, being, however, the essentials of the related calculations independent 
of the particular choice. 

The unitary operators U and V obey the fundamental relations 

UN =1 , V N = 1 (8) 

and 

V'Ui (21ri 'I) UiV' (. 1- N) (=exp N J , ), -0,1" .. , -I, 9) 

which show that they obey a generalized Clifford algebra [2]. The relevance 
of these ciclic relabelling unitary operators in the description of the physical 
system is that, as ha.c; also been shown by Schwinger, the set of N 2 operators 

1 (i1r). 1 (-i1r) .SU,/) = v'N exp Nil UJV I = ..jNexp Nil vlUJ (10) 

built upon them constitute an operator basis in the operator space associated 
to the system described by anyone of the two sets of N vector states lUi) 
or IVI). This symmetrized basis has some interesting properties which follow 
directly from those associated to the individual unitary operators, namely 

i) Identity element 

IN S(O,O) = 1 (11 ) 

5 

ii) Inverse element 

stu, I) = S-I(j,/) = S(-j,-/)::} (.IN SU,l)) (..fN stu,l)) = 1 (12) 

iii) Behavior under a similarity transformation 

(v'NS(j,I))S(r,s) (v'Nst(j,I))=exp[-2~i(js-lr)1S(r,s) (1:1) 

iv) Associativity 

[S(j,/) S(r,s)] S(m,n) =SU,/) [S(r,s) S(m,n)] (1-1) 

v) Semi-periodicity 

S(N,p) = (-1)" S(O,p) (15) 

S(p, N) = (-1)" S(p, 0) (16) 

VN S(N, N) = (_1)N 1 (17) 

vi) Action on the kets 

S(j,/) I u.) = J,v exp [2Zi j (k -mIU._I) (18) 

, = JN1 exp [21ri ( i)lS(},/) IVk) N I k + 2 IVk+i) ( 19) 

vii) Product of T basis elements 

T 1 (OT)TII S(jk,h) = ~exp ~ Ejkh nujltv'lt
k=1 v N~ k=) k=) 

1 [1fi (T-l T T-I T )] ( T T =VNT-l exp N E fA; E j" - Lik L I" S Eik,Eh) ,
k=) ,,=k+) k=) ,,=k+) k=) k=1 

(20) 
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where use was made of the relation 

T. T. T (21l'i T-I T )II UJA:V/A: = ULA:=1 JA: VLA:=I /A: exp - E Ik L jp 
k=1 N k=1 p=k+J 

T l T. (21fi T T)= VLA:=l A: ULbl J A: exp -Ii E jk L Ip • (21) 
k=1 p=k 

Now, it can be verified by direct inspection that this basis S(j, I) is in
variant under the substitutions U -. V and V -. U-I together with j -. I 
and I -. -j, but, as has been recently shown [6], it is not invariant under 
a global mod N transformation. Thus, in order to implement this further 
invariance in a simple form, and for reasons that will be clarified below, it 
has been shown that a new basis can be rewritten as the Fourier transform 
of the original Schwinger basis [6] 

G(r,s) = ~ S~I) exp[ill'¢(j,I; N)]exp [_ ~i  (rj + sl)] (22) 
J.l 

with the additional phase 

<p(j, I; N) = N If If - jIf -III' (23) 

which guarantees the mod N invariance of the operator basis being 

I~ = [~]  (24) 

the integral part of r with respect to N. 
The main advantage of using this operator basis, instead of Schwinger's, 

is that this new version can be directly used in the mapping of quantum op
erators - acting on the particular N-dimensional vector states space - onto 
functions of discrete c-numbers in a direct way through a trace operation. 
These functions are then the representatives of the operators in a discrete 
phase space characterized by a pair of discrete c-numbers for each degree 
of freedom of the physical system. In this way, the discrete Weyl- Wigner 
transformation of operators acting on finite-dimensional vector state spaces 
is given by 
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1 
0= N EO(r,s)G(r,s) , (25) 

r •• 

where, O( r,,,), the Weyl-Wigner equivalent of 0 in the discrete phase space, 
is given by the trace of that operator with the operator basis G(r,s) 

O(r,s)=Tr[Gt(r,s)O] . (26) 

As was shown, this operator basis plays a fundamental,ole in the mapping 
procedure of quantum operators to their discrete Weyl-Wigner phase space 
representatives,80 it is also useful to list some of its properties. 

Due to the symmetric character of the underlying Schwinger basis S(j, I) 
discussed above, one gets 

i) G(r,s) = G(s, -r) . (27) 

By a direct calculation one can also see that 

ii) Tr[G(r,s)] = 1 (28) 

iii) Tr [Gt(r, s)G(a, b)] = NfJr,ab",b (29) 

and its generalization for the product of M operators 

iv) Tr [Gt(r, s) IT G(ak' bk)] = N1M L L exp [ill'~  ({jd, {/d; N)] 
k=1 {jA:}{/A:} 

x exp {~  [(t.;,) (t. I,) + t.;, (/, -2E./')]} 
21fi M }

Xexp { Ii f; [jk (r - ak) +h (8 - bk)] (30) 

where 

Ud = j), ... ,jM; {/d = II, ... IM (31 ) 

and 
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eI>(Ud,{l",];N) = (tjk)I~M I +(tlk)I~M. .-N I~M  . I~M  I' 
k=1 L../r.1 /r 1<=1 L../rzl J/r L..1.:1 J/r L..1r=1 Ii 

(32) 
This result is directly related to the mapping of the product of M operators, 
as can be seen from Eq.(26), using Eq.(2.5) 

(Q 0.) (r,s) = Tr [Gt(r, s) Q0.] 

= ~M E E Odal, bd···OAf(aM, bAi )Tr [Gt(r, s) fi: G(akl bk)] (33) 
{Ol.} {bl.} k=1 

which is the discrete Weyl- Wigner representative of the product of M op
erators. It is also important to observe the presence of the phase eI> that 
guarantees the mod N invariance in the general mapping. 

As a direct and fundamental result of these properties we exhibit the 
phase spa.ce representative of t.he commutator of two operators 

((°1 , O 2]) (q,p) = 2i E L qu, tI, r,s, a, h, c, d; N) sin [~ (bc - ad)] 
U,V,T,.s Q,6,c,d 

(34) 

where 

1 I . 
qu, v, r, s, a, h, e, d; N) = N-l OI(U, v)02(r, s) exp [1 ?Tel> (a, b,c, (l; N)] 

{21l"i }xexp N[a(q-u)+b(p-v)+c(q-r)+d(p-s)]. (35) 

Similarly, the discrete phase space expression for the anticommutator is 

written as 

({0J,02])(q,p)=2 E L r(tl,v,r,s,a,b,e,d;N)cos[~ (be-ad)] 
tl,tJ,r,. tl,b.c,d 

(36) 
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It is important to note that these expressions already show the embryonic 
structure of the continuous sine and cosine functions as they must appear in 
the continuous Weyl-Wigner phase space descrition [11]. Here those functions 
are to be calculated only at the points associated to the discrete phase space 
labels. In fact, it has been shown that this discrete phase space is already 
endowed with a presymplectic structure of geometrical origin which manifests 
itself through the presence of the cosine function and that is responsible for 
the Poisson-like structure of the mapped commutator expression [12]. 

Another set of fundamental operators can also be constructed which act 

on the spaces of the orthonormal eigenvectors {I Uj)} and {I VI)}, namely t.he 

projectors D(uj, Uj), D(vl, VI) within the spaces, the operators associated to 
transitions D(uj. Uk) and n(VI, Vk) and the operators that connect the two 
spaces n(Uj, v,) . These operators can be expanded in the operator basis 
S(r, ..,) thus giving 

n(Uj, Uj) =1 Uj){Uj 1= ~ ~exp (- 2~i  r j ) U r
= ~~ u;iS(r,O) , (:n) 

1" (21l"i) ~ 1" In(vI,v/) =1 v,){v,l= N ~exp -/is[ y = IN ~  v; S(O,8), (38) 

1" (21l"i.) k'
n(Uj, Uk) =1 Uj)(Uk 1= N L.,exp -Nr) Ury -) = 

r 

= ~ ~exp [- ~r(j  + k)] S(r, k - j) , (39) 

1" (21l"i) I I< ~ n(V"Vk) =/ V,)(Vk /= - ~exp --sk U - V = 
N • N 

1 [ 1l"i 1= v'N~exp  -Ns(l+k) S(l-k,s). (40) 

Furthermore, the projectors satisfy the relations 

i) D(uj, Uj) IUk) = ~ L u~juk IUk) = fJk,j I Uk) , (11 
r 
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~,  

II(VI, t]l) IVk) = ~ L V;'Vk IVk) = 6k,I IVk) (42) 
• 

where the sum 

1 E� -)._

N U T Uk 
T = 6j ,k (43) 

T 

plays the role of a mod N Kronecker delta; 

ii) E II(uj, Uj) = L 1Uj)(Uj 1= 1 , (44) 
j 

L II( t]l, v,) = L IVI)(VI 1= 1 , (45) 
I I 

iii) [II(uj, Uj), II(vl, VI)] = ~2  Lexp [- 2;i (rj + sl)] [UT 
, V'] 

T.' 

_� 2i '" [27ri. ]. (7r )- - .jN3 LJ exp -!i(rJ +sl) sm -rs S (r,s) . (46) 
T,' N 

and 

1 ( 21l'i )II(uj, VI) =\ Uj)(vi 1= IN ~exp  -!ilk II(uj, Uk) , (47) 

1 (27ri )II(vl, Uj) =1 vl)(Uj 1= IN ~exp  !ilk II(uk' Uj) . 

3� Construction and Properties of the Dis
crete Coherent States 

3.1 Operator approach 

In a similar way as that used to construct a continuous harmonic oscillator 
coherent state by the use of a displacement operator (13], one can also look 
for a similar procedure using instead a discrete generator operator such that 

11 

I r,s)::: D(r,s) 1 0)� (48) 

is a discrete coherent state, and I 0) is a reference state. Guided by the 
analogy with the continuous case and making use of the previously discussed 
operator basis, the discrete coherent state generator operator has been pro
posed to have the form [6] 

D(r,s) = exp [- ~rs  - i7r¢J(r,s; N)] UTV-' 

= Vii exp[-i7r¢J(r,s; N)]S(r, -s) (49) 

which also embodies the mod N invariance, associated to the cyclic character 
of the operators acting on finite-dimensional spaces through the phase ¢J(r, s). 
It must be stressed that the labels rand s are here associated to the" coon1i
nate" and "momentum" variables of the discrete finite N2-dimensional phase 
space and consequently I 0) must be interpreted as the associated" Fock vac
uum". From these considerations we see that we must take the labels rand s 
to run from (-t, t), where t = N;I. Being this coherent state labeled by co
ordinate and momentum variables, it is clearly differnt from those proposed 
recently which are written in terms of phase and number variables [14, 15, 16} 

As a result of definition (49), a basic property associated to the cyclic 
action of the underlying generator operator is already evident, Le., 

D(O,O) = D(N, N) = 1 .� (50) 

With the definition of the displacement operator D(r,s), it is also direct 
to write the generalized composition law 

IT D(rk' Sk) = exp {-i1l' [t ¢J(rk' SA:; N) - ¢J (t rA:, t SA:; N)]} 
k=1� A:=1 A:=1 k=1 

[. (M-l M M-l M )] ( M M)
X exp ~ 	 E rk E sp - L SA: L rp D L rA:, L SA: . (51 ) 

k=1 p=k+l A:=1 p=k+l A:=1 A:=1 

The additional phases appearing in this expression are related to the mod N 
invariance of the operator basis and to the area of the figure associated to 
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points in phase space respectively, being the latter the discrete counterpart 
of the similar continuous phase discussed in connection with the continuous 
coherent states [13]. 

In what refers to the vacuum state I 0), it must be emphasized a.gain 
that it does not helong to the N-dimensional "coordinate" or "momentum" 
spaces. In order to have our definition of the discrete coherent state, Eq. 
(48), completely meaningful, we must have the matrix elements connecting 
I 0) with the states of one of the label spaces. Again we are guided here by 
the analogy with the continuous harmonic oscillator case for which it was 
shown that the number st.ates are the eigenvectors of the Fourier transform 
operator connecting the {1 q)} and {I,))} spaces [171, i.e., 

:F In) = i" In) , (52) 

such that 

(q In) = [(2n _ i)!!v'i bt exp ( - ;;,) Iln (;;b) (53) 

defines the matrix elements which connect the coordinate and number spaces 
and H,,(x) are the usual Hermite polynomials. For the finite-dimensional 
spaces associated to the "coordinate" and "momentum" variables we can 
write the Fouri~r  operator, as previously seen, as 

t t 

:F = L: I t1k)(Uk 1= L: ll( t1k, Uk) (54) 
k=-t k=-t 

which can still be rewritten as [5] 

1 t (211'i )
:F = Vii k.Et ll(u/,uk)exp N kl (55) 

This operator also satisfies the eigenvalue equation 

(Uj I:F In) = in(uj In) (56) 

or 

t'

L: Ajk Jkn = in lin , (57) 
k=-t' 

13 

where 

1 (2 .� 
Ajle =-exp ~  Ok) (.')8)Vii N J , 

JIen = (Ule In) . 

Now, the matrix representing this operator, Ajl:, and the eigenvalue prob
lem associated to Eq.(39) have been discussed by Mehta [18] which has shown 
that 

Jim = (u., n) =./If .f;~  exp [-~  (aN +k)'] Hn [fi (aN +kl] (59) 

is a possible normalized eigenstate of the Fourier operator, where the Ilennite 
polynomial is written as 

[i) ( )Ie( )'
Hn (x) = L: ,- n. ,(2x)(n-2k) (60) 

k=O k.(n - 2k). 

and 

./If = )N ~~= exp (- ~Ii')  Il~  (fili)r (61) 

is the proper normalization. 
Furthermore, as an important result of the eigenvalue problem, it was also 

shown by Mehta that only N values of n give linearly independent solut.ions; 
the remaining linearly dependent solutions form a redundant space which we 
may neglect. For the sake of simplicity we will limit ourselves to the case of 
odd N for which the first values n = 0, ... , N -1 give the linearly independent 
solutions we are interested in [18]. It is this set of N states {\ n)} which will 
play the role of a finite Fock space in the present descrition. 

It is then clear that we can write the expansion of a "Fock state" in the 
vector state basis {\ Uj)}, associated to the discrete version of the "coordi
nate" representation, using the harmonic oscillator-like solution, 

14 
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In) ::= L
1 

/in IUj) (62) 
j=-I 

From this result we adopt the particular expression 

t 

1 0) = L !jO I Uj) 
j=-I 

1 21r 
_L 

00 '2 1 00

~,fN  [ ~~oo  exp (- N P') ] i~,.fooexp[-~  (aN + j)'] lUi) (63) 

for the vacuum of the finite-dimensional Fock space. This result then enables 
us to write the expression for our discrete coherent state as 

i1r. ] 1 (21ri . ) I r,s) = exp [N rs - z1r4>(r,sjN) .L exp NJr /;0 I Uj+,) . (64) 
}=-I 

It is interesting to observe that the coefficient /io given by Eq. (59) can be 
identified as the Jacobi 03(Z I 111) function evaluated at integer arguments[19], 
Le., 

00 [1r . 2] 1 (1ri I -N)L exp - N (aN +)) = IN 63 N e (65) 
0=-00 

and 

f: exp (- ~p2)  = 03(0 Ie-~)  . (66) 
(3=-00 

With these expressions we can also write the "Fock vacuum" as 

1 1 6 (ti Ie-N) 
10) = - E 3 N I Uj) . (67) 

IN j=-I J03 (0 Ie-~)  

Any arbitrary "Fock state" can also be written in terms of the Jacobi 
03 function if we perform a direct calculation using the Hermite polynomial 
generating function 

15 

In) = (N~)_I)p(n)  (2n)!! {~[ z'2() ([2; I _L!.)]} ) -1/2
" P (2p)!! dx2p e 3 VIi x e N 

r=O 

~ {cr [z'2 (1r j [2; .")]} 
X j~t dxn e (J3 N - VIi x I e- Ii z;:O I U j) . (68) 

In fact, the appearance of this Jacobi function in the ~resent  context can 
be directly understood by realizing that this function, calculated at those ar
guments, is a periodic eigenstate of the discrete Fourier operator with eigen
value (+1) and period N[19]. 

3.2 Creation and annihilation operators 

After constructing the discrete coherent state in the finite dimensional 
coordinate and momentum representation through the use of the discussed 
operator basis and establishing its connection with the Jacobi 03 (z Iw) func
tion, we must now turn our attention to still another operator basis, similar 
to that already constructed in the previous sections, but defined now by its 
action on the" Fock states". 

So, to this end let us consider now the new finite-dimensional set of states 
associated to an "action" variable which we will consider as the finite har
monic oscillator-like Fock states. For this set of states we can define again, 
in the same form as we did before, a set of unitary operators {iJ/l exhibiting 
the same properties as those already discussed for the"coordinate" space 

iJI Iun ) = u~ Iun) ; Un = exp (2;i n) . (69) 

Furthermore, we can also define the unitary operator which cyclically shifts 
these states 

vk Iun) =1 Un-k) ; (70) 

as before this operator also has its set of eigenstates 

V' IVk) = vi IVk) ; Vk = exp (2~i  k) (71) 
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for which 0 acts as a cyclic shift operator The annihilation and creation operators acting k times on a "Fock slate" 
give 

0' IVk) =1 Vk+I) . (72) 

We have also 
N-2 [k ]

a
k Ium ) = E II ;;;;+16n".n,,_I-1 ~ hnl,m-I Iun.. } (81 ) 

- N - NU =V =1. (73) {nj}=O p=2 

This set of states, {I Vk}}, has the interpretation of "angle" stales and and 
together with the "action" states they satisfy the relations 

N-I
N-2 [k ]E 1tik)(Uk 1= 1 , (74) (at)k Iurn) = E 11 Jnp + 1 6n".n,,_I+1 ~ hnl,m IUn .. } (82) 

j=O {nj}=O p=2 

N-I
respectively.L IVk)(Vk 1= 1 , (75) 

From these two operators we can also construct the "number" operatork=O 

being the Fourier operator in this case defined by N-2 

N = ata = E (n + 1) IUn+\}{un+t I (sa)N-t 
n=OF = L IVk)(Uk I , (76) 

such thatk=O 

where the labels must now run from 0 to N - 1. N-2 

For the "Fock action states" we can now define the creation and annihi N Iurn) = E (n - 1) hn,m-t I Un+l) , (84) 
lation operators, as already discussed in the literature [to] n=O 

with 
N-2 

a = L: vn+T Iun)(un+t I , (77) 
N IUN-I) = (N - 1) IUN-I) . (Sf) )n=O 

N-2 The commutation relations for these operators can be immediately cal
at = L vn+T I Un+I)(Un I , (78) culated giving results that also have been already discussed in the literature 

In=O 
I ' [10] 

which give the following important results when acting on the finite "action" 
multiplet 

N-2 

N-2 [a,at ] = E (n + 1)(1 un){un 1- I Un+\)(Un+1 I) = 1-N I UN-t){UN-J I , 
a Iuo) = L In+l hn,-I I un} = 0 , (79) n=O 

(86)n=O 

N-2 N-2 

at IUN-I) = L vn+T 6n,N-t I Un+l) = 0 . (80) [a,N] = E vn+T Iun)(un +\ I = a , (87) 
n=O n=O 
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and 

1 ~ (. 21ri ) .N-2 I)Uj (Uk 1= N L- exp --Ij Ulyk-) (91) 
[at, N] = - L JnTI IUn+I)(Un I = -at. (88) I=-t N 

7l=0 and 
We can now express these creation and annihilation operators in terms of 

the Schwinger operators iJ and Ywhat can be readily achieved by a direct t 

decomposition into the operator basis generated by those operators I n) = E hn 1Uj) (92) 
j=-t 

so thatN-I 1 N-I N-2 ( 2 0 

at = L a*(m,n)G(m,n) = Ii ~  L vn+f exp - ~ljn) (PV (89) 
tIt

nm=O )=0 n=O In)(n + 1 1= .E hnIZ,n+1 I tlj)(Uk 1= N . L hnl;,n+1 
and ),k=-t ),1.,1=-1 

21ri I 0) Ulyk-jx exp ( -N) , (93)
N-l 1 N-I N-2 [ 2 0 ] 

a = n~o a(m, n)G(m, n) = N .r; EJnTI exp - ~l j (n + 1) fJjy- 1 

(90) 1 1 t 

These results just tell us that the creation and annihilation operators can In + l)(n + 1 1= E h,n+d;,n+1 IUj)(Uk 1= N .L !J.n+d;,n+ I 
j,k=-I ),1.,1=-1be easily rewritten and interpreted in terms of the cyclic operators of the 

basis wich acts on the finite Fock spacei all the other properties expected ? . )x exp ( - _~llj Ulyk-j. (94)from the annihilation and creation operators are guaranteed by the explicit 
form of a(m, n). 

With these results it is a direct matter to write Eqs. (17), (78) and Now, it is immediate to see that the set of states {I tin)}, from which 
(83) in terms of the Schwinger operators associated to the "coordinate" and we constructed the creation and annihilation operators a and at, are iden
"momentum" representation 

tical with the set {I n)}, describing the "number" states, i.e., I un) =1 n), 
which was discussed in the context of the eigenstates of the Fourier operator, 1 N-2 1 ( 2 . ) _ 7l'l . * I k-jin connection with the "coordinate" and "momentum" representation of the a - N L .L JnTI exp -til) !J.nlk,n+1 U y , (9.5) 
discrete coherent state. Based on this result, we remark again the fundamen n=O ),II:,I=-t 

tal role played by expression (59) which allows for the analytic expression for 
the matrix elements connecting the finite Fock and the discrete "coordinate" 1 N-2 1 ( 21ri ) . 

at = N L .L JnTI exp -fi/lk lj,nlk,n+1 Uly)-k , (96)spaces. 
,,=0 },II:,I=-IAlso, it is of great interest to express the creation and annihilation op

erators in terms of the initial Schwinger operator basis associated to the and 
"coordinate" and "momentum" representation. To this end we need to es
tablish a relationship between the "Fock states" and the elements of the 
initial Schwinger basis; in fact this can be accomplished by using some pre 1 N-2 t ( 27l'i 0) * I 1.-. 

N = N E .E (n + l)exp -til) !J.n+dk.n+ I U y ). (97)
vious results, namely ,,=0 ),11:,/=-1 
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Using these relations we can also establish the action of these operators 
upon the "coordinate" and "momentum" states 

N-2 

a I tlj) = E ~  fj.n+1 In) , (98) 
n=O 

N-2 

at lUi) = E ~ fj,n 1 n + 1) , (99) 
n=O 

N-2 

N I U j) = E (n + 1) fj,n+ 1 In + 1) (100) 
n=O 

thus showing the importance of the function hn in the connection of the 
finite Fock and "coordinate" spaces. 

3.3 Some Properties, of the Discrete Coherent States 

The adopted definition of the discrete coherent states, Eq. (48), directly 
allows for the calculation of some interesting results regarding these states, 
namely, the overcompleteness and the scalar product relations. The first 
property can be easily verified by noting that 

1 1 1 1 

N L I k, I)(k, 11= E E Jio f;o bir IUi+l)(Ur+l I 
1:,1=-1 1=-1 i.r=-I 

,
2L I frO 1 1 Ur+l)(Ur+l I (!O] ) 

I,r=-I 

and using 

rIUr+I)(Ur+1 1= V-rn(U" ll,)V (102) 

so that 

1 1 I 2 r ( t ) r 
N I:E., I k, I)(k, 11= r~1 I frO 1 V- I~I n(UI, UI) V 

(103)= ttl I frO 1 
2)1 == 1 . 

21 

The scalar product can also be directly calculated by the use of tIl(' defi
nition of the discrete coherent states and reads 

(k',I' I k, I) = exp {~  [k(l' -I) -I' (k' - k)]} 

x exp { lri [~  (k' , 1'; N) - ~  (k, I; N)]} exp [- ~  (k' - k)2
] 

03 (~[(/'-I)  - i (k'  k)] Ie-~) 

x 03 
(2")0 I e- 7f 

(1O'l) 

The overlap probability immediately follows 

I( k' I' I k I) 12 = 
" 1 

0 (~[(/'_/)_i(k'_k)]le-~)12  

_3--,--N--:;------:---.-------'-
03 (0 Ie- ~)  

[ 
211',

X exp - N (k - 2]k) , (1 Oti) 

from which we can see that the following inequality 

0< I(k', 1'1 k,/)1 2 
~ 1 (106) 

holds. Again, in the discrete case we can also see that the overlap is equal 
to one along the diagonal and falls to zero as (k' - k)2 becomes large in 
agreement with the continuous case. 

Let us expand now the discrete coherent states I k, I) ill the finite Fock 
space 

N-l N-I 

I k, I) = L (n I k, I) In) = L An (k, I) I n) . ( 1(7) 
n=O n=O 

The coefficient A,,(k, I) is of fundamental importance in this context and can 
be easily obtained by the use of the definition of the coherent state, Eq. (64), 
thus giving 

[
. i1r. ] ~ ([2;)An(k,/) =.Nexp -ur4>(k,I;N)+ Nk(l+lk) o~oo  I/n VN ex 
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211" 2 211"i .]
x exp [- N Ct - N Ct (l + zk) (108) 

where 

J{ = L~~  eXJl [-~ (02+fJ2)] H~ (fir 0) }-, 
I 

. (109) 

It is immediate to see that the discrete coherent state satisfies the relation 

a I k,l) = F(k,l) Ik,l) (110) 

such that 

N-2 

F(k,l) = L In+T An+l(k,l) A:(k,l). (Ill ) 
n=O 

This expression for F(k, l) is the discrete analog of the eigenvalue of the 
annihilation operator in the continuous case, but here we see that it is not 
merely a complex number so that we cannot assert that the discrete coherent 
state is an eigenstate of the annihilation operator ill the same sense as in the 
continuous case. The difference comes from the finite-dimension character of 
the Fock space; in fact we can only expect to reobtain that result in the limit 
of large N. 

As another important result, let us calculate the new operators 

A = Dt(k,l) a D(k,l) =a +F(k,l) (112) 

and 

At = Dt(k,l) at D(k,l) =at+F*(k,l) (113) 

such that it is immediate to verify the following relations 

(0 I A I0) = F( k, l) (114) 

and 

(O I At 10) == F*(k,l) (115) 
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which also show a close analogy with the corresponding results coming from 
the continuum case. 

4 Probability Distributions 

The mapping of a finite Fock space state - through the use of the proposed 
discrete coherent state written in terms "coordinate" and "momentum" vari
ables - onto a positive discrete distribution function defined in the discrete 
phase space follows directly, by using the definition of the density operator 
pn =1 n){n I, from the statement 

Pn(k, I) = (k, II pn I k, I) = I (k, II n) 1 
2= IAn(k, 1)1 2 (1l() ) 

where An(k, I) is given by the expression (108). The discrete ground state 
distribution is shown in figure 1. 

Once we have the discrete distribution function Pn(k, l), that is associated 
to the "coordinate" and "momentum" variables, we are able to extract the 
discrete marginal distributions by a simple summation 

1 t� 
Rn(k) = rr;; L P,,(k, l) =� 

vN I=-t� 

1 (211") [411"00 ] [[2;]= )/2 N 3 exp - N k
2 

o~oo exp - N Ct (Ct - k) H~ VIi Ct , ( II 7) 

where the normalization constant )/ is that defined in Eq. (109); and 

1 t� 

Qn(1) = rr;; L Pn(k, l) =� 
vN k=-t� 

1 00 [211" ( 2 ) 211"i ]= JV2 -1 L exp - N Ct - Ct/3 + /32 +N 1(Ct - /3)
N 3 o,{1=-oo 

(fh) (fh) (i1l" ~) (] 18)x H11 VIi Ct H11 VIi /3 03 N (Ct - /3) I e- N 
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It is direct to write a discrete Wigner distribution for any finite-dimensional 
space whenever the density operator and a corresponding operator basis for 
that space are given, but it is also interesting to calculate the discrete Wigner 
distribution associated to the state In) of the finite-dimensional Fock space by 
using the operator basis written in terms of "coordinate" and "momentum" 

variables, Eq. (22), i.e., 

Wn(k,/) = Tr [at(k,/) In)(n I] = (nlat(k,/)ln) 

lIt [211"i . 11" ]=.N- N ~ exp Ii (1'k +s/) - N" (1' - is) 
T .... --t 

00 [211" '2 211" .] (~).  ([2;- )x o~oo  exp - N0 + No(r-l$) lin VN ° Hn VN (o-r) , 

( 119) 

where the normalizat.ion const.ant. reads 

( 120),v =ptcxp ( - ~ fl') II~ ( ~ fl) 
An example of such a discrete Wigner distribution is shown in figure 2. 

Although this expression seems somewhat. entangled when compared to 
the continuous case, it has all the desired properties associated to a Wigner 
distribution function, including now the periodicity required by the finite 
character of the discrete phase space. In particular we can also calculate the 
marginal distributions for this discrete Wigner function 

1 1 

Rn(~:)  = ---j=f; L Wn(k, I)
vN /=-1 

001 _I t (211"i 11" 2) [211" 
= IN.N r~t exp Ii kr - N r o~oo exp - N° (0 

- r)] 

(121 )x H. (/*a) II. [~  (a -T)] 

and 
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1 1 

Qn(/) = IN k~t  Wn(k,/) 

VN ,v-I exr ( - ~l') H~ (f% 1) ( 122) 

respectively. 

5� Continuum limit of the distribution func
tions 

One of the interesting aspects of the formalism describing discrete phase 
spaces is that the representative of quantum operators (or combinations of 
them such as commutators or anticommutators) are functions of int.eger c
numbers and also of the dimension of the state vector space, N. This consti
tutes a great advantage when one must consider the limit situation of state 
vector spaces with N -+ 00 because then one does not need to calculate that 
limit for expression giving the expectation value of the operators one is int.er
ested in. In other words, one takes the N -+ 00 limit for the functions which 
are the discrete phase space representatives of the operators without regard
ing the underlying Hilbert space. This procedure closely parallels the Pegg 
and Barnett prescription [10] in which only after calculating t.he expectation 
values of the operators we are allowed to perform that limit. 

As examples of what can be obtained from this limiting procedure, in 
what follows we will calculate the expressions for the discrete distribution 
functions we have previously obtained for the case N -+ 00. To this end we 
will call £2 = 211" / N and, due to the expected symmetry, consider the interval 
of variation for the variables associated to the "coordinate" and "momentulll" 
to range from - (N - 1) /2 to (N - 1) /2. Furthermore, we will take 

qk = Pk = tk� (123) 

where 

N -1 
k =O,±I,±2""'±-2-� (124) 
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and 

6qk = 6Pk = f (12.5) 

so that f -+ 0 when N -+ 00. In that limit the sums may be substituted 
by integrals qk -+ q, Pk -+ P and, when we consider the discrete distribution 
P (k, I), one gets again the Poisson distribution exactly as in the continuous n 

Glauber coherent states 

I (p2+ q2)n (p2+ q2)Pn (p,q) =;;l -2- exp --2- . (126) 

In a completely analogous form we can calculate the N -+ 00 limit for 
marginal distributions Rn (k) and Qn (I) respectively and we get 

( 
p2) n . (n) (p2) (127) 1Rn(p)=exp -2 [;(_I)n-] j L:!j 2 ' 

q2) (n) _! (q2)Qn(q)=exp (-2 [;(-1)n j j Lj ' 2 . (128) 

Such expressions are an alternative way of writting the marginal distribu
tions in the continuum for the coherent states as can be readly verified by 
remembering that 

2 n (2k - I)!! p2(n-k) 
Rn (p) = exp (-p ) E ".."" r", I 1\111 , (129) 

k=O 

2 n [2 (n - k) - I] l! q2k 
Qn (q) = exp (-q ) E [2(71 _ k)]!! (2k)!! (130) 

and taking into account the relationship between tIle Hermite and Laguerre 
polynomials [20]. 

The Wigner function Wn (k, I), Eq. (119), also can be obtained in the 
N -+ 00 limit and gives the standard expression as expected for a harmonic 
oscillator In} state 

Wn(p,q) =2(-I)"exp [- (q2 +p2)] Ln[2 (q2 +p2)] (131) 

while the associated discrete marginal distributions give 

27 

_ Vi 2) 2 )Rn(p) - (2n)l! exp( -p I/n(p (I :J2) 

and 

Vi 2) 2(Qn(q)= (2n)!! exp( -q lin q) ( l:l:q 

respectively. From Eqs. (132-133) we would get 

R ( ) - V2e-p2 ~(_I)k  [2(n - k) - IJ!! L-t(2 2)p ( 134) 
n p - 6 [2(n-k)J!! k 

and 

fu _q2 ~  )n-k (2k - 1)l! -t ( 2)
Qn (q) = v2 e t:,(-I (2k)!! Ln_k 2q ( 135) 

These expressions can be directly seen to be equivalent to Eqs. (127) a.nd 
(128) respectively. 

6 Conclusions 

In this paper we have addressed the problem of constructing coherent states 
and probability distributions in finite-dimensional spaces. To this end we 
have explored the fact that, starting from a finite N-dimensional "coordi
nate" space, it is always possible to associate a corresponding" momentum" 
space by using operator bases constructed out of the Schwinger unitary op
erators [3] and, as a fundamental consequence of the this construction, it 
results that those finite N-dimensional spaces are connected by a Fourier 
transform. Now, the general matrix representing the associated finite space 
Fourier operator has been studied by Mehta [18] who has shown that it also 
satisfies a property already presented and discussed in the continuous case 
[17], namely that a set of Fock states {I n}} exists such that they are the 
eigenvalues of that operator with eigenvalues in. However, in the finite case 
there are only N linearly independent solutions to the eigenvalue problem; 
they form then a finite N-dimensional Fock space which is directly connected 
to the original "coordinate" space. We explored this connection between the 
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two spaces to show that it is possible to generate an operator basis associ
ated to a "coordinat.e-momentum" discrete phase space as well as another 
operator basis associated now to a "number-angle" discrete phase space. In 
this way, we have shown that, due to that important property of the Fourier 
transform, the introduction of a finite N-dimensional discrete "coordinate
momentum" phase space allows for thc construction of a finite N-dimensional 
discrete "number-anglc" phase space and vice-versa. In this connection, we 
have recalled the annihilation and creation operators acting on the finite
dimensional Fock space a.lready described in the contcxt of quantum optics 
[10] and we have shown how it is possible to express them also in terms of 
the "coordinate-momentum" operator basis. 

Based on thosc results we have discussed the properties of a discrete har
monic oscillator-like coherent state constructed out of the "coordinate" and 
"momentum" discrete variables [6] and we have also presented the functions 
describing the finite-dimensional excitation number probability distribution 
in that discrete coherent state' together with the marginal distributions di
rectly obtained from it. A discrete Wigller pseudo-distribution in the "co
ordinate" and "moment.nm" va.riahles is obtained for a Fock state and the 
marginal distributions are also explicitly written. 

The limit of large N wa..~ carried out for the discrete probability distri
butions and their well known continuous counterpa.rt expressions were reob
tained thus showing the correct trend we would expect from such a construc
tion. 

In a future paper we will discuss the limiting behavior of the expressions 
giving the connections between the two phase spaces and we will also show 
how one can recover the Pegg and Bamett dcscription of thc phase distribu
tions from the present scheme. 
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Appendix 

Let us define two hermitean operators in terms of the creation and anni
hilation operators which act o~  the finite number space 
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a+at a-at 
8 = ~ and D == J2 

so that 

8 +iD t 8-iD 
a = v'2 and a = J2 

With these expressions we have the matrix elements 

(kl18 I kl)2 = ~ (F2 (k, I) + 1"*2 (k, I) + 211" (k, l)n 
(HI 82 

1 H) = ~ (1- NPn(k,/) +F2(k,l) + P*2(k,/) + 2I F (k,I)12) 

(HI D IH)2 = ~ (2IF(k,/)l2 -F2(k,l) - F*2(k,l)) 

2(k/l D 1 k/) = ~ (1- NPn(k,/) - F2(k,/) - F*2(k,l) +2IF(k,I)l2) . 

Thus, it is immediate to get the expressions for the variances of the op
erators 8 and D with respect to the discrete coherent state 

(682
) = (kll 82 

1 kl) - (HI 8 I kl)2 = ~ - ~Pn(k,l) ~ ~ 

and 

(6D2
) = (kll D2 

1 kl) - (kl\ D I kl)2 = ~ - ~Pn(k,l)::; ~ 

respectively. These results clearly show the effects of the presence of the 
additional term, coming from the finite-dimensional character of the space, 
in the commutator of the creation and annihilation operators. In fad these 
results are directly related to the particular second order squeezing effect 
which appears in finite-dimensional Fock spaces[15, 16]. It is also evident 
that in the limit of large N we will get the standard dispersions results of 
the continuous case and the vanishing of the mentioned squeezing effect. 
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8 Figure Captions 
Figure 1: The discrete ground slate harmonic oscillator distribution, n = 0,�

for a discrete space with N = 15 slales. 1� 
0.75Figure 2: The discrete Wigner distribution associated to the n = 1 harmonic�

oscillator state for a discrete space with N = 9 states. 
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0.25
o 

k 

FIGURE 1 

33 



.. 


