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Complex Kohn Variational Principle for the Solution of 
Lippmann-Schwinger Equations 

. Sadhan K. Adhikari 
Instituto de Fisica Teorica, Universidade Estadual Paulista 

01..105 Sao Paulo, Sao Paulo, Brasil 

A recently proposed version of the Kohn variational principle for the t matrix
incorporating the correct boundary condition is aPlllied for the first time to the 
study of nucleon-nucleon sca.ttering. Analytic ex{lresslOns can be obtained for all the 
integrals in the method for a wide class of potentials and for a suitable choice of trial 
functions. Closed-form analytic expressions for these integrals are given for Yakawa 
and exponential potentia.ls. Calculations with two commonly used S-wave nucleon
nucleon potentials show that the method may converge faster than other solution 
schemes not only for the phase-shifts but also for the off-shell t matrix elements if
the freedom in the choice of the trial function is exploited. 

PACS Numbers: 25.10.+s; 03.65.Nk. 

I. INTRODUCTION 

Variational principles (v.p.s.) have proved[1]-[7] to be very useful for solving 
scattering equations which usually have the Lippmann-Schwinger (LS) form[8] 

teE) ='v +VG~+)(E)t(E), (1) 

where t is the transition (t) matrix, V the potential, and G~+)(E)  is the free Green 
function at energy E. There are different types ofv.p.s. We follow the classification 
of Ref.4. A Kohn-type[2] v.p. is essentially a v.p. for the operator teE) - V. The 
simplest v.p. of this class is the usual Kohn v.p. for the phase shift or for the real 
reactance (K) matrix elements. A Schwinger[l] v.p., on the other hand, is a v.p. 
for the transition matrix t (E). 

The usual Kohn v.p. does not require the calculation of integrals involving 
the free Green function and is the simplest of all the available v.p.s. This V.p. 
for the K matrix elements requires trial functions satisfying scattering boundary 
conditions. It was noted[9] by Schwartz that the K matrix calculated by the Kohn 
v.p. exhibit anomalous singularities. This has limited significantly the use of Kohn 
v.p.s in scattering calculations. In the Kohn method one has to invert the operator 
(E - H), where H is the full Hamiltonian, in the space of the real trial functions. 
As H has a continuum spectrum at positive energies this process of inversion leads 
to spurious singularities. The advantage of the Kohn v.p. over the Schwinger v.p. 
in having simple integrals to deal with is more than off-set by the presence of these 
anomalous singularities. 

It has recently been suggested[lO] that by choosing complex boundary conditions 
for the full Green function the Kohn v.p. readily yields the complex t matrix 
elements. In the space spanned by the complex trial function the operator (E-Ht1 
does not present anomalous singularities. So the difficulties associated with the 
appearance of anomalous singularities in the usual Kohn method for the K matrix 
is circumvented in the complex Kohn method for the t matrix. A variant of the 
complex Kohn method for directly calculating the scattering (S) matrix elements 
has also been suggested and used[10]. The complex Kohn method for the t and S 
matrix elements are closely related to each other and the S matrix version of the 
complex Kohn v.p. is also claimed to be free of anomalous singularities. 

The complex Kohn v.p. has only been suggested recently and has seen only 
limited application for a very special class of scattering problems in atomic physics. 
In the single channel case only an exponential potential has been considered. In the 
present work we apply the complex Kohn v.p. for the t matrix in solving the nucleon
nucleon (NN) scattering problem with two phenomenological potentials with soft 
core[ll]' where precision calculations have been performed using other methods[4, 
5]. This will allow us to compare the results obtained with the complex Kohn v.p. 
with those obtained with other methods. Because of the presence of a soft core these 
phenomenological NN potentials are difficult to deal with both in configuration and 
Inomentum space calculations. There are difficulties with configuration space inte
gration at small r. In a momentum space treatment the momentum space infinite 
integrals are discretized by employing a momentum space mesh which extends to a 
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very large value of momentum. Hence the study of NN scattering employing phe
nomenological potentials with soft core should be considered to be a welcome test 
for the usefulness of any numerical method for solving LS equations. 

It has been shown that the Schwinger v.p. may possess spurious singularities[12]. 
But it has been pointed out[13] that they should be rare in practice and are expected 
to have little relevance to the usefulness of Schwinger v.p. Anomalous singularities 
have been recently observed[14] in complex Kohn v.p.. In view of this it is interesting 
to see if this has any relevance to the application of this v.p. to other problems in 
scattering, for example, NN scattering with phenomenological potentials with soft 
core. 

We find that for the problem studied, the complex Kohn v.p. produces very 
good convergence and the accidental appearance of spurious singularities seems to 
have no relevance to the usefulness of this method. The final convergence obtained 
with the complex Kohn v.p. is better than the best convergence obtained so far for 
these potentials with the Schwinger v.p. 

We not only calculated the phase-shifts but also the off-shell t -matrix elements' 
using the present method and find that both the phase shifts and the off-shell 
t matrix elements converge equally rapidly. This was tested· by calculating the 
Kowalski-Noyes[14] universal half-shell functions. 

The plan of the paper is as follows. In Sec.II we present a degenerate kernel 
derivation of the complex Kohn v.p. of Ref.10. Explicit analytic expressions for 
all matrix elements involved in this method are given in Sec.III for two choices 
(11-13) of expansion functions for the exponential and the Yukawa potentials. The 
exponential potential is of interest in atomic scattering problems[lO} and the Yukawa 
potential in nuclear scattering problems[llJ. In Sec.IV we present numerical results 
for two phenomenological NN potentials for both choices of expansion functions and 
compare the results with those obtained by the use of Schwinger v.p. and other 
methods. Finally, we present a brief summary of our study in Sec.V. 

II. COMPLEX KOHN VARIATIONAL PRINCIPLE 

In this section we present an alternate derivation of the complex Kohn v.p.. 
Formally, this v.p. can be considered as the degenerate kernel solution of Eq.(1) 

with the following degenerate approximation to G~+)(E)  == (E - Ho + iotl (with 
Ho the free Hamiltonian): 

N 

[G~+)(E)]N = L /un > Dnj < ujl, (2) 
n,j=l 

where 

(D-l)jn =< ujl(E - Ho+iO)lun >, (3) 

where Uj, j = 1, 2, ... , N, is a set of suitably chosen functions so as to satisfy cer

tain boundary conditions of G~+>(E).  For calculational sake, we consider all the 
equations in this work to be in partial wave form. The configuration space ma
trix element of Eq.(2) should satisfy certain desired properties of the partial wave 
outgoing Green function 
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< rIG~+>(E)lr' >/= ikj/(kr<)hp>(kr», (4) 

where j and hP> are the usual spherical Bessel and Hankel functions, and r< (r» is 
the smaller (larger) of r and r'. Expression (4) is symmetric in r and r' and satisfies 
the following boundary conditions for small and large r for a fixed r' and 1 = 0 

ikre
lim < rIG~+)(E)lr' > = - x function(r'), (5) 
r-oo r 

lim < rIG~+)(E)lr'  > = constant x function(r'). (6) 
r .....O 

A similar set of equations hold for limits r' ~  0 and r' ~  00. The expansion 
functions Uj of Eqs.(2-3) can be easily chosen so as to satisfy the correct outgoing 
wave boundary conditions (5-6) for the Green function consistent with the +iO. 

The approximate degenerate Green function of Eqs.(2-3) can be easily made to 
satisfy boundary conditions (5-6) if lUI> is taken to satisfy 

ikre
lim Ul( r) == < rlul >==< ullr >= -, (7) 
~oo r 

~~ul(r)=constant,  (8) 

and the remaining functions IUj > , j =I- 1, are taken to satisfy 

(9),li.~  u;(r) =0, 

lim uj(r) = constant. (10)
r_O 

The simplest choices satisfying these conditions are 

ikre
ul(r) =< r\uI >=< ullr >= (1 - e-ar

)_ (11) 
r 

and 
Chojce A 

Uj(r) = r j
-

2e-ar ,j = 2,3, ... ,N, (12) 

or 
Choice B 

Uj(r) = e-(j-l)ar,j = 2,3, ... , N, (13) 

where a in Eqs.(1l-13) is supposed to be a variational parameter which should be 
varied so as to obtain the best convergence. It is obvious that these are not the only 
possible choices for Uj' There could be many other possible choices. The objective 
of this work is not to exhaust all these possibilities but to see if these two simple 
choices produce good convergence in NN scattering involving soft core potentials. 
Of these choices only choice A has been applied in other numerical applications[10j. 

When approximation (2) is used in the kernel of the LS equation (1), it yields 
the following solution 
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N 
..' tN(E) = V + L: Vlun > Jnj < uiIV, (14) 

n,i=l 

where 

(J-l)in =< ui!(E - H + iO)lun >, (15) 

with H = Ho + V. Equation (14) is the desired complex Kohn v.p. for the t 
matrix[lO]. 

In this method the outgoing wave nature of the t matrix is taken care of via the 
choice of expansion functions (11-13). The function '1.£1 is complex and the functions 
'Uj, j = 2, ... , N, are real. The correct boundary condition is imposed by taking 
< ullr > and < rlul > to be equal and not complex conjugate of each other as 
in the case of complex functions in quantum mechanics[lO]. As in the usual Kohn 
method, in expansion (14-15) one does not require integrals involving the Green 
function. 

In previous calculations using the Kohn v.p. only the partial wave phase shifts or 
the on-shell K-matrix elements were calculated. However, if one is interest in solving 
few-body scattering problems using the two-body t matrix elements one needs the 
off-shell t matrix elements. The universal Kowalski-Noyes half-shell functions at 
all energies define the off-shell t matrix elements at an energy and we study the 
convergence of these functions also in our nwnerical study. 

III. EXPLICIT MATRIX ELEMENTS 

One reason for choosing the functions (11-13) in the present method is that 
for the commonly used exponential and Yukawa potentials all the matrix elements 
needed in the numerical evaluation of the t matrix elements using Eqs.(14-15) can 
be evaluated analytically. Consequently, the only numerical task is the inversion of 
an analytically known matrix and simple matrix-vector multiplication, which can 
be executed on a personal computer. 

The on-shell S wave (1 = 0) t matrix elements are parametrized by means of 
the phase-shift 0 via 

i6 
< klt(E)lk >= _ e sin6 (16)

k ' 

where P = 2mEjh2, with m the reduced mass. 
The explicit S wave matrix elements of the t matrix (14) is given by 

N 

< pltN(E)lq >=< plvlq > + E < plvlun > JnJ < uilvlq >, (17) 
n,j=l 

(J-l)in =< uil(k2 -1i)lun > . (18) 

In Eqs.(I7-I8) v == 2mVjh2 and 
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(19)1i == 2mHjh
2 

= - dr
d2

2 +v(r). 

The matrix elements of Eqs.(17-18) are explicitly written as 

00 

< ujl(k2 -1i)luj >=1 Uj(r) [k2+~2 -v(r)] 'Uj(r)r2dr, (20) 

oo sinq7'
< uilvlq > == < qlvlUj >= Uj(r )v(r )--'r dl', (21)loo qr 

2

We consider the matrix elements of the following potential with the parameter 
P(= 0,1) 

V(r)=Vor-Pe-"r, (22) 

where P = 0 (1) corresponds to the exponential (Yukawa) potential. In this case 

< plvlq > = {voj(4pq)}ln[{J.L2 + (p+q)2}{J.L2 +(p- q)2}-1],P = I, (23) 

=2J.LV O{J.L2 + (p_ q)2}-1{l +(P+ q)2}-1 ,P = 0, (24) 

where Vo = 2mVojh2
• 

For the choice A expansion functions (11-12) the necessary matrix elements are 
given by 

< ud(k2-1i)IUl > =vo[ln(J.L - 2ik) + In(J.L +2a - 2ik) - 21n(J.L + a - 2ik)] 

- a - 0(2ik - 0:)(2a - 2ikt1
, P = I, (25) 

= -vo{(J.L - 2ik)-1 + (J.L + 2a - 2ikr l
- 2(p + a - 2'ik)-1} 

-a - a(2ik - 0)(2a - 2ikt l ,P = 0, (26) 

< ullvlp > = {voj(2p )}[tan-l{(p + k)j J.L} +tan- l{(p - k)hL} 

-tan-1{(p+ k)j(a + J.L)} - tan-1{(p - k)j(o: + pH] 

+i{voj(4p)} In[{l + (p+ k)2}{(p + a)2 + (p - k)2} 

x {J.L2+(p_k)2}-1{(J.L+a?+(p+k)2}-1], P= I, (27) 

=vo(J.L2 + p2 _ k2+ 2iJ.Lk){J.L2 + (p _ k)2}-1{J.L2 + (p + k)2}-1 

- vo{(o: + J.L)2 + p2 - k2+ 2i(0 + J.L)k}{(a + J.L? + (p - k?}-l 

x {(a + J.L)2 + (p + k)2}-l,P = 0 (28) 

< ujl(k2-1i)lul > =vo(j - P - l)![(a + J.L - ik)P-j - (20 + J.L - ik)P-j] 

+(j - I)!0(2ik - a)(2a - ikrj,j > I, P = 0,1, (29) 

< uilvlp > =(vojp)(j - P - 1)!{(a +J.L? +p2}(P-j)/2 

x sin[(j - P)tan-1{pj(a +J.L)}]'j > I, P = 0, 1, (30) 

< 'Ujl(k 2 -1i)lun > = k2(j +n - 2)!(2a)1-i-n 

+ (j + n - 4)!(2a)3- j -n(p + n2 
- 2nj - j - n + 2)j4 

- vo(j + n - P - 2)!(20 +p)l+P-i-n,j, n > I, P = 0,1, (31) 
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where j and n are used to label the expansion functions and i = ( -1 )1/2. 

For the choice B expansion function given by Eqs.(ll) and (13) we need the 
following integrals in addition to those given by Eqs.(23-28): 

< ujl(k2 -1t)IUl >= -vo[{IJ + (j - l)a - ik}P-2 - (ja + J.L - ik)P-21 

+a(2ik - a)(ja - ikt 2,P = 0,1; j > 1 (32) 

< ujlvlp > = vo[2{1J + (j -1)a}11
-

P 

x [{IJ + (j - 1)a}2 + p2t-2 
, P = 0, l;j > 1, (33) 

< 'Ujl(k2 -1t)lun > =-v021
-

P {IJ +(j - l)a + (n - 1)a}P-3 + 2a-3 (j + n - 2t3 

X {k2 
- a 2(j -l)(n -l)},P = 0, l;j,n > 1. (34) 

IV. NUMERICAL RESULTS 

To see how the complex Kohn v.p. works in practice, we have carried out 
additional numerical calculations with two of the semiphenomenological NN po
tentials[lll which have been frequently used in few-nucleon calculations. These 
potentials possess soft cores and present difficulties in convergence in numerical 
treatment. So, if we can demonstrate good convergence with these potentials, it is 
expected that the method will converge well for other methods. These potentials 
are superposition of Yukawa potentials. Explicitly, these potentials have the form 

M 
V(r) = Lltjr-le-~jr, (35) 

j=J 

where for the [l]So Reid soft core potential M = 3 and V;� 
-1O.463/0.7MeV jm, V2 = -1650.6/0.7MeVjm, V3 = 6484.2/0.7NleV fm, J.Ll� 

0.7jm- J,IJ2 = 4IJbIJ3 = 7IJJ and for the alternate potential M = 2 and Vi _� 
-570.3316MeVjm,� 
V2 = 1438A812MeVjm,1LJ = 1.55jm-1 ,J.L2 = 3.l1jm-J. The latter has a single� 
bound state at E = -0.35MeV. It is interesting to recall that previous numer�
ical study of the complex Kohn method used a simple exponential potential and� 
confirmed rapid convergence when compared[lO] to other methods such as the one� 
based on the usual Schwinger v.p..� 

We present results for both choices of expansion functions, for both these po
tentials. The parameter Q in the expansion functions is supposed to be varied to 
improve the convergence rate. The values finally adopted were a = 5jm- 1 for the 
choice A functions (11-12) and a = 1.4jm-J for the choice B functions (11) and 
(13). For the NN scattering problem we take 1i,2/2m = 41.47MeV fm 2• 

In Table I we give elastic scattering phase shifts for the [l]So Reid soft core 
potential for both expansion functions and compare them with the best results 
obtained by the Schwinger v.p. taken from RefA (denoted choice A there). In 
Table II we give exactly the same quantities as in Table I, but for the alternate 
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potential and compare them with the result of Schwinger v.p. taken from Ref.5 
(denoted choice 1 there). 

From Tables I and II we see that the phase-shifts converge rapidly for both po
tentials and for both choices of expansion functions. However, convergence is easier 
to obtain in the case of the alternate potential than in the case of the Reid potential 
possibly because of the stronger repulsive core of the latter. A point of technical 
importance is that as the functions used in this work are not orthogonalized, for 
large N they tend to be similar and the matrix J- 1 of Eq.(15) tend to become 
singular and one faces numerical trouble in inverting it. In the present calculation, 
carried out in double precision - about 16 decimal places - numerical difficulty in 
matrix inversion appeared only for N > 16 (> 10) for choice A (B) functions. 

In Table III we show the half-shell function for the alternate potential for the 
choice A functions at Ee.m . = 48MeV for different N. At a given energy the half
shell function is defined by j(p, k) =< plt(E)lk > / < klt(E)lk >. This is to the 
best of our knowledge the first calculation of the half-shell function using the Kohn 
or the complex Kohn v.p. 

From Tables I-III we find that both the phase shifts and the half-shell functions 
converge equally rapidly. The final convergence of the phase-shifts obtained with 
the complex Kohn v.p. is extremely good and is faster than that obtained with 
Schwinger v.p. or other degenerate kernel/separable expansion methods. The con
vergence obtained in the present study is much better than that obtained with the 
Schwinger v.p. denoted by S in Tables, I-II. For N = 14 the [l]So Reid soft core (al
ternate potential) phase shifts of the Kohn v.p. with choice A expansion functions 
have converged to an estimated numerical accuracy of < 0.005% « 0.0005%). 

In Figure 1 we plot the half-shell function for the Reid potential for the choice A 
function at Ee m = 12MeV for various N. It is realized that the half-shell function 
converges very rapidly. 

The precision· obtained with the present method is bet tel' than that obtained 
with any separable expansion[4, 51 or degenerate kernel methods[161 and is compa
rable to one of the best previous precision[171 obtained (for the Reid [llSo potential) 
with the use of the so-called iteration subtraction method. 

In order to solve the LS equation the integral equation is basically transformed 
into a matrix equation which is then solved by matrix inversion, iteration or other
wise. The infinite integral in momentum space of the LS equation, in other meth
ods, is usually transformed into a discrete sum. In order to achieve a precision 
comparable to that of the present method one requires to take about 100 discrete 
me::;h points. This procedure involves handling 100 x 100 matrices in momentum 
s}-Jacc[18]. The same precision is obtained in the present method via matrices of 
dimension 10-15. 

Often claim has been made about the superiority of the Kohn v.p. over 
Schwinger v.p. in atomic scattering problems[7, 10, 19]. In the present study we 
observe the superiority of the complex Kohn method over the Schwinger method in 
nuclear scattering problems. Usually, such a comparison is not to the point, becau::;e 
in these two methods different functions are expanded using a set of trial functions. 
In order to find a rapidly convergent expansion, the set of expansion functions must 
be appropriately modified. From the observed superiority of the Kohn v.p. it seems 
that the choice of an optimal set of expansion functions in the Kohn or the complex 
Kuhn method is under control, whereas the same in the Schwinger method is a more 
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difficult task. 
rl However, it is interesting to recall that in order to incorporate the correct out

going wave boundary condition the expansion functions in the complex Kohn V.p. 
are not only energy dependent but include unnormalizable complex functions. The 
Schwinger v.p., on the other hand, employs only real normalizable functions. Hence 
it is not surprising that the larger degree of freedom associated with the choice of 
expansion functions of the Kohn method leads to rapid convergence. 

V. SUMMARY 

We have applied for the first time the complex Kohn v.p. for the solution of the 
LS equation for NN scattering with two phenomenological potentials with soft core. 
We calculated both scattering phase shifts and Kowalski-Noyes half-shell functions. 
We find that the method leads to rapid convergence and high precision results. 
The rate of convergence obtained with the complex Kohn v.p. is superior to that 
obtained with the Schwinger v.poo Previously, the same conclusion was arrived at 
in atomic scattering problems. We realize that the higher flexibility in the choice 
of expansion functions in the Kohn method is responsible for the superior rate of 
convergence and high precision result obtained with this method. 
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TABLES� [htl
[htl 

TABLE III. Kowalski-~oyes  half-shell functions f(p,k) for the alternate potential with 
TABLE I. Phase shifts for the Reid potential for different N calculated by the complex choice A expansion function for various N at Ec.m . =48 .At!eV. Only the order of� 
Kohn method with choices A and B of expansion functions given by Eqs.(1l-13). The magnitude of the imaginary part has been shown. The method does not yield explicitly� 
choice S represents the Schwinger variational phase shifts taken from Table II of Ref.4, uuitary results. The order of magnitude of the imaginary part of f is a. good measure of� 

denoted choice A there.� unitary violation. 

Results for N- p Results for N -
Choice I 4 6 I 8 10 14 16 fm- l 1 4 6 10 2: 12 

0.5 1.5872+1O-1i 1.34678+1O-2 i 1.35216+1O-3 i 1.350656+ 10-6 i 1.350G5: +LO- 7i 
1.0 1.0928+10-2 i 1.06418+1O-3 i 1.06480+1O-4 i 1.064598-10-7 i 1.0Ij459: +lO-lli 

12� B 0.83131 0.86002 0.86062 0.86063 1.5 0.4699-10-1i 0.56859-10-3 i 0.56648-1O-4 i 0.567073+10- 7i 0.56707 +w-7 iS 0.8500 0.8554 0.8604 0.8604 0.8605 0.8606 
2.0 -0.0354-10-1 i 0.04418-10-3i 0.04204+ 1O-4 i 0.042110+ 10-7 i 0.042111 +10- 7 iA 0.42694 0.43974 0.44015 0.44018 0.44019 0.44019 

48� B 0.40785 0.43974 0.44023 0.44020 3.0 -0.4365-10-1 i -0.51694+ 1O-3 i -0.51718-106-4 i -0.517571+10- 7 i -0.51757 +10-7 i 
S 0.4535 0.4363 0.4398 0.4398 0.4401 0.4402 4.0 -0.4102-10-1 i -0.53945+ 1O-3 i -0.53825-1O-3 i -0.537611-1O- 7 i -0.537GO9+1O- 7i 
A 0.23146 0.26253 0.26302 0.26303 0.26303 0.24303 G.O -0.02045-10-1 -0.27233+10-3 i -0.27065-1O-4 i -0.27068+ 10-7 i -0.2706! +1O- 7 i 

72� B 0.21178 0.26249 0.26306 0.26303 8.0 -0.0914-10- 1 -0.12186+ 10-3 i -0.12067+1O-4 i -0.12090-10- 7 i -0.12091 + 1O-7i
S 0.2783 0.2577 0.2620 0.2624 0.2627 0.2630 10.0 -0.0414-10-1 -0.06206+ 1O-4 i -0.06083+1O-4 i -0.061037_10- 7 i -0.06103 +1O-7 iA -0.16714 -0.21652 -0.21608 -0.21638 -0.21638 -0.21638� 

176 B -0.11473 -0.21709 -0.21631 -0.21631� 
S -0.2499 -0.2217 -0.2167 -0.2180 -0.2167 -0.2164� 

[ht] 

TABLE II. Same as in Table I for the alternate potential. The Schwinger variational� 
.phase-shifts S are taken from Table n of Ref.5, denoted choice 1 t11ere.� 

Results for N=� 
Ec.m . I Choice 4 6 I 8 10 14 16� 
MeV� 

12� B 1.09944 1.09969 1.09973 1.099731� 
S 1.0982 1.0997 1.0997 1.0996� 
A 0.54891 0.54887 0.54998 0.550055 0.550055 0.550055� 

48� B 0.54940 0.54986 0.55004 0.550053� 
S 0.5457 0.5490 0.5498 0.5503� 
A 0.36501 0.37101 0.37300 0.373020 0.373023 0.373023� 

72� B 0.36943 0.37224 0.37293 0.373011� 
S 0.3515 0.3722 0.3728 0.3731� 
A 0.30073 -0.03090 -0.02931 -0.03112 -0.031140 -0.031140� 

176� B 0.37447 -0.01288 -0.03073 -0.02993� 
S -0.1507 -0.0374 -0.0323 -0.0314� 

11� 12 
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TABLE III. Kowalski-Noyes half-shell functions f(p,k) for the alternate potential with 
choice A expansion function for various N at Ec.m • = 48 MeV. Only the order of 

magnitude of the imaginary part has been shown. The method does not yield explicitly 
unitary results. The order of magnitude of the imaginary part of f is a good measure of 

unitary violation. 

P ResUlts for N = 
fm- 1 1 4 6 10 ~J 2 

0.5 1.5872+10-1 i 1.34678+ lO-~i  1.35216+1O-3i 1.350656+10-6 i 1.350652+1O-7i 
1.0 1.0928+ lO-~i  1.06418+1O-3 i 1.06480+10-4 i 1.064598-10-7i 1.064598+1O-8 i 
1.5 0.4699-10-1 i 0.56859-1O-3 i 0.56648-1O-4 i 0.567073+10-7i 0.567071+10-7 i 
2.0 -0.0354-10-1 i 0.04418-1O-3 i 0.04204+ 1O-4i 0.042110+10-7i 0.042110 +1O-7 i 
3.0 -0.4365-1O-1 i -0.51694+ 1O-3 i -0.51718-106-4 i -0.517571+10-7 i -0.51757] +10-7 i 
4.0 -0.4102-10-1i -0.53945+ 1O-3 i -0.53825-1O-3 i -0.537611-10-7 i -0.5376m +1O-7i 
6.0 -0.02045-10- 1 -0.27233+ 1O-3 i -0.27065-1O-4 i -0.27068+ 10-7 i -0.27069+1O-7i 
8.0 -0.0914-10-1 -0.12186+10-3 i -0.12067+1O-4 i -0.12090-10-7 i -0.12098+1O-7 i 
10.0 -0.0414-10-1 -0.06206+1O-4i -0.06083+ 1O-4i -0.061037_10- 7 i -0.061031 +10-7 i 
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