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Abstract 

Using the flexihility alld constructive definition of tIll' S('hwin~('1 

bases, we developpd different lllappinR procedures to elJhallcP <1ifleu'1I1 
aspects of the dYIJ<llllics alld of the symllletrips of all exlell(iPd "ersioll 
of the two-level Lipkin Illodel. The c1assicallilllits of the d.\"lIillllics <ll"!' 
discllssed in cOllnpctioll with III(' difkrPIII Illappill~s.  DisCi"'" \\"igll"J 
functiolls are also calculated. 

• Partially Supported hy ('ollselho Nilciollnl d(~  Desf' II \'01 viII Ie II 10 (·i .. lllificil " 'r ..cllo((lgicu 
- CNPq - Brazil 

1 Introduction 

Phase space concepts are of fundamental importance in classical mechan
ics 11] and pervade quantum mechanics through the Weyl-Wigner formalism 
[2]. In the latter case the way in which quantum operators are mapped onto 
functions of pairs of classical variables while retaining all the quantum con
tent of the original formulation was clearly established [3]. The Weyl-Wigner 
mapping technique has beell extensively studied and discussed for the case 
of operators exhibiting continuous spectra [4] mainly because of relationship 
of the mapped expressions to their classical counterparts or classical limits. 
In this connection the quantum·classical correspondence was first studied in 
terms of a series of Poisson brackets envolving pairs of canonical variables by 
Moyal [5] ; the quantization was studied through an analysis of the possible 
link between the group of canonical transformations of classical mechanics 
and the unitary group of quantum mechanics in a pioneer paper by Uhlhorn 
[6]. 

In recent papers [7, 8] we have presented an alternate framework for 
treating the Weyl-Wigner mapping in which we can handle both continu
ous and discrete spectra. In this framework the Schwinger unitary operator 
bases [9] play an essential role as they are the building blocks for the COll

struction of a generalized mapping kernel connecting quantum operators and 
functions of classical variables. The important feature in Schwinger's de
scriptioll is that it provides for a transparent and systematic treatment of 
finite discret.e spectra. thus allowing for tbe possibility of including degrees of 
freedom without classical analogues. We have shown that it is still possible 
to write a \Veyl- Wigner transformation and to define an equivalent discrete 
phase space for the associated quantum stat(' space in such cases. To this 
end it was demonstrated [7] that all operator basis can be construted which 
will give directly the meshpoint value of the Weyl- Wigner transform of an 
operator hy just taking its trace with the corresponding element of tbe ba
sis. This basis wa." shown to be just the double Fourier transform of the 
Schwinger's original sYlllmetrized basis and it has been used to implement 
the We~'l-\Vigner transform both for a spin 1/2 system and for the st.andard, 
continuous canonical basis. The latter case actually involves subjecting the 
discrete transform to an appropriate limiting procedure. Due to it~  wide 
applicability this approach is suitable for describing the time evolut.ion of 
physical quant.ities associated with quantum degrees of freedom wllich may 
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not have classical analogues. In this connection we have given the discrete 
phase space representation of the von Neumann-Liouville equation [8], 

In the present paper we apply our discrete mapping technique to the study 
of the quantum dynamics of a soluble spin model as well as its classical limit. 
The model consists of a slight generalization of the well known Lipkin model 
(lO), used many times as a testing ground for many-body approximation 
techniques. Special attention is given to the role of a discrete symmetry of 
the model (the parity symmettry of the standard Lipkin model) jll shaping 
phase space representatives as well as the classical limit. We also study the 
initial value problem for some particular types of initial conditions. 

In section 2 we briefly review the relevant steps of our discrete phas(' 
space mapping procedure and collect the expressions relevant. for the study 
of the initial condition problem, Our extended version of the Lipkin model 
is defined in section 3. Two different realizations of the phase space mapping 
are introduced in subsection 3.1 and the corresponding classical limits are 
discussed in subsections 3.2 and 3.3. In subsections 3.4 and 3.5 we discuss 
constants of motion and initial value problem respectively. Finally, in section 
4 we present our conclusions. 

Brief Review 

As has been pointed out previously [7, 8}, it is possible to obtain tl1f' 
mapped representatives of quantum operators 0 , acting on finite N-dimcnsi
anal spaces, through a discrete Weyl- Wigner transformation (hereafter 11 = 
1 unless explicitly stated) 

G(m,n) = RTr/G t(m.ll)O] ,� (I) 

Here G(m,n) is the mod N invariant operator basis 18] 

"SU./) . '. i
G (m. 71) = 1.- 1.- -.-1- exp[71r1>(J, I: tv) - 2rr -/\' (111.1 +1//)] . (1) 

) I A} 

where S(j ,I) is the symmetrized operator 

UJvl ,jl
SU,/) = N~ exp(l1rjV)' (:1) 
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The Schwinger unitary operators U and V are defined as [91 

U Iud = Uk I Uk) (4) 

uk=eXP(27ri~) (5) 

V Ill~.) =1 Uk-I) (6) 

U Il't) =/ V/+I)� (7) 

V lUI,) = Vk I Vk)� (8) 

.k 
17k = exp(27rl N) (9) 

and the two sets of eigenvectors art> related by the Fourier coefficients 

'kl)( 21rl 'Nexp� (10)
(Uk /1'1) = !d 

The phase 

1>(111,71;/\') = l\'1,~/;; -ml;; -nl:. (11) 

when' I;:' is the int.c!!;ral part. of .1" with respect to IV, guarant.ees mod N in
variance. Using the::w expressions, it. is straightforward to obtain the discrete 
Weyl- Wigner trallsforlll of allY givell state. When this st.at(> is expressed in 
terms of the basis {I Hk) }, i.e,. 

I (/) = :L Uk I Uk) , (12) 

k 

a silJlple cakulatioll !!;in's ill f<let 

.\' • (1".(111.11)"'= r,,[Gl(lII.lI) I a)((1 I} = 

1 '!.r. 
=� --;-y Lf'Xp[--V1(III) + 1/1) - 71r¢(j,t;N)j ,.(j.t) (11) 

1\ J ),/ 1 



with 

1� 2rri . 1 
r(j,/) =� -r Laip+/} apexp[--l\rJ(P+ ?)]. (14)

N2 p -

where the index {p + I} denotes the value of the sum p +1cyclicaly confined 
to the adopted range of index values (e.g. ProlIX + 1= Pm;,,)' Note t.hat the 
(p + ~) factor in the exponent must be treated as a phase, Ilot as indicat.ive 
of the need of mid-point rules (see e.g. [11]) ill calculatinp; \Veyl-\Vigner 
transforms. It should be remarked that the transforms a",( 111.77) constructed 
in this way are in general complex-valued. In order to obtain real-valued 
transforms t.he ranges of the dummy variables j, I and p should be chosen to 
be symmetric about zero. Thus, for odd N, the ranges should Iw _ fl.'; I ~ 

j, 1,1' ~ N;I. This choice corresponds to the usual definition of the continuous 
Weyl transform (see e.g. eq.(3.8) of [7]). In this case one has explicitI~·  

{p+/} =p+I-NI;:I+N;-1 . (1.:')) 

It may also be noted that t.he mod N phase ¢J(m, n; N) plays 110 role ill the 
above evaluation of Wigner t.ransforms in view of t.he restrictions imposed 011 

the ranges of the various interesting discrete variables. It acquires however 
a crucial role when one deals e.g. with transforms of operator products or 
commutators, as recalled below. 

The discrete phase space mapped expressioll for the COJlllllutator of two 

operators has been showlI lo read [~]  

(/0). 02J) (11. ,.) = L 2: T'( 1/1. II. 1· ..~.  fL.lJ.c. d: II. r· . .Y) 
'H.rl.'·,,' a,b,c.d 

rr� ~ 

x {exp[iN(!Jc - ad)j- exp[-i"N(bc - ad)]l ( 1(i \ 

with 

, Odm.n)02(r.s). . 
r(m,H,1',s,a.b.c,d: 11,1' •.\) = .,. exp[nr<1 l (u.lu·.d:.\)] 

t 
X exp{2rr N !a(II - 111) + "(1' - 11) + r(1' - 171) + d(- - II)]} (17 ) 

and 

.'j 

~(a,  b, c, d; N) = -¢J(a + c, b+ d; N) . (18)
I 

These results allow us to directly apply the mapping technique in partie· II 
ular to the von Neumann-Liouville time evolution equation for the densityl 
operator. In this way we find that II 

II 
.8p = [H,p] (19) II 
1 a, 

II 
is mapped onto 

J)p".(u.r) "". . 
1 a = L..L(u,v,I·,s;N)pw(r,s), (20) 

, '-.$ 

where Pu,( 1', s) is the mapped expression of the density operat.or. which is 
the discrete Wigner function associated to p and C( u, v, r, s; N) is the phase 
space discrete equivalent to the Liouville operator L which is written as 

!I(m,n).rr� .11' 
C(tt, t', r,s; N) = L 2:: --4-{exp[tiV(bc - ad)] - exp[-ljV(bc - ad)!} 

m." a.b.c.rl N 

x exp[i~~(a, b, c,d; N)j eXP{2~*[a(1I-m) +b(t· - n) +C(U-1') +d(r - s)]} . 

(21) 
Here h(m.ll} is the phase space mapped form of the Hamilt.onian H. 

It is evident from (20) that the t.ime evolution is a linear process governed 
by the mapped LiOlI\'ille operat.or. The commutator of the discrete phase 
space representatives or Land p is then a. mere composition of StllI1S - over 
the sit.es \vhich define the discrete phase space - of elementary products 
of the arrays chal'actC'l'izing them. Once the mapped Hamiltonian of the 
physical system is given. equation (20) evolves the initial state ill time and 
the dynamics propagates the original form of the initial state density ill the 
phasE' space in stich a form as t.o preserve the symmetries it embodies. 

Similarly.we call illso han' t.lte Heisenberg time evolution equation for an 

operator 

.ao _� (22)17i/- -[H,O] 
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mapped in an analogous form as 

iao~u,v) = _ 2:t:(u,v,r,s;N)O(r,s). (23)
t T.' 

As a by-product of these equations we can observe that the conserved quan
tities associated to the physical system governed by the Hamiltonian H can 
be obtained by searching for the solutions of 

2:.c(u,V.1',s;N)O(r,s) =o. (2.1)
T.' 

In particular this equation is satisfied by the Wigner transform of the densi
ties associated to each of the eigenstates of H. 

The extended Lipkin model 

We now apply the above scheme to a spin model which extends some
what the well known Lipkin model of nuclear physics [10]. The basic point 
of the extension we consider here is to explore features related to tlw well 
known "parity" symmetry of this model both in the phase-space picture of 
the quantum dynamics and in its c1assicallimit. The Hamiltonian of our vel'· 
sion of the Lipkin model is expressed in terms of a triplet of 5'[1(2) generators 
{S., 52, 53} as 

H S · .r S2 [g! + go ( )sJ gt - 9,,) (S2 S2) (·r5= 3 cos Q + I Sill a + 25' 3 + 28 + -I 28 1 - 2 . _: 

This Hamiltonian can be diagonalized numerically withill each finite S
multiplet, which accounts for the soluble character of the associated quantum 
dynamical problem. In addition to this general "rotational" symmetry. when 

Q = 0 one gets a second constant of motion which can 1)(' writtell as the 
"parity" operator 

jJ =exp( i~S3)  . Uti) 

This additional symmetry implies that the Hamiltonian 111 at rix redllcf's. in 
the 53 representation. to t.wo disjoint pieces involving ollh ('ven ami odd 

eigenvalues of S3 respectively (wt' assume integer 5). It should be stressed 
that this is a typically quantum feature in the sense that it involves the 
discreteness of the spectrum of the action variable S3 in an essential way. 
The two, in general different, coupling constants ge and go are introduced to 
allow for adjusting the interaction represented by the last term independently 
ill eadl of these two subspaces. In the standard Lipkin model ge = 90' and 
although a term equivalent to the S~  term was part. of the original formulation 
[lOJ, the most often considered case has also f ::= O. 

'Vhen both (} and f are zero, a special feature of the energy spectrum 
is revealed hy the fact that the Hamiltonian then anticommutes with the 
unitary operat.or 

~  s 
R = exp(i?S3)exp(i~S2)::=  L l-m)im(-l)S+m(m I, (27) 

- m=-S 

which corresponds to a rotation of the angular momentum quantization frame 
by Euler angles (~,~,  0). As a result of this anticommutation property one 
finds that from any energy eigenvectors I Ei ) with eigenvalue Ei one can 
obtaill another eigen\'ector R I Ei ) which has eigenvalue -E,. The energy 
spectrum is therefore symmetric about zero in this case. Note that this 
property no longer holds if f # 0 and/or 0 # O. The parity symmetry is 
however hroken by Q # 0 only. 

Following the usual pratice with the Lipkin model, the Hamiltonian H 
can be implemented a~  a many-body problem by considering 28 fel'mions in 
two 2S-fold degell('ral(' !f.Vf'!S aIHI writing 

2S 

S± = SI ± iS l = L U~.±l(lP.'f1  (28) 
p=1 

28 
1 '" t tSI = :) L.,(Op.+I(/I'.+1 - up._l(lp.-d , (29) 
- 1'=1 

where the indices ± I refer to carb of the two levels, Other many-body imple

mentations of this Hal1lilt.oniall art' of course possible, e.g. usiug Schwinger 
bosonic representat.ioll of tllf' .':"[' ('1) generators [12]. These implementations, 
together with tit(' fact that t1H' 1II0dei is soluble, have often Iwen explored 
as a toy t.estiug grol1l1d for several many-body approximation schemes. A 
different lise of spill Il10deis like this one has been, on the other hand, to 
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study connections of quantum solutions to classical limits, In this context, 
in particular, the standard Lipkin model is seen as rather trivial. since the 
phase space of its classical limit is two-dimensional. This has led in partic
ular to the consideration of a 5U(3) generalization of the standard Lipkin 
model which has a non-integrable classical limit. We remark, however. that 
at least several of the usual techniques involved in obtailiing tht' classical 
limits explicitly pre-empt allY more detailed evaluatioll of classical fcatlln~s  

that may relate to symmetries like the parity symmetry of t.he ""(,'(2) model. 
A very clear example of this is the use of SU(2) (or SU(3) ill tllP "three level" 
version of the model) coherent state averages to del :ve classical limits. sincf> 
these coherent states explicitly and inextricably mix the invariant subspaces 
of H. We show next how the discrete Wigner mapping tools reviewed ill 
the preceding section can be used to avoid such difficulties and keep trilck of 
parity dependent properties all the way to the classical regillle. 

3.1� Discrete phase-space mappings of the quantum 
dynamics 

We turn next to the ta.<;k of studying the phase spacf' llJapped H~rsiolJ  

H(m, n} of the quantum Hamiltonian for the extended Lipkin mode!. In 
order t.o set the phase space we choose the common eigenvedors of S'l and 
SZ, {I S.~~)},-S ~ ~~ ~ S as the eigenstates I Uk) of tlw Schwinger 
unitary operator U. III order to complete the definitions of U and hellce of 
the quantulJI kinematics we clloos(' the eigenvaluf's so that 

2rr . 
U IS. q = ex»( iYik) I ,,,', k)� (:W) 

with N = 2S + 1 being the total numher of states ill tlJ(' hil~is, :\ot(· that 
this definition adopts a synllllet ric rilllgf' for t.he integf'r k illid "'ill t !)('rdore 
lead to real \Vigller transforms. as sta.ted ill section 2, 

With this choice of kinematics Wf> call represf'nt the Lipkin lIillllilt,onian 
in the finite phase span' through the mapping 

s 
.'i x 11(711,71) = 1',' [G f (111.1I)H] = L (Uk I Gf(m.lI)lIll1k) (:11) 

k:-5 

Using stalldard angular mOllwlltlnll algehril Wf' get, after n direct calclllat ion. 

9 

e 0
5 x H(m,n) = mcoso +SI(m,n)sino + £m2 + (g

e +590 + (_1)mg :9 )
2 2 2~ 

411'n 
(32)x C(m,S)cos(N") , 

where 

C (m: S) = j( S+ m)( S +m + 1)(5 - m)(5 - m + 1) , (33) 

and 

1 s ?1ri 1 /
Sdm,71) = 2N L ({exp{-N !J(m-p-'2)+n]}yS'(S+l)-P(p+l) 

],p=-s 

?1f'i I f
+exp{-N U(m- p + 2)-71J} y S(S+I)-P(p-I)); (34) 

note that, due to the half-integer nature of the last factor of the exponent, this 
expression cannot be writtell in closed form like the term involving (S~  - S~), 

where integer factors lead to Kronecker deltas. It is, however, easy to see that 
this is a real quantity. Its numerical evaluation is straightforward for finite 
N, and the limiting expression for very large N can also be easily obtained 
in closed form as discussed in the next subsection and in the Appendix. The 
result of the evaluat.ion of thes!' f'xpressions for a sample case is shown in figs. 
I(a) (eq.(32) with (I = 0) and 2(a) (eq.(34)), The discrete Wigner transform 
of the ground state of the Hamiltoninll shown in fig.l(a) is shown in fig.5(a}. 

Once we are given the mapped Hamiltonian, it is trivial to write the 

Liouville operator for the extended Lipkin model 

[.( U. I'. r. s: IV) = .cd ll. v. 7', s; N) + .c2 ( U, v, T, s; N) . (35) 

where 
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S 5 m cos 0' + ..L 111 '2
.cr(u, v, r, s; N) = 2SL L N4

a,b,c,d=-S m,n=-S 

x {exp[i ~(bc  - ad)) - exp[-i~(bc - ad)} exp[i~4>(a,  h,c, d; N)] 

z 
x ex p{211'jV[a(tI - 111) +b(t, - 71) +C(lI - 7') +d(/' - s)]} (:36) 

is the part corresponding to the S3-dependent term while 

1 S S + 
.c2(u,v,r,s;N) = N4 L ~ ([ge2Sgo+(-I)mge~,gu]C(m;S)  

a,b,c,d=-S m.n_-S 

rr 
+S.(m, 71) sin a} x cos(411''; ){exp[i-(be - ad)] - eXPI-i ~(bc  - ad)]}A N ,\ 

x exp[i1l'9(a, b, c, d; N)J exp{2rr ~  la(u - m) +b(t· - 72) +C(lI - 1') +d( I' -.~)]}  

(37) 
describes the interaction term. 

Before turning to the discussion of large N limiting sit.uations we cOllsider 
an alternate kinematical scheme which is adapted to the cleavage imposed 
by the parity symmetry. We still use the states I 5, k) as eigenstates of the 
U operator, but modify the full definition of this operator (1I0\\, dellotl'<! as 
Up) by setting its eigenvalues as 

271' 
Up IS, k) = exp( N iVk) I El, k) . (]~) 

where the correspondence b~t.ween  l· a.nd the integers -5' S ('/, S S' is defined 
to be 

21'k +S for - S ~  Vk S 0
~:(  Vk) = { S' - 2Vk + ) (:J~I )

for) s: t'k S ,',' 

11 

This implies that the two domains of Vk correspond to eigenvalues k of 53 of 
different parities. It is clear moreover that U and Up (and therefore also 
V and the operator Vp corresponding to Up) are unitarily related via the 
transformation which amounts to a relabeling of the {I S, k)} basis. This 
procedure in fact illustrates the use of the freedom in defining the Schwinger 
operators U and V to adapt the quantum kinematics to possible symmetries 
of the problem in hand. Furthermore, implementing the general discrete 
mapping procedure with Up, V,I will lead to an alternate discrete phase-space 
description which is quantull\- mechanically equivalent to that based 0[1 V, 
V but which explicitly "unshuflles" the definite parity subspaces. Also, since 
th(~  unshuffiing transfounatioll is not smooth, in the sense that eigenvectors 
of U with consecuti ve eigclI\'alues may correspond to widely separated Up 
eigenvalues, one may expect and indeed finds radical changes in the phase
space pictures of dynamical objects in the two cases. 

Let us consider then as an example the phase-space mapping of the parity
symmetric Lipkin Hamiltonian H (with 0' = 0) in this alternate separated 
parities scheme. The mapping of functions of S3 only is straightforward since 
53 and Up are still commuting operators. One gets 

5 x IF(53 )]p(m,n) = F(k(mk)) . (40) 

where k(md is the function defined in (39). 

The mapping of the operators 5; - 5~  = !(5t + 5:) involves now sums 
of exponentials containing half integer factors and which therefore cannot 
be reduced 1.0 simple, closf'(1 expressions for finite S, bllt still can be easily 
performed nllllleric<dl.\. 0111' gels 

I S 
...,' ;- [~(S~ + S~)](1Il.1I)  = ')N L, 

- - )=-.~  

() . 2rri 1{L. )2]1(2]1 + 1)('2}J + :!,,~' + 1)(211 +28 +2) exp{ N!J(1I1 - ]1- 2) - nJ} 
p=-.~ 

s ')rri 1 
+ L J(2]J - 1)(211 - '2)(2]1 - '2,'" - 2)(211 - 25 - 3) exp{ =YU (111-11+:) )+n]} 

p=1 j 

12 



~ V 27ri , I+ ~ (2p -1)(2p - 2)(21' + 25)(2p + 25 - l)exp{ N[J(m -7>+?) +u)},,=-5 _ 

5 27ri IV+L2p(21' +1)(21' + 25)(27) - 28 - I) exp{ N j [(m- 11":J )-n]}} , (41)
1'=1 _ 

A large N limit of this expressioll is also easily obtained al\(I will 1)(' dj~cussed 

in the next subsection. 

Finally, we can also map the operator S\ ill the separated piI.ri ties schell!' 
This operator is essentially anti-diagonal and therefore strollgly nOllloc(I 
the U" representation, The mapping is a straightforward algehraic exerCIse 
which gives 

-~  5

Tr[G~(m, n)S.) = ~{m;S-11 ( L + L )/4 III I S' - '1,,1 + 2 III I 
- p=-s ,,=~  

S-J 

47ri bmo ~  47ri ~ 

x exp(-N'np) + 2 ~ exp(-Nnp)y41 piS - ~1'1  + 217' I 
1'=--;' 

~ 0 'J ' 

+ {;-1} { _ L;-J exp[- ~;"n(2p  - I )])4 III I -4112 + :!( ."'- 1" I) 
p--"""'2 

ill 
2 ?r;; - _ 

+ L expl-~1I(211 - I ))ll 11' IS - ,1,,2 + () III I -:,!( .",. + I) I 
,,=1 1\ 

_ill� 
6m -s 2rri /�+2{ L2 

ex pl-T lI(21' - l)h ,111' I S - 41'2 + 2(."'- Ipi) 
p=-s 

13 
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I 

I 

I 

I 

I 

I 

5 
+ L 27ri 

exp[-N ll (2p  I )]/4 IpiS  41'2 +6 Ip 1-2(5 + I)} . 

I 

(42)1 
P-Hl. 

- 2 

Here .1k is the real function defined as (see Appendix) 

I 27ri . 1 
~k = N~exP[NJ(k + 2)) . (43) 

As a practical note we mention that in order to evaluate numerica.lly 
mapped operators all algebraic work can be saved by using directly the form 
given in equation (14). The above expression will be nevertheless useful 
to discuss the large N limit of the mapped SI operator in the following 
subsection. 

The result of the evaluation of these expressions for the same sample case 
which was taken as an iJlustratiol1 of the mixed parities mappings is shown 
in figs. 3(a) and 4(a). The discrete Wigner transform of the ground state of 
t.he Hamiltonian showll in fig. 3(a) is also showll in fig. 5(b). 

3.2 Large}\T limit as classical limit 

111 this suhsection we study the previously constructed mappings in the 
large N limit interpreted as a classical limit of the spin model. The basic 
procedure to be followed cau be encapsulated in the formal limit 

. s ISj SJ]_ {!ml -:-; -:;-. -;:: == Sj. Sj} = • (44){jjkSk 
~-OQ If! .':t ;:> 

where the curly brackets are to be interpreted as Poisson brackets (For finite 
S the spectra of the S,/5 are contained in the interval (-1,1) and get, denser 
as S increases while "/S decreases). The Hamilt.onian is also scaled by 5- 1 

so that. for fir == go = g. the limiting procedure gives directly 

JJ cI( _ - ) _ - _...r 2 + (.2 ,.2) (45)gr - ,fr. - g - '''3cos n + '~I  smo + 2'$3 g8 1 - '''2 ' 

Using the Poisson hrackets of th£' Sj one can i\J)mediatcl~  obtain classical 
equations of motion from which it follows that 1t.'~2  = o. 
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We now subject our mapped expressions H(m,n) and H,,(m,n) to this 
same limiting procedure. Considering first the limit of H(m, 1))/S, and usiug 

. m
11m C; = 83 (46)s-oo U� 

and� 

. 11 
11m 271"-N = 'y? ,s-ov (47) 

where now 33 and 'y? are interpreted as continuous c-number variables with 
values in the range (- J, 1) and (-r., r.) respectively, we get 

lim -Sl H(m, n) = S3 coso + lim ~5'.(m,  n) sin Q + £? s; + g( I - 05;) cos 2'y? .5-00 s-ov u _ 

(48) 
In order to obtain the limit of the term involving 51 wp use the formal 
correspondence 

1 5 ? 1 
lim N L exp[-/\~lj(m - p+ -)]- 6m ,/" (49) 

5-00 j=-5 2 

which holds when this sum occurs in connection with sufficiently s11100tb 
functions of p as is the case here (see Appendix), to obtai II 

~inJ  ~Sd1ll.1)):-;illo  = V1-s5cos'y?sillll. (!)())
S-oc, .1., 

The resulting limit is therefore just the classical Hamiltolliall I/" wriUell ill 
terms of the canonical variahles 83 and 'y? which correspond to lIte projeclioll 

of the unit action vector s on the :3-axis and the associated azimuthal angle 

respectively. The result of its nunlerical evaluation in a sample case is shO\\'ll 

in fig. l(b). 

Turning next to the U f • - V" (separated parity) descriptioIJ, applyillg the 
limiting procedure also to the case g, = go = 9 but restricting ourselves lirsl 
to the conserved parit.y Hamiltonian with 0' = 0, we gel 

rH;'(g. =go = g;O' = 0) = J - 21 (J" 1-4g(l (J" 1-(J"2)coS~ + ~(J  - 21 (J" I)l , 

- (51) 
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wher<' 171/ S' -+ a and N-11 --; ~ arp the continuous classical variables in this 
case. The result of the nUlIwrical evaluation of this expression ill a sample 

case is shown in fig. 3(b). It should be recalled that the sign of (J" identifies 

the parity sector in this scheme. Reference to eq. (39) also shows that m = 0 
belongs in fact to the sector of dimensionality S +1 in the finite S case. It is 
worth remarking that one can relate H p to H "canonically" in a formal way 
by a transformation associated with t.he generating function [1:3] 

71" 
r~((J",y) = (J - 21 (J" IHtp -"2)' (52) 

which gives 

.' \ = 
ar1 _
if,.." 

I - 2 I a I (53) 

0/-:2 
~ = oa = (ir - 2'y?)[20(a) - 1] , (54) 

where O((J") is the usual step function defined so that 0(0) = O. It is clear 
however that this is no\. a oue to one mapping of the two phase-spaces: while 
each value of 83 is associated with two values of (J" with opposite signs. each 
value of ~  (mod 271") corresponds \.0 two values of the azimuthal angle tp (mod 

271") which differ by 71". This limi\.ation, which in particular makes the trans

formation of the parity non-diagonal 051 operator (written as ~ cos tp) 
completely ambiguous. can. however. be given physical cont.ent by }'{~marking 

that there are two distinct lil1litinp; realizations of each value of ,':\. namely 

involvillg 51 eigenstates of opposite parities; at the same time. ill the l1lixed 

parities (i.e., U - V) represenlatioll. objects of definite parity are wpresented 
by phase-space distrihutions wllich are periodic functions of the azimuthal 
angle with period r.. AIJ example of tbis is the Hamiltonian H itself when 

o = 0, t.ogethcj· with tl)(' fad that its periodicit.y with period To is broken 

whell 0 i- 0 (c!. lig,. 2). 111 ord('1' to explore tbis complelllentarit.y of the two 
phase-space dcscript.iolls SOli I('\\'ha 1 further one may consider also H,~I  with 

g, =f .1/" hut still willi (l = o. We gl'1 ill this case (assuming odd S) 

",';' (Il = ()) =: I - :! I a I +f(I - :2 I a I) 2 + 

+ {9, () (a )J (j - a 2 +9,. [I - 0( (J" )]J- a - (J" 2 } cos ~  . (5.5) 
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which allocates different phase-space domains to each of the now different 
dynamical regimes in each of tile two parity sectors. These t.wo regimes are 
on the other hand hopelessly shuffled in the U - V representation. Here the 
discrete mapping becomes sta.ggered on accoullt of the in\.eract.ioll term 

~[(gr  +90) + (-I )TrI(ge - 9o)JC(m; S) (.,)(i) 

which wildly oscillates between different levels as the c1assic,d limit is ap
proached while still keeping the ir periodicit.y intact. whclI II = 0 (se(' fig. 
6). 

We turn next to the study of the large 8 limit 01 the mapped version of 

8 1 in the separated parities scheme. This is easy to obtain \Ising eq. (,L? 
the preceding subsection. Including the 8- 1 scaling factor OIlC gf'ts ill ;, 

way 

1� 
STr!G~(m,n)5d ~ 2S(~j'"+,<;1  + 6",.-5 + ~1",-1} +6",.o).fIp(II), (!)i)� 

where the function ~k  can IH' approximated for large S as (s('(' Appf'JHli:-\) 

(-I)~ 2 
L'>, '" { (U' + I). .05 k 5 S 

(.')8) 

(-I)HI 2I :n- + I I 7r . -.'" ~  1. ::; -I 

and 

7r 
.11 = ()

Hi
( )"'! rt d.T~cos27rl1J· = { .Jdl H' To)gp n -? in (-1)" _ 

~ n .\ III I .1 S\II IS." 

(:I<J) 
where Jill') is CI cylill<1ricClI Bessel functiun. The llJapped opf'lCllor j, tlll')"('
fore a staggerf'd and increasingl.\' singular fUllction of 111 aml /I ,IS .l.,' ill<'I'('ilSPS. 

The large S approximations lIsed in deriving these allalytiCiI! ('xprpssions COII

sist in neglecting terllJs of the order ,c.'-I or smalle'\" ill the (,\";I!IIi1tioll of til/' 

I 

I 

n-dependence and approximating sums by integrals (d. the evaluation ofl 
~k in the Appendix). The result of the numerical evaluation of this expres. 1 

1sion is shown in fig. 4(b). 
Since 51 has vanishing diagonal matrix elements in the 53 representation, 

one must have 

s 
lim L 9(n) = 0 . (60)

."-0: 1I=-S 

Since g(n) is always negative for In I> 0 and approaches zero rather slowly, 
this sum converges to zero also rather slowly as S increases. The difference 
between Sdm. n) evaluated (a) numerically for a finite value of S and (b) 
from the analytical asymptotic expression truncated at the same finite value 
of S are illustrated in fig. 4. 

We see therefore. that when the parity symmetry is broken by the 51 term, 
the mapped Hamiltonian does not have a smooth limit when the classical 
regime is approached. For any finite value of S it still contains. however, 

complete information on the quantum dynamics of the model. 

3.3 Discussion 

We summarize in this subsection our understanding of the general picture 
that emerges frol11 the preceding analysis of the Lipkin model. The main 
point. to be stressed is that Olll' mapping procedure allows for a \'ery large 
flexibilit~,  in the selection of the killematical framework in which it is carried 

out. :\s illustrated by the usc' of the mixed parities (U - V) scheme and 
of tllf' separated parities (Up - V,,) scheme, this flexibility can ill particular 

be explored ill such a wa~' as to lead to smoot.h mapped represent.atives of 
the rel{'vant dynamical variables (e.g. the Hamiltonian), Since the' different 
kinematical schemes ar(' unitarily related, they all give equivalent descriptions 

at tht' quantum level. The smoothness requirement is, however. more than 
just a mat.ter of convellience when one implements large N limits as classical 
limits of the qua.ntum dynamics. As we have shown above, useful classical 
limits for t1w brokell parity (() f.: 0), 9r = go case in the U - V scheme call 
be oht.ained. but not in the U I, - V r, scheme. since the 51 term becomes 
strollgl~'  non local in the Up representation. Conversely, when n = 0 but 
ge f.: flo a smooth classical limit can he obtained in the U I , - V" but not in 
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the mixed parity, U - V scheme. ]n general, the (discrete) symmetries of 
the dynamics seem to provide for one criterion leading to useful kinematic 
schemes. Conversely, we may also note that through the use of symmetry 
adapted kinematical schemes (such as the Up - V p scheme in the case of 
the standard form of the Lipkin model, i.e. 0 = 0 , f = 0 and g. = go) 
the mapped dynamics assumes such a form that the existence of distinct, 
uncoupled sectors is explicitly manifest as a partitioning of the phase-space 
which holds all the way into the classical limit. In the case we studied above 
these phase-space sectors are identified as 0- ~  0 and 0- > 0 respectively in 
the Up - V p scheme; when the U - V scheme is adopted instead. no such 
partitioning survives the classical limit, and the parity symmetry manifests 
itself classicaly through the more subtle property of period-halving in the 
azimuthal angle <p. 

3.4 Constants of motion 

In order to look for the conserved quantities in the standard Lipkin lJIodel 
(ge = go = g, f = 0, a = 0) we must require, a.s already mentioned, that an 
equation of the type 

5

L L(U,V,7',s;N)O(7',s) = 0 (61 ) 
r,,,=-S 

must be satisfied. 

For the moment, however, let us study a particular family of conserved 
quantities, namely those that are function of the angular IIIOnH'ntlllll onl~·. 

Hence 

s
L f(u, u. 7', s: N)q(l') = 0 (j~)  

r,,,=-S 

is the equation we have to solve. In this case, the first tel' III ill the mapped 
Liouvillian, £), being proportional to m only, gives no colltributioll for any 
q(r). The second term. L1' \\'Iwn avplied to q( 1'), gives 

s 
L £2(U,V,7·,s;N)q(7·)=igC(Il:S)sin(47r+)[q(1I+1)-q(II_I)). (G:J) 

~=-s , 
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It is then clear that any function depending solely on the angular lJIomentum 
which satisfies 

q( tl + 1) = q( u - 1) (64) 

is a conserved quantity. 
]n a similar fashion one can show that for a function of the angle vari

able only, a more entangled equation can be obtained which characterize the 
corresponding associated conserved quantities, being a particular family of 
solutions of the form 

. is 
Ip(.~)  = exp(47rljV) , (65) 

for any integer t. It is interesting to note that the double period in this kind 
solution is reJated to the secolld power of the operators S+ and S_ appeariug 
in the Lipkin Hamiltonian which, by their turn, describe the excitation of 
pairs of particles between the levels. 

3.5 Initial value problem 

Now let us stlldy the tillle pvolution equation for the standard (g. = 
90 = g, .f = 0, 0 = 0) Lipkin model. To this aim, we mllst have the mapped 
expression of the density operfltor. so that we can solve 

J)pu.( u, t': i) S • 
1 al = L !Cd ,<"lI,V) + L2(1',S, u,v))p",(l'. s; I) (66)

" 
r •.'=-." 

alice tilt' initial Wignf'r fllllctioll (1",(1',05; 1 = 0) is given, 
The general final expression is written in terms of the mapped Hamilto

nian defining the llIf1pping of tllf' Liollvillian operator and one hflrdl~'  could 
see the det.ails of the tilllP ('\'()Iution. In order to clarify how tlw dynamics 
associated to the standflrd Lipkin model acts in the discrete phasp space • 
.....e will study two limit ing cases again, namely those in which the density 
depends only Oil the angular momentullI or the phase variabll' rpspectively. 
In the first caSf' we IIfI\'(' 

I' =1 lI J )(II J I ' (67) 

bpillg this olwrator milppP<! 01110 
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Pll/( tn, u) = 8m ,} , (68) 

that is, the density is a constant for the value j of the ilngllliw moment.um 
and is independent of the phase variable. 

Introducing this expressioll in (66) we note a~ain  that t.h(· first contribu
tion, coming from the mean field term, vanishes for any fundion depending 
only on the angular momentum. The second term, associated to £2, gives 
then the final expression for the time evolution equation, for small time in
terval 

v 
Pw( 11, v, t) ~  bu ,) + gC( tt; S') sin( 4rr N)( b",J-1 - 011 •

1
+ dll./ (6!1) 

For the case of a densit.y associat.ed to an angle depend!'llt state 

P =lvl)(vl I , (70) 

it is easy to see that 

Pw( Ill, 11 ) = 8n ,1 (71 ) 

and that the two terms in (60) contribute to the final expression, After CI 

direct calculation we obtaill 

d I i 
Pw(u,v,t) ~  8",1 - 2 L Sill(1i(J:v) N2 ex p{2"iV[({(1I - 1/1) + d(I' -l)]l 

flt.cl.d 

g, (' [ , t' 'fI! . . t' , 1'\' Il -'Jx { m+2C(m:.~)('xp(.lrrIA+l1i(Jld+2)-exP(-4r.17I:+1~(/  ./-2) (1_) 

which shows the spreading of the densit.y all over the phil~1'  SP'\U' as t.iJll(' 
goes on. 

4 Conclusions 

We have described in detail an application of our discrete phase spa('(' 
mapping technique, based 011 tIle ullitary operator bases proposed by Schwin
ger, to an extended version of the two level Lipkin mode!. The main poinl 
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to be stressed is that. this technique allows for considerable flexibility in its 
implementation as a direct result of the generality and strictly constructive 
definition of the Schwinger bases. We made explicit use of this flexibility 
for developing different mapping procedures to enhance different aspects of 
the dynamics and of the symmetries of the model; the different procedures 
are unitarily related in an explicit way, and lead to quite different phase 
space representatives. Its usefulness is particularly clear when considering 
classical limits of the dynamics, as it allows for reducing the often encountered 
staggered behavior of the phase space representatives of quantum objects. 
It should also be stressed in this connection that the limiting procedure 
which involves increasing the dimensionality of the basic state vector space 
is straightforward and algebraically performed in terms of the Schwinger 
bases. 

As a test of these features we have explicitly evaluated for the Lipkin 
model the mapped versions of several objects, including the Hamiltonian and 
its associa.ted Liouville-von Neumann dynamical equation. Discrete Wigner 
functions for energy eigenstates were also calculated. The main tool involved 
in implementing our procedure is the construction of the appropriate opera
tor basis, Eq.(2), in terms of which the Weyl-Wigner transforms are simply 
expressed in terms of the tra.ce operation, Eq.( I). The numerical evaluation 
of the resulting expressions is st.raightforward using present computational 
techniques. 

5 Appendix 

We discuss here ill SOllie' dd,ail the evaluation of sums of th£' typ£' 

I S j I 
~k := -.- " eXPI21Ti--(l- + -)] = 

2,"" + I }~~ 25 + I 2 

I 2 s (U~ + 1 )11' . .. 
= '1..'-.' + I + 2":'" + I :; cos 28 + 1 ) ( ,3) 

with _So ~ l· ~ S in the limit of very large values of S. The Ak are obviously 
real numbers. For vcry 1,\I"ge S· til(' SlIlll over cosines call be approximated by 
all integral as 
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2� .t:... (2k + 1)71" • 2 25 + 1 li 
(74)25+ 1 L.,cos ?5+ 1 ) ~ ?C'+ 1-- cos(Zk + I)OdO,,=J -� 71"_.:t 0 

where we defined the angle 0 as 7I"j /(25 + 1) and s!lPplied the appropriate 
Jacobian. We obtain thus 

A, _ 2 .� (-I)' 2 
, .... ,SID 12k + I I ~ ~ { (2k + 11_ . k ? 0 (75) 

(_1)k+1 2I2k + 1 I 71' ' l· S; -1 

Furthermore one has 

I·� ~ II. 4 J J 1 4 1 (-6),m L., u~.-+-(I--+--=+... )=-a1·cig1= I 
5-00 k=-S 71" 3 5 I 71' 

so that one has, for sufficiently s1ll00th functions /I" 

S 

lim� E ~dlc  -+ fo , (77)
S-o:, 

,� k=-S 

i.e., for such functions /Ie, .6k has a h-funetion behaviour. "Sufficiently" 
smooth here means that fA. does not vary appreciably with k for suHicient.ly 
many values of k away from zero and is sufficiently bounded ever~'where  so 
as to guarantee the dominance of the contributions coming from the vi('init~·  

of k = O. This explains. ill particular, why the b-functioll prescriptioll gives 
useful results when taking the classical limit of the spin model Hamiltonian 
in the U - V (mixed parity) scheme. When the 5, operat.ol' is mapped ill 
the Up - V p (separated parities) scheme, one obtains contributions which ar(' 
proportional to the function ~k  and are therefore strongly st.aggered object s. 

References 

[1]� V. Arnold. Mathematical Methods of Classical Mechallics (Springer Vn· 
lag, New 'York. 19i8) 

23 

[2)� E. Wigller, Phys. Hev. 40 (I9:J2) 749; H. Weyl, The Theory of Groups 
and Quantum Mechanics (\)0\,('1', New York, 1950) 

[31� S.H. de Groot and L.G. Suttorp, Foundations of Electrodynamics (North 

Holland, Amsterdal1l, 1972) chap. VI 

[41� M. Hillery et aI., Phys. Hep. l06C (1984) 121; N.L. Balaz and B.K 

Jennings, Phys. Rep. l04C (1984) 347 

15J� .l.r.. Moya!. Proc. Calilb. Phil. Soc. 45 (1949) 99 

(6) Ii. Uhlhol'll, Arki\' fc>r F.\'~ik 11 (1956) 87 

I7J D. Galetti and A.F.\{. Toledo Piza, Physica A149 (1988) 267 

[8J D. Galetti alld A.F.R. Toledo Piza, Physica A186 (1992) 513 

[9J J. Schwinger, Proc. Nat. Acad. Sci. 46 (1960) 570,893,1401; 47 (1961) 

1075 

II. Lipkin, N. Meshkov and A. Glick, Nuc!. Phys. 62 (1065) 18811°) 
J. Hannay and ~J.  BeJT~·.  Physica Dl(19S0) 267[IIJ 

J. Schwinger. 011 Angular MOlllentum, 1951, Report U.S. AEC NYOII 2] 
3071 (unpublished) (reprillted in Quantum Theory of Angular Momen
tUlll. ed. L.C. Biedcnha\'ll and H. van Dam. Academic Press. 1965) 

II :JJ� H. Goldstein. Classical f',jpchallics (Addisoll- Wesley Pub .. Heading. Ma, 

1970) chap. S 

24 



6 Figure Captions 

Fig. 1- (a) Discrete transform of H for S = 
in the mixed-pariti(~s  (U - If) schenl(>. 

15; (b) Classicill limit of (a) 
Parameters ill'" (l = .r = 0, 

(a) 
g. = go = 2 in both cases. 

Fig. 2- (a) Discrete transform of 5'] for S = 15: (b) Classicallilllit of (a). III 
b.oth cases the mixed-parities ([.' - V) schell II' i·; I'.sed. No\,e the ahs/'lIfT 
of azimuthal period-halving "or this parity nOIl·diap;on;o! 0l'f'rat.ol'. 

Fig. 3- Same as Fig. I hut. using t1w separated pilrities ({ - 1 ) SelWIII". 

Fig. 4- (a) Discrete transform of 51 for S = 15; (b) Analytical as~'mfltotic  

form for la.rge S evaluated al S = 1.5. The separated-paril iI'S (1',. - I;.) 
scheme is lIsed. 

2 
Fig. 5- Discrete Wigner transform of the ground stilte wavdunctions of IllI' 

Hamiltonian of figs. I and 1. (a): mixed-parities (I: - \'j sclll'lIl<' (rI'. H 
Fig.!); (b): separated-parities (Up - ,~)  scheme ld. Fig.:\). 

Fig. 6- Discrete transform of H for S = 15.0 = f = O. g, = U.·j and g., = 2. 
(a): mixed-pa.rities (l' - ") scheme: (b): separated-parities ([.'p - l~)  
scheme. 
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