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Abstract 

Some methods have been developed to calculate the suq(2) Clebsch-Gordan coeffi· 

cients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan 

generating function through the use of "quantum algebraic" coherent states. Calcu­

lating the ..uq(2) CGC by means of this generating function is an easy and straight­

forward task. 

PACS: 02.00, 02.20 

I. INTRODUCTION 

Quantum algebras have been extensively used in the literature for different pur­

poses, in different areas of interest [lJ. They are also known as quantum universal 

enveloping algebras and are mathematically not less than Hopf algebras. 

The study of coherent states associated with quantum algebras for the q- harmonic 

oscillator has been established some time ag-a [2J and a resolution of unity for the 

q-analog oscillator coherent states has already been found through the use of the 

definitions of q-differentiation and q-integration, as seen in ref. [3] and [4J. For the 

suq(2) algebra, q-analogs of Perelomov [5] coherent states have been obtained and 

they are shown to have a resolution of unity related to the q-differential calculus [6]. 

The aim of this work is to calculate a generating function for the 8uq(2) Clebsch 

- Gordan coefficients. The method we use here is based on the idea developed in 

refs. [7J for the usual su(2) Clebsch - Gordan coefficients. For calculating the 81'q(2) 

Clebsch - Gordan coefficients, other methods have also been developed, namely, some 

algebraic methods [8J,[9J and a method based on the basic hypergeometric functions 

[10J. The underlying idea for the following derivation of the Clebsch - Gordan gen­

erating function is extremely simple and yields very easily handed expressions. Once 

the generating functions are obtained it becomes trivial to write the wanted 81'q(2) 

Clebsch - Gordan coefficients down, as will be shown latter on in this paper. 

II. SUQ(2) COHERENT STATES 

We start this section by giving some definitions and expressions which will be 

vital to the development of our method. For the sake of completeness and simplicity 

in the main text, some formulae are given in appendix 1. 

The generators of the suq (2) algebra obey the following commutation relations 

[2J 

[Jo, J±J = ±J±� 

[J+,LJ = [2JoJ (1)� 
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where the q-number [z1 is defined as 

qZ _ q-Z 
[zl=--. (2)q _ q-1 

The above operators, when applied to a basis \j m > of the carrier space Vi of the 

representation Ti of 8'U (2) yieldq 

Jolj m >= mlj m >� 

J±lj m >= ([j =F ml[j ±m +1))1/2Ij m ± 1> . (3)� 

with m = -j, -j +1, ..,j and j = 0, 1/2, 1,,,.. 

The q-analogs of the 81£(2) Perelomov coherent states are usually written as [61 

i 
Iz >= e:Jt Ii - i >= L Gimzi+mlj m >, (4) 

rn==-j 

where 

00 zn 

e: = L [zJ! (5) 
n==O 

and 

C = [ . 2j ] 1/2
im (6)

1+ m 

is the q-binomial defined in appendix 1. 

For this representation, it can be shown that the resolution of unity is [6J 

1= / dji(z)lz >< zl, (1) 

the measure being 

[2j + IJ 1 d2z 
(8)dji(z) = 11" [1(+)lz/2]2i+2 ' 

where d2z = td6dqlzl2, the integration over 6 running from 0 to 211" and the q_ 

integration over Izl2 from 0 to infinity. 

3 

Given an arbitrary state Iq, > in Vi and due to the existence of the resolution of 

unity, one may find a holomorphic(or q-analog Bargmann [11]) representation that 

reads 

q,(z) =< zlq, > (9) 

and the standard 8'Uq (2) basis is given by 

q,im(z) =< zli m >= Gim zi+m. (10) 

The 8'Uq (2) operators in the holomorphic representation, which obey the commutation 

relations given by eqs. (1) are [6} 

{J . 
Jo = Z--1

{jz 

J+ = z[2j - z :z1� 

J_ = D~ (11)� 

where D~  is the q-derivative [3J such that 

Dd(z) = f(qz) - f(q-1 Z ). (12)
(q - q-1)z 

Observing eq. (4), it follows that the scalar product between two coherent states Iz > 

and Ix> is 

< xlz >= [1 (+) XZ12i, (13) 

where [z(±)yJm is defined in appendix 1. Given an arbitrary state Iq, > in Vi, such 

that q,(x) =< xlq, > and utilizing eqs. (7) and (13), the reproducing kernel is shown 

to be 

k(X,z) = [1 (+) XZ}2j (14) 

and therefore 

q,(x) =/ dji(z)k(X,z)q,(z). (15) 

From now on, all calculations are performed in the q-deformed space. 
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III. VECTOR ADDITION OF ANGULAR MOMENTA 

The total angular momentum of an suq(2) system consisting of two sub-systems 

J = Jl +J2J where Jl and J2 are the angular momenta of sub-systems 1 and 2 respec­

tively, such that iiI - i21 ~ i ~ il + i2 is given by [8J- [9J 

Jo(12) = Jo(l) ~  1(2) +1(1) ~  Jo(2)� 

J±(12) = J±(l) ~  qJo(2) +q-Jo(l) ~ J±(2) (16)� 

where Jo(12) and J::I:(12) obey the following commutation relations: 

[Jo(12),J±(12)J = ±J±(12)� 

[J+(12), L(12)] = [2Jo(12)]. (17)� 

Notice that Jo(i) and J±(i) are the operators defined in eqs.(ll), where for i = I, z 

and i become ZI and il and for i =2, they become Z2 and h. The same modifications 

hold in eqs. (9) and (10). 

IV. COHERENT STATES IN THE SPACE V JI 0 V.h 

The uncoupled basis in the space vjl ~  V.i2 has the form lilml > Ihm2 > and 

its representation is ¢jlml(zd¢i2m2(Z2)' It is well known that the direct product of 

representations Til ~  T.i2 can be decomposed as a direct sum Tjl ~  T.i2 = Ej eTj 

[12] where IiI - i21 ~ i ::; il +h. In the carrier space vj of Tj, the coherent state is 

defined to be 

Iz >= e:Jt (12)li - i > (18) 

in analogy with (4), where Ii - i > stands for the lowest weight state in the vj space. 

From the above considerations, it is straightforwardly shown that the state obeying 

the conditions J_(12)t!>j,-j(Z1lZ2) = 0 and Jo(12)¢i,-,(ZI,Z2) = -jt!>j.-j(ZI,Z2) is 

¢j,-j(Z1IZ2) = C j [ZI (-) q-(i+ll z2]jl+.i2-j (19) 

where 
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[2itl![2i2J![2i + IJ! ) 1/2
j (C = lil +h - iJ!lil - i2 + iJ![j - il +h]![jl +h + i + I]! X 

qWI +.i2-j)(i+l+il-.i2) (20) 

is the normalization constant. In the notation used for this calculation, ¢i,-i(Z" Z2) 

is defined as 

¢i,-j(ZI,Z2) =< ZI z21i - j > 

where IZI Z2 >= IZI > IZ2 > with IZI > being the coherent state in the space Vit and 

IZ2 > the coherent state in Vil. 

In the above calculations, the q-derivatives written in appendix 1 have been used. 

V. GENERATING FUNCTIONS 

From the definitions for the coherent states in the VJ space, vide eq. (18) and in 

the vjl ~  Vh space, we obtain 

jl i2 j [ 2 . 11 ] 1/2 [ 2'12 ] 1/2 [ 2'1 ] 1/2 
< ZI z21x >= L L L. . . 

ml=-il m2=-.i2 m=-j 11 +ml :J2 +m2 1 + m 
mlztl + z~2+m2 Xi+m < il ml i2 m2 Ii m >q (21) 

and we are left with the calculation of < ZI z21x >, i.e., the generating function from 

which the Clebsh-Gordan coefficients appearing in the right-hand side of the above 

expression can be easily obtained by q- differentiation, as is discussed later. One has 

to bear in mind that IZI > IZ2 >= IZI %2 > is the coherent state in the vjl ~  y,i2 

space and Ix > is the coherent state coming from the vj space. Using the definition 

for the resolution of unity in space Vii ~  V.i2 (which follows in a straightforward way 

from eqs. (7) - (8»), we can write 

< ZI z2lx >= ! dJ£(eddJ£({:l) < zdel >< z216 >< el e2Ie:Jt(12lli - i > (22) 

where dJ£{(J} and dJ£(e2) are the measures in spaces Vjl and V.i2 respectively (see eq. 

(8)). With the help of eqs. (14)- (15) we obtain 
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< ZI Z21x >= e:Jt (12)¢i._i(ZII Z2). (23) 

From the fact that [13] 

e:Jt (12)!il ml > li2 m2 >= e:q"'2 
Jt (I)1i1 ml > e:q-mlJt(2)li2 m2 > (24) 

and 

e~Jt  zn = [1 (+) AZ]2i -n I (25) 

< Zl ,z21x > becomes 

il+i-l-i [il +h - i]< ZI z21x >= Ci� L (_q-(i+1»mz~il+i2-j-m)z;n  X 

m=O m 

[1 (+) Xq(m-hl Z1 ](il-i2+i+m)[1 (+) Xq(i-i2+m)Z2](2i-l-m). (26) 

With the use of the identity [13] 

[1 (+) qOznl (+) qr+·+C1 z]· = [1 (+) q.+ozt+·1 (27) 

eq.(26) reads 

< Zl z21x >= Ci [1 (+) Xq-i-l z11(il-i-l+j) [1 (+) Xqi1Z2](i-l-il+i) X 

il+i-l-i [il +i2 - i]E (_q-(j+l»)mz~jl+i2-i-m)z;n  X� 

m=O m� 

[1 (+) Xq(i1-2i-l+i +m)zt!m [1 (+) Xq(il- 2i-l+m)Z2](il+i-l-i-m ). (28) 

FinallYI another simplification can be performed with the help of the expression 

to [~] (-i)ml% (+!Nr'jm!z (+!Nqml'-m = [z (-) %1' (29) 

yielding 

< ZI z21x >= Ci [1 (+) Xq-i-lztl(il-i-l+i)[1 (+) Xqi1Z2](i-l-jdi) X 

[ZI (-) q-(i+l)Z2](il+i-l-i) I (30) 

which is the Clebsch-Gordan generating function we are looking for. This generating 

function is the left-hand side of formula (21) and a simple example of how to obtain 

the Clebsch . Gordan coefficient itself by means of q-differentiation is worked out in 

appendix 2. 

VI. CONCLUSION 

In this paper we have developed a way of calculating 81.£q(2) Clebsch - Gordan co­

efficients generating function through the use of coherent states in a holomorphic (or 

q- analog Bargmann) representation. The advantage of this method is that the gener­

ating function is obtained in a straightforward way. With the help of q-differentiation l 

the 81.£q (2) Clebsch - Gordan coefficients are easily worked out from the generating 

functionI as shown in appendix 2. 

It is worth pointing out that for q = 11 the generating function written in eq. 

(30) becomes exactly expression (14) given by Belissard and Holtz [71 for the 81.£(2) 

algebra. 

In writing this paper l we have tried to use a notation which makes evident the 

similarities between the q-deformed and the usual expressions. 

This work was supported by Conselho Nacional de Desenvolvimento Cientifico e 

Tecnol6gico (CNPq). 

VII. APPENDIX 1 

Some formulae mentioned in the main text are shown below. The expression 

[a (±) h]m = f: [m] am-k(±h)k 
k::::O k 

(31) 

where 

[ 
m] 
n = 

[m]! 
[m - n]![n]! 

(32) 

is the q-binomial definition. Some q-derivatives are 

D.(e:Z 
) = a e:z (33) 

Dz zn = [n] zn-l� (34) 

D.(f(z)g(z)) = (D.f(z))g(qz) + f(q-IZ)D.g(z) (35) 
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D%2 [aZt(±)bz2]m = ±[m]b[azt(±)bz2]m-l (36) 

where a and bare consta.nts and [azl(±)bz2]m is defined in eq. (31) above. 

VIII. APPENDIX 2 

Here we show two simple examples of how to obtain the Clebsch - Gordan coeffi­

cients by q- differentiating the generating function. From eq. (21) one can easily see 

that 

. " [jl - md! 1/2 [j2 - m2]! )1/2( [j - m]! )1/2 
< 31 ml 32 m2lJ m >q= ([2il]![jl + md!) ([2i2]![j2 + m2]! [2i]![i + m]! 

Djl+mIDi2+m2D~+m
%2 )( 

< Zl z2lx > 1~1="2=x=o,
%1 

(37) 

1~ ezample) Here we obtain < il m 2 0lil + 2 m >q, a necessary coefficient 

when calculating quadrupole transition probabilities in a large number of atomic and 

nuclear models [14]. Substituting the correct values for iI' mh h, m2, i and min eq. 

(30) we have 

< Zt z21x >= Cj [1(+)Xq-2zd 2jl [1(+)Xq1I Z2 ]4. (38) 

By q-differentiating the above expression, we obtain 

D~I +2+m D 2 Djl +m < Z Z Ix> I - C [4][3][2il]!(j1 + m + 2]! -2m 
)( %2 %1 1 2 %1=%2=X=O - j [i ] q, (39)I-m! 

where Cj =1. Fina.lly, substituting the above expression in (37), we end up with 

< it m2 0lit + 2 m> = q-2m I[4][3][il - m + 2](j1 - m + 1][i1 + m + 2]/j1 + m + 1] 
q ~ [2][2jl + 4][2j] + 3][2il + 2][2jl + 1] 

which is exactly the expression found in table IV of ref. [8]. 

2~d ezample) The < it ml 1/2 1/2jil - 1/2 m >q coefficient, where m = ml + 1/2 

is calculated below. Again, from eq. (30) we may write 

< ZI z21x >= Cj [1( +)Xq-t/2z.]211 -1 [ZI( - )q-(Jdl / 2) Z2] (40) 

from where we calcula.te 

9 

D~I+mIDI Djl+m l < Z Z Ix> I - - C·[2it -1]![j1 + ml]! 
)( %2 %1 1 2 %1=%2=)(=0 - - J [j

1 -ml -I]! 

q-l/2(i1 +ml )-(jl +1/2), (41) 

where 

. [2il]! (42) 
Cj = '1'1 J[2it _ 1]![2il + I]! 

and hence 

< il ml 1/2 1/21il - 1/2 m >q= _q-I/2(jI+m+I/2).1 [il : ~ :+.~/2], (43) 

which is the 8uq(2) Clebsch - Gordan coefficient also found in table I of ref. [8]. 

In the same way, all Clebsch - Gordan coefficients can be obtained. 
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