
o 
fY 

Instituta de Fisica Teorica1FT Universidade Estadual Paulista 

====================================== 1992 
"~l---r 

May/92 IFT-:R.015/92 ' ~. 

Model independence of scattering of three identical� 
bosons in two dimensions� 

Sadhan K. Adhikari� 

Instituto de Fisica Te6rica, Universidade Estadual Paulista, Rua Pamplona 145,� 

01405 Sao Paulo, SP, Brazil� 

A. Delfino 

Department of Physics and Astronomy, University of Maryland, College Park,� 

Md 20742, USA� 

T. Frederico 
Instituto de Estudos A van~ados, Centro Tecnico Aeroespacial 

12225 Sao Jose dos Campos, SP, Brazil 



Instituto de Flsica Te6rica� 
UDiversidade Eatadual Pauli.ta� 

Rua PamploDa, 145� 
01406 - Sao Paulo, S.P.� 

Brazil� 

TeJephone: &6 (11) 288-5643 
TeJefax: 56 (JJ) 36-3449 
Telex: 56 (lJ) 31870 UJMFBR 
Electronic Address: LIBRARYOIFT.UESP.ANSP.BR 

47bb3::LIBRARY 



.L.--,,----- ----- ­
~REVIEW  COpy 
NOI FOR DISTRIBUTION ..-al~  

Model independence of scattering of three identical 

bosons in two dimensions 

,.LI S46/<1­

)(1/"'3 ~C  

"03.65.Nk 

Sadhan K. Adhikari 

lnstituto de Fisico. Te6rico, UniverBidGde Est4dtuJl PauliBta, 01-/05 SiD Paulo, SP, Bruil 

A. Delfino 

Department 0/ Physics and Astronomy, University 0/ Maryland, College Park, Md 107-/1 

T. Frederico 

lnstituto de Estud08 Avallfados, Centro Tecnico AerQespGcial 

lU!S Sao Jose dOB Campos, SP, Brasil 

Lauro Tomio 

lnstituto de Fisico Teorico, Universidade Estadual PauliBta, 01-/05 Sao Paulo, SP, Brasil 

MeDVED 0 4 MAY. 1992 

Within the framework of scattering integral equations in momentum space we 

present numerical results of scattering of three-identical boaons at low energies in two 

dimensions for short-range separable potentials. An analysis of the present numerical 

results reveal the three-particle scattering observables to be independent of potential 

shape provided the low-energy twc>partic1e binding energy and scattering length are 

held fixed throughout the investigation. 
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I. INTRODUCTION 

Over the past decade there has been a great deal of activity in studying the three 

particle problem in two space dimensions both theoreticallyl-s and experimentallyf-IO 

due to a variety of reasons. Experimentally, there has been considerable interest in 

two-dimensional systems such as helium adsorbed on graphaite10 and spin-polarized 

hydrogen (H!)5,f-9 recombining on a helium film. Also in view of the possibility of de­

tecting multiparticle bound states on monolayers of quantum gases10, it is interesting 

. to study numerically the quantum mechanical few-particle bound-state problem. 

In the recent past there has been a significant amount of theoretical studiesll in 

the quantum and statistical mechanics of anyons which are particles having continuous 

fractional spin and thus interpolating and simulating between boson and fermion 

properties. Anyons exist only in two-dimensions and this has increased the relevance 

of few-particle problems in two dimensions. As the anyons represent bosons in one 

of the extreme limits a study of the quantum mechanical three-boson system is likely 

to enhance the understanding of anyon properties. 

A knowledge of the complete spectrum of the Hamiltonian for the few-particle 

. systems in two dimensions is essential for studying the quantum-cluster coefficients 

in two dimensions.12 For a confining potential the complete spectrum constitutes 

of bound states only, whereas in the nonconfining case one has to deal with both 

bound states and scattering. Such studies have been undertakenU ,12 for b08Ons, 

fermions, and anyons in general and also in the limits of high and low temperatures. 

A knowledge of the complete spectrum of the n-particle Hamiltonian is necessary for 

the study of the nth quantum-cluster coefficient.12 At the low (high) temperature 

limit one needs such a knowledge at low (high) energies. 

Hence, a systematic study of the quantum mechanical few-particle system in two 

spa.ce dimensions will shed light on all the above-mentioned problems. Here we report 
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numerical results on both scattering and bound state 9bservables at low energies for 

the quantum mechanical three-boson system with a special objective in mind. We 

would like to investigate how sensitive are these ohservables to variations of the inter­

action potential while maintaining two-particle binding energy and acattering length 

fixed under certain restrictions. The restrictions are those of short-range potentials 

where the typical few-particle bound-state size is much larger than the range of the 

interaction potential. We would like to study the few-particle system under such 

restriction partly because of previous studies indicating that this is the situation in 

many atomic and chemical systems,I,2 and partly because of the simplicity in the 

treatment of the few-particle problem in two dimensions via the momentum-space 

connected kernel integral equations using such short-range potentials. Also, under 

these restrictions and at low energies the result of such a study is expected to be 

universal and independent of the details of the potential model employed.13 

8There have been certain calculationsl - for few-particle bound states in two di­

mensions. Bruch and Tjon1,2 were the first to investigate the model dependence of 

the three- and four-particle bound states on the shape of the interaction potentials. 

They compared the results of separable potential calculations with those employing 

Lennard-Jones potential. They concluded that the results were sensitive to the p0­

tential model employed as they varied the strength of the potential. Later on in 

relation to the study of Efimov and Thomas14 eifects in two dimensions Adhibri et 

al.4 pointed out that the study of Bruch and Tjon is not entirely to the point and 

one should maintain the two-particle low-energy observables - both binding energy 

and acattering length - fixed in studying the above model dependence. Once this 

is done the above model dependence of few-particle bound state observables in two 

dimensions reduces significantly. This has been related to the absence4 of Efimov and 

Thomas eifects in two dimensions. 
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In this work we compliment the study of Ref. 4 in two dimensions on the model 

independence of three-particle bound states on potential models and present the first 

systematic study of the low-energy scattering of a boson on the bound state of two 

identical b08Ons.· We consider three identical bosons interacting via pairwise S wave 

separable potentials with simple form-factors. We calculate the S wave scattering 

length and phase-shifts for the scattering of a boson on the bound-state of two others. 

We investigate the sensitivity of our result on variation of the shape of interaction 

potential. Presently, nothing is known about the scattering observables of three 

particles in two dimensions. Our study will provide some idea of the scattering in the 

three boson system. 

Through our numerical study we establish that the three-particle bound state 

and scattering observables at low energies in two dimensions are quite insensitive to 

variations of the interaction potential provided that the two-particle binding energy 

and the scattering length are held fixed. This is not quite so in three dimensions 

where the low-energy scattering and bound state observables for three- and few­

particle systems are sensitive to the details of the potential models employed or to 

the shape of the interaction potentials. 

We have confined the present study to the S wave identical bosons but our con­

clusions are expected to hold true in the case of fermionic systems and higher partial 

waves also. This is because few-fermion systems obey scattering integral equations 

quite similar to the few-boson systems with a somewhat weakened effective interac­

tion as a consequence of the Pauli principle between identical fermions. Because of 

the Pauli repulsion between identical fermions the few-fermion system is expected to 

be less sensitive to the interaction potential than the few-boson system and our con­

clusions should extrapolate to the fermionic case. Also, the higher partial waves of the 

three-particle system are expected to be weakly attractive because of the centrifugal 
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barrier, and so are expected to be insensitive to the two-particle potential. 

The present result should have interesting consequence on the calculation of 

quantum-cluster coefficients, surface recombination rates of spin polarized hydrogen 

atoms, and the formation of helium-clusters in two dimensions. Our calculations and 

the general arguments of Ref. 4 indicate that the results of such calculations should be 

independent of potential shape provided that the low-energy two-particle observables 

are held fixed. 

In Ref. 4 the model (in)dependence of few-particle observables in different space 

dimensions has been related to the divergence of the trace of the momentum space 

kernel of the scattering integral equation. This divergence is reduced as one moves 

from higher to lower dimensions as a result of the reduction of the momentum space 

phase space - d"k for n dimensions. In one dimension the bound state and scattering 

results are expected to be even more insensitive to potential shape. The calculation 

of Dodd15 indicates this for three-particle bound states in one dimension. 

In Sec. II we present the two-particle separable potential model which we employ 

for the calculation of the three-particle system and also some results for two-particle 

scattering. Then we develop the three-particle dynamical equations which we use for 

the numerical study of three-particle scattering in two dimensions. An account of 

the numerical method and a suitable definition of the scattering phase-shifts are also 

given in this case. In Sec. III we present and discuss our numerical results. In Sec. 

IY we present a summary and concluding remarks. 

n. THE MODEL 

Let us consider three identical bosons in two dimensional space interacting via 

the following S-wave separable potential in momentum space: 

(ptVlk) = -.\g(p)g(k), (1) 
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with� the numerical value of O'J depends on the scale used to measue the energy k2. In ou 

study we shall be measuring energy in units of the two-particle binding energy B,
g(p) == (fJ'J +p'Jt....� (2) 

One of our main interests in this work is to study the sensitivity of few-particle 

observables to variations of potential shape, and this will be achieved by varying m 

from 1 to 10. For potential (1) the scattering t matrix is given by 

(P1t(s)lk) =T(S)g(p)g(I:),� (3) 

with 

T(S) =_ [.!.+2r roo qdqg2(q) ]-1 (4)..\ 10 I:'J - q2 + iO 

where S = 1&21:2/2JJ, JJ is the reduced mass of the two-boson system, S is the center 

of mass energy, and I: is the on-the-energy-shell (on-shell) relative wave number. In . 

this work we shall employ units 1& = 2JJ = 1. The fully on-shell t matrix (1:It(1:2)/I:) = 
2r(klt(1:2)lk), k2= S , is given by 

2
(klt(1:2)/k) = [ (tJ2 + k

2
)'Jm + In(~)  _ 2El (13 :- I:~)j  + ir] -1 • (5)

2r.\ I: j=1 2){pJ 2 

The two-particle bound states at negative energies are given by the vanishing of 

~he  quantity in the square bracket. Using the effective range expansion, this t matrix 

is usually parametrized by!· 

.(I:/t( 1:2)11:) = _._2_� (6) 

with 

cot02=02 + (1/r)ln(1:2) + 61:2+ ck4 + ... (7) 

Here 02 is the scattering phase shift, and 02 is the two-particle scattering length. 

There is some ambiguity in defining 02 in two dimensions because of the In(1:2) term; 

and the scattering length 0'J' defined by 

1 1:2 1:2 
cot6, = 02 + -In-

B 
+ 6'-B + ..., 

'I" 2 2 
(8) 

is related to that of Eq. (7) by 

_ 1 
CI'J = 02 + -lnB2 • 

r 
(9) 

The scattering length 02 will be useful in our study of model independence of three­

particle bound state and scattering observables in two dimensions. When the two­

particle binding energy B'J = 1, 02 reduces to 02' In the low energy limit, for the t 

matrix of Eq. (5), cot02 is given by 

!J4m 1 1:2 1 2m-l 1 
coto, = -2- +-In- +- E "':',� (10) 

13

r..\ r (P r j=1 ) 

so that the scattering length 02 is written as 

4m 1 B 1 2m-l 1 
02 =-2- +-ln2 +- L ",:,.� (11)

r..\ r (P r j=1 ) 

With this discussion of the two-particle system we now present a discussion of the 

three-boson Faddeev equations17,IS in two dimensions for separable potentials (1). In 

this case the Amado-Lovelace-Mitra equation!S, which is the special case of Faddeev 

equations for separable potentials, is given by 

(q1T(s)lk) = (q1V(s)lk) +f dp(q1V(s)ln T (s - 3p2/4){PIT(s)lk) , (12) 

where 

(i!V(S)/n = 2g(\q+p/2I)g(\p +q/21) (13)
S - q2 - r - p.q+ iO . 
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Here T(s) is the t matrix for 8C&ttering of a boson on the bound state of two others at 

a three-particle center of mass energy a, and V(s) is the energy-dependent effective 

potential in this case. The on-shell wave number k in this case is given by 

s =3k2/4-~, (14) 

where 3k2/4 is the relative kinetic energy. 

The partial S-wave projection of the Amado-Lovelace-Mitra equation (12) is writ­

ten as 

(qIT(s)lk) = (qIV(s)lk) + f pdp(qIV(s)lp)T(S - 3p2/4){PIT(s)lk), (15) 

where 

(2ff
(qIV(s)lp) = 1 d6(ilV(s)IPi· (16) 

0 

The equation for the partial wave t matrix (15) above has a singularity in the kernel 

in the T(a - 3p2/4) term whenever p equals the on-shell wave-number k. In order to 

make this singularity more explicit we introduce a modified t matrix and interaction 

potential in the Amado-Lovelace-Mitra equation via 

(qIT(s)lP) = -(~  - q2)T(S - 3q2/4)(qIT(s)lP) , (17) 

and 

(qIV(a)lP) =_(k2- q2)T(S - 3q2/4)(qIV(a)IP). (18) 

The condition for the two-particle system to have a bound state of binding energy ~ 

is given by 

! =2~ (00 pd~. (19)
.\ 10 B2 +r 

With this condition the expression (17) for T(a) above is rewritten as 

9 (M., I, lin) 

3'1' , 92(y) ]-1
[(qIT(s)lp) = "2 f .pdp (B +ya)(s _ 3q2/4 _ ya + iO) (qIT(s)IP)· (20)2

We have a similar equation for V(s). 

In terms of these modified potential and t matrix the Amado-Lovelace-Mitra 

equation becomes 

(qIT(s)lk) = (qIV(s)lk) + (00 pdp (qW(a)lp){PI1'~s)lk). (21)
10 (p2 - k2 - 10) 

For energies below the three-particle breakup threshold the potential Y(s) is real and 

the analytic structure of Eq. (21) is identical to that of the two-particle Lippmann­

Schwinger equation. We employ a subtraction in the kernel of this equation in order 

to eliminate the singularity of the kernel. The nonsingular equation we consider for 

an auxiliary matrix res) can be written as17 

(qlr(a)lk) = (qlV(a)lk) + 10
00 

pdp (qlV(s)~~ =l~~Y(a)lk)  (p1f(a)lk). (22) 

In Eq. (22) we have performed a specific subtraction in the kernel. This specific 

subtraction is a special case of a more general subtraction scheme for calculating the 

fully off-shell scattering t matrix in terms of the solution of an auxiliary nonsingular 

integral equation.17 As the integral in Eq. (22) is nonsingular the iO prescription in 

the denominator has been dropped. In the present study we shall be only concerned 

with the on-shell t matrix which is expressed in terms of the auxiliary matrix r(a) 

vial7 

(kIT(s)lk) = (klr(a)lk) (23)1 - f~ qdq (1Ire,)!A:) ,(, _A:3_iO) 

which can be rewritten as 

(kIT(s)lk) = (klr(s)lk) (24). . r:o dq9cilrc·)!A:l-ZA:lfC.'!A:' _ ilr(A:!rC.lIA:) • 
(, - ) 2 
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In arriving at Eq. (24) we have separated the principal value and the imaginary part, 

of Eq. (23) and have added a term to the principal value part which is zero. The 

resultant integral of Eq. (24) is not singular and hence does not need the principal 

value prescription for its evaluation. 

Comparing with Eq. (6) we identify (kIT(')lk) as the physical t matrix for the 

scattering of one boson on the bound state of two others and the phase shift for this 

scattering, 63 , is given by 

6 = 2 [1- (00 d q(qlr(a)lk) - k(k1r(a)lk)] (25) 
cot 3 'lI'(klf(a)lk) 10 q (q2 _ k2) • 

This expression for cot63 should diverge as (l/'lI')ln(3k2/4) for small k. In order to 

calculate the scattering length 43 for scattering of one boson on the bound state of 

two others we have to extract this divergent part of cot63 and take the limit k -+ o. 
The integral in Eq. (25) is identically rewritten as 

(00 d q(qlr(a)lk) - k(klr(a)lk) = (00 d (qlr(a)lk) 
10 q (q2 - k2) 10 q q +k 

+k (00 dq(q1r(a)lk) - (klr(a)lk). (26) 
10 q2 - k2 

It is easy to see that the first term on the right hand side of this equation gives the 

Ink divergence for small k and the second term vanishes in this limit. In order to 

extract the divergent term for small k in expression (26) we rewrite the first term on 

the right hand side, for example, as 

dq (qlr(')lk) (00 d (qlr(a)lk)(1 + q) - (Olr(a)lk)
[ 

f 
o (q+k) 10 q (l+q)(q+k) 

dq+(OIf(')lk) 0 'I ,. (27)1- • 

Equation (27) is just one way of separating the divergent part from the finite part of 

the first integral on the right hand side of Eq. (26) in the limit k -+ o. The first term 

on the right hand side of Eq. (27) is finite in this limit whereas the last term, which 
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can now be evaluated analytically, diverges in this limit. This last term of Eq. (27) 

is immediately evaluated to yield 

(o/r(a)lk)[ dq _ (OIf(a)lk) (28)
o (1 +q)(q +k) - k -1 Ink. 

Now the expression (25) for cot~  is rewritten as 

cot~  = 2 (1 _ (00 d (qlf(a)lk)(l +q) - (Olr(a)lk)� 
1I'(klf(a)/k) 10 q (1 +q)(q +k)� 

_ k[ dq (qlf(a)lk) - (klr(a)lk) _ (OIr(a)lk) I k)� (29)o q2 _ k2 k _ 1 n. 

The analogue of the effective range expansion (7) in this case is given by 

cot63 = 43 + (1/1I')ln(3k2/4) +b(3k2/4) +c(3k2/4)2 +... (30) 

with 3k2/4 playing the role of the relative kinetic energy, which in the two-particle 

case given by Eq. (7) is k2• 

The scattering length for scattering of one boson on the bound state of two others, 

43, is now defined as 

43 =1I'(OIf~O)IO) [1 -100 
dq (1 +q)(qlr(O)IO) (OIf(O)IO) 

_ (Olr(O)IO) q(1 +q) 
_ In(3/4»). (31) 

We can redefine 43 in units such that B2' = 1 as in Eq. (9): 

Ci3 =43 + In(~) (32)'lI' . 

In Eq. (32) Cia 80 defined is the scattering length for B2 = 1. 

UI. RESULTS AND DISCUSSIONS 

In this section we present numerical results at low energies below the three-particle 

breakup threshold for scattering and bound states involving three identical b080nB in 
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two dimensions. One of the purposes of this study is to investigate the sensitivity 

of these results for scattering and bound states on the shape of the two-particle 

interaction potential while the low-energy two-particle observables, the binding energy 

B'J and the scattering length a'J, are maintained constant. In some areas, such as 

nuclear physics, such a variation of the potential is called an 'off-shell' variation, 

as the potential is varied in such a way that the (low-energy) two-particle on-shell 

observables are maintained constant. Usually, the features of the potential well known 

from physical considerations, e.g. the range, is held fixed in such a study while the 

shape is varied. We simulate such a variation by varying the constant m (=1,2,4, and 

10) of the potential form-factor (2). 

Because of considerations of J!.ef. 4 the results of three-boson bound-state and 

scattering calculations at low energies should depend only on the two-boson observ­

abies B 2 and a2 for B~/2 « 13, where 13 is the range parameter introduced in Eq. (2). 

Under this condition the behavior of the three-particle system is expected to be uni­

versal, independent of the detail of the interaction potential. Due to the low binding 

of the two-particle system, the three particles are expected to spend most of the time 

outside the range of the potential. This model independence of the three-particle 

system increases as the dimension of the space is reduced. In three dimensional space 

there is a reasonably strong model dependence, whereas in two-dimensional space this 

model dependence is non-existent at least at low energies and in the weak binding 

limit4 
• 

Another way to understand this model independence of three-particle observables 

in two dimensions is achieved through a consideration of the dynamical equations 

(15). In the three dimensional equivalent of Eq. (15) the convergence at the upper 

limit of the integral in this equation is achieved by the potential form-factors g's 

through Eq. (13). The integral in Eq. (15) diverges as the form-factors g's are 

13 (w., I, 1812) 

set equal to unity, which corresponds to the two-particle zero-range interaction; this 

divergence has been related to the appearance of Thomas effect in the case of zero­

range potential.4 Consequently, in three dimensions the solution of Eq. (15) depends 

on the shape of the potential form-factors. The integral in Eq. (15) in two space 

dimensions, because of the reduced phase-space, converges even when the potential 

form-factors g's are set equal to unity.I.4 The solution of Eq. (15) in this case is 

expected to be insensitive, or at best very weakly sensitive, to the shape of the 

potential form-factors. It is important to note that in the limit 13 -+ 00 (potential 

range going to zero) Eq. (15) produces convergent result for three particles in two 

dimensions. Consequently, the Thomas effect is absent, which implies that the short­

range or the large momentum parts of Eq. (15), expected to be the region most 

sensitive to the off-shell variation of the potential, have no significant relevance on 

the three-particle low-energy observables in two dimensions. 

In our calculations we utilize 13 = 1 and vary '\, so that, B2 « 1, which is 

expected to be the domain of model independence discussed above. We vary the 

two-particle scattering length a2 and the two-particle binding energy B2 during the 

actual calculation. However, we would like to have results for fixed a2 and B2 in order 

to study the model independence of three-particle observables. This is achieved in a 

simple fashion. The three-boson results for 13 = 1 and any B2 can be transformed 

to the case with a fixed B2 (=1) by considering B3 = B3/B2 , (i3 = a3 + (1/1r)lnB2 , 

and a2 = a2 + (1/1r)lnB2• Here the barred quantities refer to the case with B2 = 1. 

Equations (3), (4), and (19) exhibit this remarkable scaling property. Suppose that 

for a given ,\ = '\0 and 13 = 130(= 1) we have the two-particle scattering length a2 

and a two-particle bound state of binding energy B2• It is easy to see from Eq. (19) 

by scaling arguments that then one has a bound state of binding energy B2 = 1 for 

13 = 130/ B~/2 and ,\ = '\0/B~m  and from Eqs. (9) and (11) that a2 is the corresponding 
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scattering length. A similar scaling argument applied to Eq. (15) reveals that under 

this modification the three-particle binding energy and scattering length get changed 

from Ba and aa to lJa and aa, respectively. 

In Ref. 4 it is demonstrated that the plot ofBa (= Ba/ B~) versus a2 is independent 

of the potential form-factors. The plots for m = 1,2,4, and 10 yielded essentially the 

same result. This demonstrated the model independence of the three- boson bound 

states in two dimensions. We have reconfirmed this model independence for other 

values of m. 

Here we shall mainly concentrate on the three-boson scattering observables. In 

Fig. 1 we plot the scattering length aa versus a2 for m =1,2,4, and 10 in Eq. (2). 

For small a~  this plot is completely universal with all m yielding essentially the same 

result. For large a2 and aa this model independence tends to break down as we start 

moving out of the weak binding limit (B~/2  / f3 << 1). In the actual calculation for the 

extreme point given by 100a2 = 15, B~/2 / f3 ~ 0.35(m = 1), 0.24(m = 2),0.01 (m = 

4), andO.08(m = 10). We see that the smaller values of m have deviated more from the 

weak-binding limit compared to the larger values of m. This justifies the deviations 

of the m = 1 and 2 curves from the m = 4 and 10 curves for large a2. The m = 10 

curve in this case is closer to the universal weak-binding limit. Even in the extreme 

point 100a~  = 15 the dipersion in a3 is small and is of the order of ten per cent. 

This case is comparable to the three-dimensional three-nucleon system where the 

the range parameter f3 = 1.4jm and square-root of the deuteron binding is B~/2 = 

0.23jm.J7 However, in the three-nucleon system the dispersion in the value of the 

S wave neutron-deuteron scattering length a3 is much larger, with aa varying from 

-ljm to Ijm. Hence, unlike in the three-dimensional ease, in the weak binding limit 

a~,  and B2(= 1) are enough to determine the scattering length a3 of one boson on 

the bound state of two bosons independent of the shape of the interaction potential 

15 (ad., I, I'U) 

as is obvious from Fig. 1. 

In Fig. 2 we plot a3 versus B3 for m = 1 and 10. The plots for m = 2and4 

lie between those for m = 1 and 10. For small a3 the model independence of the 

result is obvious. As in Fig. 1 this model independence starts to break down as aa 

increases and we move out of the region of weakly bound two-particle bound states. 

This plot should be compared to the Phillips19 plot of the three-nucleon system, 

which yields a linear correlation between the triton-binding energy and the S-wave 

spin-doublet neutron-deuteron scattering length while different potential models with 

fixed two-nucleon binding and scattering lengths are employed. However, there is an 

interesting difference between the Phillips plot and the present plot. The present 

variation of 113 and a3 arises due to the variation of a2 while in the correlation of 

the Phillips plot both two-nucleon binding and scattering length are fixed. From 

Figs. 1 and 2 we realize that once we hold both the two-particle scattering length 

a2 and binding energy B2 fixed this will correspond to a unique scattering length a3 

and binding energy B3 with an estimated dispersion of ten per cent. In other words, 

in two dimensions with fixed a~ and B~,  the a3 versus B3 plot reduces practically 

to a point with some dispersion, in contrast to the three dimensional three nucleon 

system. Consequently, the weakly bound three dimensional three-nucleon system 

is model dependent or sensitive to the off-shell behavior of two-nucleon interaction 

potential, whereas the two dimensional three boson system in identical situations is 

virtually model independent and insensitive to the off-shell behavior of two-particle 

interaction. 

Finally, we see that this model independence of three-boson binding energy and 

scattering length in two dimensions can be extended to the scattering phase shifts 

63 below the breakup threshold of one boson on two-boson bound state. In order to 

test this we calculated 63 for k = I, and B 2 =1. This corresponds to a three-particle 
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center of mass energy s given by Eq. (14). In this case we plot tan~  versus Cia in 

Fig. 3. As in Figs. 1 and 2 ~ is varying in this calculation. For small Ci3 again 

the result is model independent. When 63 and 62 increases this model independence 

starts to break down as in Figs. 1 and 2. This plot should be compared to that of 

Frederico and Goldma.n20 (FG) for the three-dimensional three-nucleon system, where 

they plotted kcotc5 (15 being the nucleon-deuteron S wave scattering phase shift) versus 

nucleon-deuteron scattering length and obtained a linear correlation as in the Phillips 

plot. This study of FG is the three-dimensional analogue of the present study in two 

dimensions in Fig. 3. However, in the study of FG both the two-nucleon binding 

energy and scattering length are held fixed. In the three-nucleon system even in the 

weak binding limit, in contrast to the two-dimensional three-boson case, the result 

is model dependent. In the present study the two-particle binding energy is fixed 

but the two-particle scattering length is varying. Once the corresponding quantities 

(B2 and a2) are held fixed in the present study we have only a section of the present 

plot in Fig. 3, which is just a point with small dispersion. Again we reach the 

same conclusion of model independence (off-shell independence) of the three-particle 

scattering observables in two dimensions. 

IV. SUMMARY 

In this paper we have presented a systematic study of scattering and bound states 

of three identical bosons in two space dimensions at low energies using the Faddeev 

equations in the momentum space. The two-particle potential is taken to be of the 

S wave separable type with varying form-factors. In this case the Faddeevequations 

reduce to one variable integral equations, which we refer to as the Amado-Lovelace­

Mitra equations. One of the purposes of the present study is to investigate the model 

(in)dependence of the results once the two-particle binding energies and scattering 
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lengths are held fixed. In the limit of weak two-particle binding (B~/~  « (J) we 

find the result of both scattering and bound states of the three-boson system to 

he independent of the variation of potential shape provided that the two-particle 

scattering length and binding energy are held fixed. In the three dimensional three­

particle system the results for three particle bound states and scattering are sensitive 

to the shape of the potential employed even when the two-particle binding energy and 

scattering lengths are held fixed. This behaviour of the three-particle system in two 

dimensions has been justified by considering the analytic behavior of the dynamica.l 

equation (15) and has been related to the absence of the Thomas effect in this case;' 

The present finding is expected to have interesting consequence in the study of several 

few-particle systems in two-dimensions. We have made a limited model study but we 

have argued that our conclusions are expected to be generally valid provided· that we 

are limited to low energies and consider only the case of weak two-particle binding: 

B~/3 << p, where B'l is the two-particle binding and f3 is the inverse range parameter 

of the two-particle interaction. 
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Figure Caption 

1.� The three-boson scattering length 03 plotted versus the two boson scattering 

length ~  for the sepArable potential (2) with m =1,2,4, a.nd 10. 

2. The three-boson scattering length 03 plotted venus the the three-boson binding 

B3 (= B3 /Ba) for the separable potential (2) with m= 1 and 10. 

3.� The tangent of the three-boson phase-shift tano3 of Eq. (31) plotted versus the 

three-boson scattering length i.i3 for the separable potential (2) with m= 1 and 

10. 

21 (w., I, I"') 

a� 157 UH"P <RElTORlR)as .• a1.'9:l 671:i1 

01o� _ w _ .� . . 
Ul 0 (J1 

0, i " 

-""" ~ 

I� 
I­

~ 

~~ 

C.11� 
,\~ 

\01� --,
I'.J� \. 

>< ~\  

~	
 

0\. 

II II II II
o

N� 

3 
\\\ 

~.t'No� \.\ 
~\I I-o I· ... \.\ 

I I \\\ 
",. 

\\\
i.\
.\ 
\ .\ 
+ \
I .\ -

PAys. Ru·, A. Ac1.i..kn.i"";·J aP 

e· 

l 



II 

..�.� 

c: 

e 
::� 0 
Go 

... '" 
% '0::> 

... Olon ....� 
It 

0.5 

0.8 

on 

" 

c: 

.. II: 
o

Go

:: 
% 
::> 

.. 

~ 

~ 
~ 
~ m=l 

'" m=10"", 
'" " " 

1.0� 1.2 1.~ 

A-d~~o.v; --t.1..ifIG- - 3 
7>~.~. A. 

o ~ ...... 
~ 

'C; 
e:t 
~ 

~ 
~ 

0� <'......� i 
E� Qc::. ...� ~ 

~
~ 

II -U- . ~ E 

0 an 0 an.41 .- .- 0MN� 
• 

Ie 
• 


