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, Abstract 

0We study the 1r - ,*, process using different model wave-functions in the null-plane. 

We compute the 1r 
0 decay and electromagnetic transition form-factor, and we found out 

that the 1r 
0 width has a strong model sensitivity and should be used as an important 

constraint to the model wave function. 

The neutral pion electromagnetic transition form-factor of the reaction 1r0 
­ ,*, has 

been recently measured by the CELLO Collaboration [I}. They measured F(k~,  ki), where 

kt and k~  are the photon four-momentum, for k~ R:: 0 and in the space-like region of kt. 
The extracted value of the neutral pion radius, rll'0 = 0.65 ± 0.03 1m, is in remarkable 

agreement with the charged pion radius rem = 0.651 ± 0.012 1m [2}. This new set of data 

provides further tests of the description of the pion wave-function in relativistic models. 

In particular we are concerned with the pion wave-function defined in the null-plane [3-8]. 

The relativistic approach to the wave-function based only on constituents quarks is 

possible in the null-plane due to the suppression of pair creation process. This property 

arises from the particular choice of the null-plane coordinates [9,10]. Also the center 

of mass coordinate is easily separated [3]. In specific processes involving a bound-state, 

the internal loop-momentum is integrated first in the null-plane energy, then the wave­

function of the bound-state appears naturally [90.]. This procedure is the essence of the 

"diagrammatic approach" that was applied in ref. 8 to obtain the weak decay constant and 

electromagnetic form-factor of the charged pion. In this reference, it was used one-loop 

diagrams; the triangle diagram for the form-factor and the bubble diagram which expresses 

the Partial Conservation of the Axial Current (PCAC) [11]. The important point is the 

convergence of the null-plane energy integration. This is the case for the "good component 

of the current" [10]. For the weak decay constant, this integration is also convergent [8]. 

In ref. 8, the null-plane quark-antiquark bound state wave-function was introduced in 

the calculation of the electromagnetic form-factor of the pion, starting from the triangle 

diagram with constant pion vertex. The pion wave-function in the null-plane, for a con­

stant vertex, goes asymptotically as the inverse of the difference between the squares of the 

pion and the free quark-antiquark pair masses. Then, it was obtained the normalization 

factor for the replacement of the asymptotic wave-function by a model wave-function in 

the expressions of the form-factor and weak decay constant. With the substitution, the 

formulae were the same as those obtained in the Hamiltonian Front-Form dynamics [6,1]. 

Our aim in this work is to study the 1r 0 observables. We construct the electromag­

netic transition form-factor of the neutral pion from the one-loop quark diagram with 

two external photons. As far we know, this observable has not yet been studied in 

the phenomenological null-plane approach. We follow the same procedure of ref.8. The 

integration over the null-plane energy in the triangle diagram is performed and the asymp­

totic wave-function of the bound quark-antiquark pair is replaced by phenomenological 
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pion wave-functions. We use three distinct model wave-functions: i) the Gaussian; [5-7]; 

ii) the hydrogen-atom [8] and iii) the wave-function model of ref. 12. This last model 

has the two characteristics that one believes belongs to Quantum Chromodynamics, i.e., 

confinement and short distance one gluon exchange. The Gaussian model has only the 

property of confinement and the Hydrogen model mimics the one gluon exchange at short 

distances. We study the consistence of the description of the recent neutral pion data and 

charged pion data within the relativistic approach. 

In the next, we present the formulation of the neutral pion electromagnetic transition 

form-factor in the null-plane approach, followed by our numerical results for the transition 

form-factor. Finally we present our main conclusions. 

We begin introducing the pseudo-scalar coupling of the pion to the constituents quarks, 

which can be expressed through the following effective interaction Lagrangian: 

(Oint .M - - 5- (1) 
........q = -z f ... 7r. q, rq ,� 

where M is the constituent quark-mass, f ... = 93MeV is the weak decay constant of the 

pion, if and q are respectively the pion field and quark wave function. Our units are such 

that h = c = 1. 

The amplitude for the electromagnetic process tr° -+ ,., is diagrammatically repre­

sented in Fig.1. The tensor, TIJII has two components, due to the bosonic symmetrization 

of the amplitude: 

TIJII (k1, k2) = tlJlI (k1, k2) + tlJlI (k2, k1)<9 . (2) 

The tensor t lJlI (k1, k2) is obtained after the traces in the spinor and flavour space are 

performed and the result is [ll} 

4 M 2
2 {J 2)Q

t lJll (k1, k2) = 3!:eoNceIJIIQ{Jkl k2I(kl (3) 

where 

J 
d4k 1�

I(q2)� 
(2tr)4 [(k2 - k)2 - M2 + ie)� 

1 
(4)

X (k2 _ M2 + ie)[(k... - k)2 - M2 + ie)' 

Nc is the number of colors (= 3), k~  = ki + k~ is the tr° momentum, qlJ = ki is the 

space-like momentum transfer, and eo is the unit charge. The factor of 1/3, in eq. 3, comes 

f~~m the trace in the flavour space. 

The integration in eq. 4 is performed after changing to the null-plane variables, kl.' 
k+ = kO +k3 and the null-plane energy k- = kO - k3 . After the integration over the k­

momentum, the asymptotic tr° wave-function appears explicitly, and from that the model 

wave-function is introduced in the expression [8}. We have two cases for the analysis of the 

k- integration, the processes tr° -+ "and tr° -+ ,*,. In the following we will discuss 

in detail the last case. 

The first step in the k- integration of eq. 4, is the factorization of k+, k; - k+ and 

kt -k+ in the energy denominator. The system of reference is chosen such that q+ = q- = 0 

and the momentum transfer is transversal, ifJ... This frame is always possible to find due 

the the space-like character of qlJ. In the new set of variables 

2 2 

(
2 1 J ( k M . )-1I q ) = 2(2tr)4 dk+d2k1. dk- k+(k; - k+)(kt - k+)(k- - l. + k+ - ze) 

x ((k- _ k- _ (k2 - kH. +M2 - ie)(k- _ k- _ (klr - k)}. +M
2

- ie))-1 (5) 
2 kt - k+ 11' k; - k+ ' 

where k-; = kt and k; = k2 . 
The integration in k- is convergent, and is performed using Cauchy theorem. The 

position of the poles in the k- complex-plane depends on the value of k+. Due to the fact 

that k-; = kt, only one region of k+ values makes the integration non-vanishing. The 

E-- set k+ < 0 and k+ > k-; does not contribute to the integral because the three poles 

have imaginary parts with the same sign. The only contribution comes from the region 

where the + component of the momentum of the quark cannot exceed the pion momentum 

(0 < k+ < k;). This corresponds to the on-mass shell quark. The result is 

2 2 2 
I(q2) = __i _ J dxd k1. (k- k+ kl +M (/;2 - /;)1 + M )-1 

2(2tr)3 x(l-x)2 22- X - I-x 

2k2 M2 ­- )-1X k-k+- 1.+ (k lr -k)2+M
... 11' - 1. (6)

( X 1- x ' 

where the momentum fraction x = k+ / k; and 0 < x < 1. 
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.' Introducing in eq. 6 the relative quark-antiquark perpendicular momentum, defined 

by [3] 

KJ. = (1 - x)kJ. - x(k. - k)J. , (7) 

we have 
2

I( 2) - _z_·_ Jdxd KJ. 1 8 
q - 2(211")3 (1 - x) «K + xvi + M2)(m~ - MJ) ( ) 

where m'll' is the pion mass. The free mass operator for q - q pair is written in terms of 

the momentum fraction and the relative perpendicular momentum as 

M 2 _ K1 +M2 

(9)o - x(1 - x) . 

The matrix element of the electromagnetic transition current is obtained from eqs. 2, 3 

and 8 

j,.(q2) = e~c;""Qj3E~qQ~F~(  _q2) ,� (10) 

where the neutral pion electromagnetic transition form-factor is 

R o( _ 2 _ Nc M2 JdxcP KJ. 1 
• q) - 611"3 f. (1 - x) «(I{ +xvi + M2)(MJ - m~) . 

(11) 

and E~  is the polarization of the real photon. 

In the soft-pion limit, following respectively refs. 11 and 13, we have 

1 1 
F'll'o(O) = ~f and r~  = In .� (12)

411" • y2M 

The neutral pion decay width is [11] 

2 3 
- Q m·1I"F2 (0)r .0 - 4 .0 ,� (13) 

where Q is the fine structure constant. 

Our next task is the introduction of the null-plane pion wave-function in eq.ll. Ac­

cording to ref. 8, the asymptotic wave-function in the null-plane model is replaced as 

below: 
1 11"~ f. .r2 

(14)-m; +MJ -+ MJMoN c 4».(R ) ,� 

where the wave-function 4».(1(2) is normalized to one:� 

JcfK4»;(1(2) = 1.� (15) 

This is the normalization condition in the framework of the Hamiltonian Front-Form dy­

namics [6,9c]. The functional dependence of ](2 with I{J. and x comes from the free mass 

operator [6,9c] 

K2 = MJ _M2 . (16)
4 

From the above eqs. 11-16, we obtain the central formula of the present work, the 

neutral pion transition form-factor for a null-plane model of the quark bound-state wave­

function: 

F.o(_q2) = .IN:tt J dxcP KJ. .. 4».(](2) . 
611"2 (1- x)VUo «K - xvi +M2) 

(17) 

In the limit of _q2 -+ 00, the form-factor behaves as '" q-2 and we define 

2 
A.0 -- l' [- 2F (_ 2)] - .IN:M J dxd 

ITT~.·
~ (K2) (18)1m q.o q - il. KJ. 

_9'_00 611"2 x 2(I-x)yMo 

The calculation of ref.14 within Perturbative Quantum Chromodynamics, gives 2f. for 

the above limit. This value should be compared with eq. 18 for the null-plane models of 

the pion. 

It is straightforward to derive the neutral pion radius from eq. 17, 

2 2 2 
r 20 = .IN:M J x dxd KJ. - ....xl + M 4» (K2) . (19) 
• F.o(0)1I"~ (1 - x)~ (KI + M2)3 'll' 

For the purpose of completeness, we return the neutral pion decay. The amplitude for 

this process can be formulated using the same reasoning that led to eq.. 17. And the result 

is 
F.� 2.JN:M J dxd2KJ. 4».(K2) 

decau = 3----;r- (1 - x)~ «K - 2xk"')i + M2) , 
(20) 

where Ikll= m./2 and 0 < x < ~  . 
In the soft-pion limit and for constant pion-vertex, 

Fdecau = F.o(O) .� (21) 

In practice the calculation of the neutral pion width with either Fdecall or F.o(O), through 

eqs. 20 or 17, give the same results within the null-plane approach. This arises because of 

the small pion mass compared to the inverse of the typical size scale of the wave function. 

The calculations of the neutral pion electromagnetic transition form-factors are per­

formed with three different quark-antiquark wave-functions. The Gaussian, in which the 
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main characteristic is confinement and is frequently used [4-7]' an Hydrogen atom type 

that mimics one gluoll exchange at short-distances and the pion wave-function model of 

ref. 12. This last model presents the (iterated) one-gluon exchange and confinement. The 

quark-mass in this model is 220 MeV. We will explore the model sensitivity of the neutral 

pion observables with this set of wave-functions. 

The phenomenological Gaussian and Hydrogen-atom wave-functions are function of 

~wo  independent parameters, the quark-mass and the non-relativistic charge radius 

rF-R = -6d:2 Jd3K~ff(1 K+f l)~ff(K) . (22) 

This equation defines the range parameter. The wave functions ~ff  used are, respectively, 
e-(4/3)(rNRk)~  and 1/(rN~  +P)2. 

The quark-mass influences strongly rffO, as is suggested by the soft-pion limit [13], 

rffo = (v'2M)-l . We chose for rNR the values 0.195fm and O.4fm. The first value is the 

non-relativistic pion radius of ref.12. The results for the neutral pion radius as a function 

of the constituent quark mass are presented in Fig.2. The trend of the curves follows 

(..;2M)-l for both values of rNR. Also, the result of ref. 12 is consistent with the Gaussian 

and Hydrogen-atom models calculated with the same quark mass. The experimental value 

of rffo is an important constraint for the fitted constituent quark mass. 

The calculation of the neutral pion width as a function of the weak decay constant is 

shown in Fig. 3. The increase of r ffO with 1;2, as suggested by eq. 13, is qualitatively 

followed by our results. But now, the model dependence is important and r ...o is not 

completely determined by I .... Thus, we conclude that this observable is a test of the pion 

wave-function beyond the value of Iff' 

The asymptotic value of the transition form-factor multiplied by the squared momen­

; tum transfer,Affo, is shown as a function .of Iff in Fig. 4. The set of values are obtained 

:by changing the quark mass. In the framework of Perturbative QCD [14] this asymptotic 

limit is 21.... Our calculations have the nice feature of following this trend. 

The discussion of r...o, fffO, Affo and Iff, shows that these quantities are to some extend 

independent tests for the wave-function. To make this statement more precise, we per­

formed our calculations by using the Gaussian and Hydrogen-atom models such that Iff is 

fixed at 93MeV. 

The results for several quark-masses and rNR for the Hydrogen-atom model are shown 

in Table I. The charge radius (r~m)  is very stable against the variation of the mass, in 

7 

agreement with previous findings [8]. In accordance with such observation, in ref.5 after 

Iff was fitted, r~m  reproduced the experimental data. 

The neutral pion radius presents a correlation with the quark mass as already discussed. 

The width is strongly dependent on the mass even for Iff fixed. The consistence of the 

theoretical width and the experimental value is reached together with the radii. The 

asymptotic value of the transition form-factor is approximately stable against the mass 

variation for fixed Iff and it agrees with ref. 14. These conclusions also applies to the 

Gaussian model as shown in Table II. From the comparison of both tables we observe the 

model dependence of the behavior of the width, with the val"iation of the mass. 

In summary, we explore numerically the consequences of three different wave-functions 

(ref. 12, Gaussian and Hydrogen-atom) for the neutral pion radius, decay width and 

asymptotic value of the transition form-factor. The decay width is an important source of 

information of the wave-function. It is independent to some extend of IIr' which determines 

it in the limit of constant pion vertex. The neutral pion radius depends strongly on the 

constituent quark-mass. The present study points to an average constituent mass of the 

up and down quarks of about 200 MeV. 

Although we obtained an overall consistence with the experimental data, there are still 

some discrepancies that one could solve by using a wave-function from a more fundamental 

level. We show the importance of the neutral pion data for testing null-plane models. 

This work was partially supported by the Conselho Nacional de Desenvolvimento 

Cientifico e Tecno16gico - CNPq. 
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Table I Results for the null-plane Hydrogen-atom model of the pion for f.K= 93 MeV. 

The last column contains the experimental data, where we have also included the 

Perturbative QCD result for the asymptotic value of the form-factor. 

M (MeV) 200 250 300 350 400 

TNR (1m) 0.404 0.513 0.572 0.606 0.626 

T~m  (1m) 0.737 0.769 0.768 0.759 0.749 0.657 ±0.012[2] 

T,..o (1m) 0.773 0.686 0.607 0.541 0.487 0.65 ±0.03[1] 

fifO (eV) 8.40 5.91 3.78 2.44 1.61 7.8 ±0.6[15] 

AfrO (GeV) 0.216 0.186 0.174 0.166 0.160 0.186[14] 

Table II Results for the null-plane Gaussian model of the pion for ffr= 93 MeV. The last 

column contains the experimental data, where we have also included the Perturbative 

QCD result for the asymptotic value of the form-factor. 

M (MeV) 200 250 300 350 400 

TNR (1m) 0.269 0.374 0.425 0.451 0.464 

T~m (1m) 0.602 0.666 0.663 0.645 0.625 0.657 ± 0.012[2] 

T,..o (1m) 0.683 0.636 0.578 0.523 0.477 0.65 ± 0.03[1] 

f,..o (eV) 5.59 5.28 3.77 2.58 1.77 7.8 ± 0.6[15] 

AfrO (GeV) 0.221 0.183 0.167 0.158 0.152 0.186[14] 
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Figure Captions 

Fig.� lOne loop diagrams for the neutral pion electromagnetic transition form-factor. 

Fig.� 2 Neutral pion radius as a function of the inverse constituent quark-mass. Hydrogen­

atom model with rNR= 0.4 fm (dashed line) and rNR= 0.195 fm (dotted-dashed line). 

Gau~sian  model with rNR= 0.4 fm (solid line) and rNR= 0.195 fm (dotted line). The 

straight line is the soft-pion result [13], rll"0 = (V2Mt1• Data of ref.1 is inside the 

limits shown by the two horizontal lines. The model of ref. 12 is shown by the square. 

Fig.� 3 Neutral pion decay width as a function of 1;2. The same description as in Fig. 2. 

The soft-pion limit is the straight solid line. Data from ref. 14. 

Fig.� 4 The asymptotic neutral pion transition form-factor time the squared momentum 

transfer as a function of Ill"' The same description ~ in Fig. 2. The triangle is the 

Perturbative QeD result of ref. 14. 11° 11° 
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