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Abstract 

The standard Lipkin model is studied in the context of the su(2) 
deformed algebra and a new spectrum is obtained with which a new 
energy gap curve is ca.lculated. A suppression of the second order 

phase transition originally present is observed for the deformed case. 
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1 Introduction 

The standard Lipkin model ( SLM ) [l],has been widely used to test 
different formalisms and approximations techniques in many body physics 
[2J because it is an exactly solvable model and adequate for those purposes. 

In its original form, the 8LM was more easily solved due to the realiza­
tiou that the starting man~'  fermion Hamiltonian can be rewritten in terms 
of quasi· spin operators obeying a standard su(2) algebra. In this con­
text the collective excitations are more conspicuous and as a fundamental 
feature this model exhibits a second order phase transition [3J. 

As a result of the study of two - dimensional statistical models and in 
quant um field theory also [4,5J, there appeared a generalization of the Lie 
algebra, called quantum or deformed algebra. This mathematical structure 
is expressed in terms of new commutation relations involving a free pa­
rameter, denoted by q, which characterises the deformation of the original 
algebra and when q --+ 1, one recovers the starting algebra, and, in partic­
ular, the deformed su(2} algebra has been the object of extensive studies 
[6]. 

These ideas has been used in nuclear and molecular physics [7,8] to 
describe collective rotations and also applied to the Jaynes - Cummings 
model in order to study the effects of the deformation of the population 
iuvertions [9J. 

In the present work we applied the same ideas to study the SLM under 
the 8u(2)q description and, in particular, the behaviour of the second order 
phase transition in terms of q. A short review of the SLM and its q-version 
are presented in section 2. The results for the gap solutions are obtained 
exactly and in perturbation theory up to fourth order in section 3, while 
section 4 is devoted to the final comments and conclusions. 
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2� The Lipkin model (the su(2) and su(2)q al­
gebras) 

For our purposes, we will briefly review here the essential features of 
the SLM only. 

In this model a collection of N fermions is distributed in two N - fold 
degenerate levels separated by the energy f. Each level is characterized by 
a quantum number a which is equal to +1(-1) for the higher ( lower) level 
and a quantum number p associated with the degeneracy in each level. The 
Hamiltonian of the model is given by 

- f '""" -t· V ~·t -t· •H - 2"� ~ aup,,,up,,, + ~ ~ ap,,,ap,,,,ap',_oap,_o . (1) 
p," - p,p',,, 

The collective excita.tions in this ma.ny fermion model is more clearly stud­
ied in the quasi - spin formalism, where the corresponding Hamiltonian is 
exactly diagonalized. To this end one introduces the quasi - spin operators 

~·t  ­J+ = ~ap,+lap,-l	 (2) 
p 

~·t  •J_ = ~ ap ,_lap,l (3) 
p 

1 ~ -t ­Jz = 2~ aap,,,ap,,, (4) 
p," 

with which the Hamiltonian is rewritten as 

V 2 2� )H=dz + 2 (J++J_),� (5 

where the operators obey the standard su(2) commutation relations, Le., 

[1+, J-J = 2Jz� (6) 

and 

[Jz , J±l = ±J± .� (7) 
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Since IH, PJ = 0 therefore the Hamiltonian, equation ( 5 ), can be diag­
onalized within each multiplet. We want to note that the ground state 
belongs to the multiplet J = I¥- which is an eigenstate of J2 and J., with 
eigenvalues ~(~  + 1) and - ~ respectively. 

The exact solution and standard second and fourth order results for 
different N's were obtained in Re£.( 1 ). From these results it is a simple 
task to calculate the energy gap, (EJ - Eo)/t., which is a very important 
quantity to verify the existence of a second order transition in this model 
13), being the effective interaction written in this case as X = NV/t.. The 
question one can pose here is that if this second order transition is preserved 
when the underlying su(2) algebra is deformed into su(2)q, where the new 
commutation relations are defined by 16] 

P+, J_] = 12J.]� (8) 

[J., J±] = ±J± ,� (9) 

where 

Ix] =� qX - q-X (10) 
q _ q-J 

and q is the parameter characterizing the deformation of the original alge­
bra. 

To answer the above questions we will consider the same formal Hamil­
tonian, equation (5), but now the operators involved obey equations (8) and 
(9) instead of (6) and (7). The great advantage of this choice is that we can 
apply straightforwardly the calculation techniques developed previously by 
Lipkin et al. 11]. 
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3� Gap solutions of the Lipkin model with 
the su(2)q 

Once given eqs. (8) and (9) it exists one representation, as shown by 
Jimbo 16], for each j, j = 0,1/2,1, ... , with basis I jm) ,-j S m S j, such 
that 

Jz I jm) = mI jm)� (11) 

J± I jm) = JU=fmJ!j±m + 1] I jm±l) (12) 

e IJm) = [j + ~]2 11m) ,� (13) 

where e is the Casimir operator of su(2)q defined as 

1 2 1 2 

e = [J. + 2] + J_J+ = P. - 2] + J+J_ . (14) 

Since this Casimir operator commutes with the new Hamiltonian in the 
weak sense, (jm' I IH,e] I jm), for all m,m', the property of the exact 
diagonalization within each multiplet is preserved in the same fashion as 
in the standard Lipkin model. In what follows we restrict ourselves to the 
ground state multiplet, j = l'j-. 

For the same symmetry reasons, we can also obtain analytical solutions 
for the energy levels up to N = 8, and, when q --t 1, we get back the same 
exact solutions as the SLM. Here the energy levels are also characterized 
by two parameters V/t. and IN] instead of N, and, in order to study the 
behaviour of the gap, (E1 - Eo)/(, we introduced an effective interaction 
defined by 

IN]V
Ae!! = --� (15)

f 

which now replaces the SLM 's Xi we want to note that Xe!! --t X when 
q ---- 1. Using the equations (11) and (12) we numerically calculated 
the energy spectrum of the ground state multiplet. With these results we 
straightforwardly obtained the behaviour of the gap for N = 8,30 and 50 
and for two different values of q, namely, 1.05 and 1.10 in order to see the 
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q-dependence of the second order transition as described in the 8LM. The 
corresponding results are depicted in figure l(a,b,c). 

To test the validity of the simplest approximation method we adapted 
the standard perturbative teory up to second and fourth order for the de­
formed Lipkin model ( DLM ). As ill the previous case we calculated the 
matrix elements for two fixed values of q only within the ground state mul­
tiplet to compare with the exact solutions and also st udy the behaviour of 
the approximations when q ---+ l. 

Using the Hamiltonian given by equation (5), in which the J 's obey the 
commutation relations (8) and (9) and the eigenvalue equations (11), (12) 
and (13), we obtain 

4 - Eo = 1 _ ~ 2 [2][N - 1] {[3] [N - 2]- [N]} (16) 
f 2\ell 4[N]2 

up to second order and 

E,-Eo 
( )4'horder = -~A:ff 32[~t {[2] [3] [4] [N - 1] [N - 3] ([5] x 

x [N - 4] - [N]] - 2[2]2[N - 1]2 ([3]2[N - 2]2 - [N]2]} (17) 

is the fourth order correction term. 
The effects of the q - deformation on the energy gap, up to fourth order, 

can be seen in figure 2( a,b,c) comparatively to the same order 8LM results. 
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4 Comments and Conclusions 

Here we have analysed the Lipkin model in the context of q - deformed 
su(2) algebra in order to study the second order phase transition, already 
manifested in the 8LM, as a function of the q - deformation. This was 
performed by using the exact solutions and the perturbative ones both 
obtained from the deformed model Hamiltonian. All this was possible due 
to the existence of one representation for the su(2)q algebra, as shown by 
Jimbo [6]. 

As is well known, for increasing N the gap behaviour in the 8LM ap­
proaches the standard form [3]; this can be seen in figure l(a,b,c). On the 
other hand, for the DLM exact results and a fixed q - deformation, the new 
energy gap curve deviates from the 8LM one as N increases and as a general 
feature one notes that the second order phase transition is suppressed when 
q increases. 

The same behaviour is exhibited for the energy gap curves in the DLM 
with perturbative solutions. 

In conclusion we want to remark that the suppression of the second 
order phase transition in the DLM strongly resembles the vanishing of the 
revivals [9] in the deformed Jaynes - Cummings model [10] when q increases. 
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Figure Captions 

1.� The exact gap curves for: (a) 8, (b) 30 and (c) 50 particles. The solid 
curve represents the q = 1 results while the dashed and dot-dashed 
curves are obtained for q = 1.05 and q = 1.1 respectively. 

2. The perturbation theory results up to fourth orderfor: (a) 8, (b) 30 and 
(c) 50 particles. The solid curve represents the q = 1 results while the 
dashed and dot-dashed curves are obtained for q = 1.05 and q = 1.1 
respectively. 
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