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A system constituted of three bosons interacting via tw~body  separable poten­
tialti with fixed two-boson binding is known to lead to bouad state colla.pse in the case 
where the potential parameters allow tw~b060n S matrix poles close to (resonance) 
a.nd on (continuum bound state) the real momentum axi•. The collapse is shown to 
he a.ccompanied by an increase in the average kinetic energy of the two-body bound 
state, which signalll a decrease in the range of the two.body interaction for fixed 
two- body binding. The collapse is claimed to be a manifestation of the well-known 
Thomas effect which leads to a collapse of the three-body system when the range of 
the two-body interaction goes to zero for a fixed two-body binding. 
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I. INTRODUCTION 

Separable interactions have been frequently used in various areas of physics, 
such as particle, nuclear, and atomic physics, because of the numerical simplicity 
they bring to the two- and the three-body problems.1 In spite of being successfully 
employed in three-nucleon (3N) bound-state and scattering calculations, the usual 
nucleon-nucleon (NN) separable potentials have the drawback of being unreali.. 
tic in yielding N N phase shifts which do not change sign, in contradiction with 
experiment, at higher energies. With a view to iinding a remedy for the above 
problem Tabakin constructed a rank-one separable N N potential with a two-term 
form factor, capable of reproducing S wave NN phase shifts upto moderately high 
energies where these phase shifts become negative in agreement with experiment. 
The use of the Tabakin potential2 in 3N bound state calculation, however, leads to 
a 3N ground state of unusually large binding of few hundred MeV's in addition to a 
weakly bound excited state. This puzzling result has eversince been studied by sev­
eral group of worke1'8.3- 6 Many other similar (non-local) potentials were employed 
with an objective to pinpoint the property of the potential that is responsible for 
this peculiar behavior. They all associate such a bound state collapse (BSC) with 
the appearance of a two-body S matrix pole on - continuum bound stateS (CBS) 
- or near (resonance) the real energy axis. It should be recalled that in all such 
studies the two-body energy is maintained fixed. 

An S-matrix pole on the real energy axis is a zero-width resonance and is usually 
called a CBS. The association with the bound state lies on the fact that the 
corresponding wave-function has no outgoing propagation. It is in fact a localized 
function of momentum t/J(p) and its Fourier transform t/J( r) decreses exponentially 
like a bound-state wave-function. 

This two-body S matrix pole has been conjectured to be responsible for the 
BSC. The collapse becomes more drastic, contrary to expectations, as the CBS 
pole moves to higher energies. No satisfactory explanation of this surprising effect 
has, however, been given. Though this unexplained behavior first appeared in a 
model nuclear problem it is now generally accepted that there should be an universal 
mechanism leading to this effect. The objective of the present study is to shed light 
on the quantum mechanical origin of this phenomenon. 

Quite sometime ago, while modelling tWtr and three- nucleon: problems using 
very short range NN potentials with fixed NN binding, Thomas observed that the 
9N system collapses as the range of the NN potential tends to zero. As a general 
quantum mechanical effect the Thomas effect could be stated as follows. If three 
bosons interact via a short-range pair potential ->'V(r) leading to a fixed pair 
binding and characterized by a range parameter ro, then as ro tends to zero, the 
binding energy of the three-boson ground state increases beyond any limit. However, 
as ro tends to zero the parameter >. has to be increased 80 that the binding energy 
of the two-boson system remains fixed. 

In the present study we show that the BSC is a manifestation of the Thomas 
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effect. In order to establish au equivalence between the two phenomena we need 
to understand the meaning of the range parameter ro introduced in relation to the 
Thomas effect. For a one term local potential such as the exponential, Gaussian, and 
Yukawa potentials or a one term separable potential such as the Yamaguchi potential 
the interpretation of the range is unambiguous as there is only one characterisic 
range parameter in these potentials. But for a general potential which has two 
(or more) characteristic range parameters, denoting attraction and repulsion, as 
in the case of the Tabakin potential discussed above, the definition of ro is not 
straightforward. We suggest the average kinetic energy < T > of the two-body 
bound state as an indicator of the range of the interaction ro for fixed two-body 
binding. As the range parameter ro of the Thomas effect tends to zero the average 
kinetic energy < T > tends to infinity. It is easy to convince this with a model 
o function potential, or a separable Yamagucl:U potential where < T > serves as 
a more precise measure of the range of the potential when the two-body binding 
is maintained constant. Consequently, at the onset of the Thomas effect < T > 
diverges and vice versa. 

The BSC is always shown to be accompanied by an increase in < T >, which 
signals a decrease in the range of the two-body interaction, and suggests that the 
BSC is a manifestation of the Thomas effect. 

It is now relevant to comment on some of the interesting features of the BSC. 
Rupp, Streit, and Tjon5 (RST) considered a slightly different version of the Tabakin 
potential in a relativistic approach and made a careful analysis of BSC under two 
different situations. First, they did not allow the CBS pole to become a resonance 
in the complex energy plane and then they allowed the CBS pole to become a 
rel:lOuance. In both cases they maintained the two-body binding fixed and studied 
the evolution of the three-boson binding B with the variation of the parameter P 
related to the range of the potential. In the first case the increase of Pwas governed 
by a. scaling property: B -+ p3, In the second case B increased with Pbeyond any 
known scale as the S-matrix pole moved into the complex energy plane. 

Pantis, Fiedeldey, and Sprung· (PFS) had confirmed the above observations 
of RST earlier. In addition, using a partly non-local potential with an artificial 
strong reI)ulsion at short distances PFS had demonstrated the appearance of a 
CBS without having a BSC. In the present study and in that of RST this latter 
situation does not arise. 

In brief, &S8OCiated with a two-body CBS one mayor may not have a three-body 
BSC. All:lo\ in the absence of a two-body CBS and with a two-body resonance pole 
in the complex energy plane one may have a BSC. What leads to a collapse is not 
completely understood. In this connection it is relevant to mention an interestiong 
study where Spence and VaryS claimed that a CBS exists in the electron-positron 
system after solving the Bethe-Salpeter equation. It partially could explain a puz­
zling situation related to the BSC of quadronium. Nevertheless, as we see further in 
this work, a BSC could be explained via a short distance mechanism of non-locality, 
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also related to the Thomas effect, without necessarily having a CBS. 
In the presence of a purely attractive local or non-local two-body potential, 

the three-boson binding B grows as {j3 where {j is the inverse range parameter: 
(j = 1/ro. This scale is extremely accurate in the case of a separa.ble attractive 
Yamaguchi potential as we demonstrate in the present study. However, when the 
two-body separable potential has an attractive and a repulsive part governed by two 
range parameters as in a Tabakin-type potential the above scaling breaks down. In 
both cases < T > serves as an indicator of the range of the potential. The larger 
the < T >, the smaller is the range of the potential and the larger is B, and one is 
closer to the Thomas effect. 

In Sec. II we present the separable potential model that we employ for the 
study of the BSC. We provide an analytic expression for < T > in this case which 
we use in our study of the BSC. In Sec. III we present our nwnericaJ results and 
discussions relating BSC and the Thomas effect. Finally, in Sec. IV we present 
some concluding remarks. 

II. THE MODEL 

The phenomenon of BSC has been observed in the case of many separable 
two-body potentials of the Tabakin-type. A Tabakin-type separable potential is 
mainly identified by a momentum space form-factor g(p) which may change sign 
as a function of p3. Consequently, the two-body phase shift chaDges sign at higher 
energies. The phenomenon of BSC is common to all Tabakin-type potentials. The 
BSC is not only observed in the case of rank one potentials, it has also been observed 
in the case of higher rank potentials.· 

In the present study we consider the following S-wave two-body potential in the 
momentum space. 

V(p, q) = -Xg(p)g(q), (1) 

with 

g(p) =L
2 

od(p2 +Pl>. (2)
.=1 

We consider this simpler potential with attractive and repulsive parts in this study 
because of its simplicity which allow us to understand the origin of BSC. The 
two-body t-matrix for this potential is given by 

t(p, q, k2) =T(k)g(p)g(q), (3) 

where 

oo 
T-

1(k) == 1 - (211r)-X L l(p)p2dpl(k2- p2 + iO) 
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= 1 - A E 
~ 

aiaj/[(k + ipi)(k + ipj)(pi + ,8j)]. (4) 
iJ=t 

}<or a purely attractive separable potential (1) with a~  = 0 the range can be un­
ambiguioutily related to the parameter ,8 = Pl. This can be realized after taking 
the Fourier transform of the form factor g(p), which yields an exponential decay 
cliCaeteristic of the range ro = 1/13. However, in the presence of two terms of op­
!)()8ite signs in the form factor denoting a mixture of attraction and repulsion, the 
definition of the range is not so straightforward. W~  consider the average kinetic 
energy < T > of the two-body bound state as a meaaure of the range ro of the 
potential. 

III the purely attractive case 88 fJ increases the three-boson binding energy B 
as well as the average kinetic energy < T > increase signalling a passage to the 
ThoIHas effect. The parameter 13 provides a precise measure of the range of the 
potential. 

We shall see that in the case of a partly attractive and partly repulsive separable 
potential, as in a Tabakin-type potential, none of the parameters Pi provides a mea­
sure of the rll.1lge of the potential. However, we shall see that < T > still provides 
a good measure of the range of the potential. Even in this case the divergence of 
< T > clearly signals the a.ppearance of the Thomas effect. 

fbr potential (1) the two-body ground-state wave-function in the momentum 
space is given by 

~(p)  =Ng(p)/('''? +p3), (5) 

where 1~  is the two-body Linding in units of h~  /2m, where m is the reduced mass of 
the two-body system. For the two-nucleon system h~/2m  = 41.47MeVjm3 and 1~  

is expre88ed in fm-~.  The normalization constant N is determined by the condition 

(2/1r) f ~~(p)p~dp = 1. (6) 

After !lome straightforward algebra the average kinetic energy < T > is given by 

< T >= :t/1/, (7) 

with 

o:~  o:~  2O:1a~  h(,81 + P~)  + 2,81,8~]
:t = + + ---.:..;.-"----'-----'-~ (8)

(-y + ,8d3 (-y +112)3 (PI + P~)  (-y +pd~(-Y  + p~)~  

and 

a~ a~ 2ala;,(pl + 133 +2,) 9 
1/ == ,,81(, + fJd3 + ,fJ~b  + ,8~)3 + ,(Pt + p~)(pl + 'r)2(p~  + ,)~ ( ) 

In the pretlent study the binding energy ,~  of the two-body system is always fixed 
at the value (2.225/41.47) fm-~,  when we vary the parameters of the two-body 
potential. This corresponds to a deuteron binding of 2.225 MeV. 
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Ill. RESULTS AND DISCUSSIONS 

With the separable potential (1) we calculated the two- and three-boson bind­
ing energies by solving the Wlual Lippmann-Schwinger and Faddeev equations in a 
routine fashion,1 respectively. 

Let us first consider the simple case of al = 0 in potential (1). In this case there 
is no possibility of a CBS pole to appear. Still we find it illustrative to present and 
discuss some results in this case. We take a~  = -1 and vary p~  from 3 jm-t to 9 
jm-t . The results are shown in Figure 1, where we plot the three-boson energy B 
versus Pl. We see that aa ~  increases B - p~. In this case there is a single range 
parameter f3'l and we can identify the range of the potential ro to be I/~.  Then we 
have as the range ro - 0, B - ro~, which is expected from the Thomas effect. In 
this case the average kinetic energy < T > of (7) is given by < T >= P2'r. At the 
onset of the Thomas effect, for a purely attractive separable potential, as ro tends 
to zero, both B and < T > increases beyond bound. 

Next we consider the full pot.ential (1) with a2 =-1 and PI =1.4jm-t , which 
allows for the possibility of a CBS to appear. In our study the constants at and 
~  were varied arbitrarily, and then Ais adjusted to yield a fixed two-body binding 
of 2.225 MeV. It is important for WI to look at the variation of < T >, B, and 
the two-body S-matrix pole position when the potential parameters are varied. In 
Figures 2(a) and 2(b) we plot B and < T> as functions of at and p~.  We see in 
these plots that as < T> reaches a maximum, B also does so. In Figs. 3(a) and 
3(b) we plot B and < T > for fixed values of at and for a continuous variation of 

112· 
From Fig. 1 we find that ~  is the precise parameter to measure the range of 

the purely attractive potential. The three-boson BSC associated with the Thomas 
effect is completely governed by {J~. As ,8~ increases the three-boson energy steadily 
increases. This is no longer true in the general case of a partly attractive and a 
partly repulsive potential when al is positive and a~  is negative. For example, in 
Fig. 3 for fixed values of al we find that as fJ3 increases both B and < T > first 
increase and then decrease. Naively, one might expect that the increase of P2 should 
denote a decrease of the range and a monotonic increase of energy B. In this case 
as there are two characteristic ranges, ,8~  alone is not a good indicator of the range. 
However, we find in this case that < T > is a better indicator of the range. From 
Figs. 2 and 3 we find that first < T > increases, and B also increases, then < T > 
decreases and consequently, B also decreases. There is still a shift between the 
maxima of B and < T > which points out that < T > is a good, although not 
perfect, indicator of the range in this case. 

Let us now try to understand why ~ fails to be even a qualitative indicator of 
the range in the presence of two terms in the form factor of potential (I). Explicitly, 
the form factor, for a~ = -1 and Pt = 1.4jm-t , is written in this case as 

g(p) = atl(p~ + 1.4~) -I/(p~ +pn. (10) 
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}<\)1" 11 bmall enough 0:1 the last term in Eq.(lO) dominates for a not too large 13'l' 
Then to a first approximation the first term on the right hand side of Eq. (10) can 
he neglected and one has a. situation similar to the Thomas effect in the case of 
a pmely attractive separable potential. In this case B increases with fJ'l which is 
Ii good iudicator of the range. RST observed this fact in their numerical studies. 
JloWtlVer, as fJ'l increases monotonically for a fixed QlI however small, the last term 
of Eq.(lO) becomes negligibly small for a large enough value of 131' Under this 
situation the first term on the right hand side of Eq.(10) dominates and B becomes 
small and finite characteristic of a range parameter fJl = 1.4Jm-1

• This explains 
qualitatively why fJ2 fails to be a proper range parameter for the whole domain of 
"I and #1' 

Even in the preceding situation < T > clearly is a good indicator of the range 
for two extreme limih of very small and very large fJ2' For a very small fJ'l the last 
tel'ln iu Eq. (10) dominates and as fJ2 increases the range of the potential decreases 
111111IJoth B and < T > increase. For a large enough fJ'l the potential becomes one 
of a sUlall finite range, consequently, both B and < T > become finite. For an 
intt::l'Hwdiate {J'l there is a. convenient interpolation between these two extremes. In 
all cases in Figs. 2 and 3 < T > is a good indicator of the range: whenever < T > 
increases (decreases), B increases (decreases) and vice versa. In Figs. 2 and 3 for 
very small and large fJ2' < T > serves as an excellent indicator of range. 

At this stage it is interesting to comment on the two-body S-matrix pole tra­
jectory in the complex energy (momentum) plane. We calculated the two-body 
S-matl'ix pole trajectory for potential (1) using the method of Ref. 9. In Fig. 3 
(11), for a fixed 01, as fJ'J increases, this S-matrix pole trajectory is shown in Fig. 
4. It is clear that only one point on each trajectory of Fig. 3 (a) corresponds to a 
CBS. All other points of Fig. 3 (a) correspond to two-body resonance-poles in the 
complex energy (momentwn) plane. So it is obvious that the collapse occurs for 
a Tahakin-type potential and there is nothing special about the CBS. The CBS 
is just a point on the Thomas route in direction to BSC. However, unlike in the 
ThoflllUl effect with a purely attractive potential, the energies B in Figs. 2 and 3 
do not go to infinity, as in these cases < T > is finite indicating a small, nonzero 
ra.nge ru. In this complex situation, with a partly attractive and a partly repulsive 
potential, though the para.meter < T > is an indicator of the range, we could not 
find a simple functional relationship between < T > and the range. 

In Table 1 we plot in the pure CBS case the potential parameters Ql, fJ2' the 
potiitioll of the CBS pc, and the corrsponding Band < T >. The increase of B with 
pc is confirmed in earlier studies3

-
5 as well as in the present one. The increase of B 

with < T > in Tahle 1, and also their subsequent decrease together in Figs. 2 and 
3 arc eOl1sistent with the present interpretation of the BSC as an approximation to 
the Thomas effect with a small and finite, nevertheless, nonzero roo 

Some of the present findings could have been anticipated in the study of RST 
who ctl.lculated an effective local potential equivalent to the Tabakin-type potential 
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and found that in the domain of BSC the equivalent local potential developed a 
very short range attractive part. In this short-range local potential picture it would 
be natural to associate the collapse as a manifestation of the Thomas effect. 

IV. CONCLUSIONS 

In this work we have presented for the first time a unified discussion of the 
Thomas effect and the BSC which occur in three-body systems for some special 
situations of the two-body interactions. We have suggested that in the situation 
of collapse the average kinetic energy < T > of the two-body bound state is a 
good indicator of the range of the two-body potential once the two-body binding is 
maintained fixed. The BSC is demonstrated to be an approximation to the Thomas 
effect for a two-body potential of short, nevertheless, non-zero range roo In both 
cases the common feature is maintaining the two-body binding energy fixed. The 
Thomas effect manifests in a divergent three-boson energy B as the range ro of 
the potential goes to zero, whereas the BSC occurs for a Tabakin-type separable 
potential used to simulate the N N interaction. 

Other details between the present study and that of RST and PFS remain 
distinct. This is because three different types of potentials are employed in these 
studies. Moreover RST uses relativistic dynamics whereas the other two studies 
employ nonrelativistic Schrodinger dynamics. For example, the S-matrix pole tra­
jectory of these two other studies are distinct from ours. They are qualitatively 
similar to the one of Fig. 4 but with the direction of the movement of the S-matrix 
pole reversed with the variation of the range parameter. Our pole trajectories, how­
ever, become similar to that of RST if we had considered a form factor similar to 
theirs, e.g., by combining the two terms of Eq. (2), writing the numerator in the 
form (p2 - p~), and maintaining Pc constant during the movement of the S-matrix 
pole. We have checked this numerically. Also, the potentials of RST and PFS are 
in some sence much stronger in yielding a very strongly bound three-boson bound 
state in the domain of collapse. The present model has a weaker potential leading 
to a less tightly bound three-boson bound state in the situation of collapse. 

To summarize, the BSC observed by RST, PFS, and in the present study is an 
approximation to the Thomas effect for a small nonzero range. The BSC of these 
studies do not lead to an infinite B, because the three bosons in these cases interact 
via pairwise two-body potentials whose range is quite small but not exactly zero as 
in a pure Thomas effect. This short range part of the two-body potential has been 
established in RST by considering an equivalent local potential. RST, however, did 
not associate BSC with the Thomas effect. We have established this short range 
part of the two-body potential, responsible for the BSC, through a consideration 
of the average kinetic energy < T> of the two-body bound state, which becomes 
very large in situations of collapse. 

The work is supported in part by the Conselho Nacional de Desenvolvimento­
Cientifico e Tecnologico (CNPq) of Brasil. 
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TABLE I. The three-boson binding B and a.verage kinetic energy < T > of the 
two-body bound sta.te in the case of CBS with 02 = -1 and (31 = 1.4jm-1 

01 (32(Jm- 1) pc(Jm-1) B(MeV) <T > (MeV) 
0.05 8.47 1.307 930.5 106.7 
0.1 5.73 1.213 545.3 78.7 
0.13 4.92 1.167 446.1 70.9 
0.15 4.53 1.. 149 396.3 66.3 
0.2 3.82 1.097 317.3 59.1 
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Figure Caption 

1. The three-boson binding B plotted versus {3~ for a simple Yamaguchi poten­
tial. B increases linearly and monotonically with {3~.  

2. (a) The three-boson binding B and (b) the average kinetic energy < T> of 
the two-body bound state plotted against 01 and fJ'J' 

3. (a) The three-boson binding B and (b) the average kinetic energy < T > 
of the two· body bound state plotted against f32 for fixed values of Ql (=0.2, 0.15, 
0.13, O.l, aud 0.05). The curves are labelled by Q-t. Only one point in each curve 
curre!'l{londs to It. CBS. The {J'J' B, and < T > corresponding to the CBS are given 
ill Tahle I. The points corresponding to the CBS appear after the maxima of B and 
-< l' > bave been attained in each curve. 

4. S-matrix pole trajectories labelled by Ql in the complex k-plane for Ql = 
0.05 !lud 0.2, Q'J = -1, and f:Jl =1.4 fm- I • Some integral values of fJ'J are marked 
on the trajectories. They are: for 01 = 0.05, {3'J = 6 fm- I (6), 7 fm- I (0), 8 
/rH-

1 (e), bud 9 fm- 1 (.)i for 01 =0.2, f32 = 3 fm- I (6), = 4 fm- 1 (0), and = 
5 fm· 1 (.). • 
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