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The Physical Content Of The Sp(1,R) Model

S.S. Avancini!
Instituto de Fisica Tedrica, Universidade Estadual Paulista, SP, Brasil
E.J.V. de Passos?
Instituto de Fisica, Universidade de Sio Paulo, SP, Brasil.

Abstract

We analyse the properties of the Sp(1,R) model states using a basis ob-
tained from the deformed harmonic oscillator wave functions. We make an
Sp(1,R) calculation for 2C and consider bases obtained from oblate, triaxial
and prolate intrinsic states. The deformed basis is obtained by angular mo-
mentum projection of vibrational phonons, which are associated with giant
monopole and quadrupole resonances.

!Supported by CNPq
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1 Introduction

The sympletic collective model[1] (SCM) is introduced to describe the collective
motion of the atomic nucleus in a microscopic basis. The SCM is an algebraic model
whose basis of states is associated with an irreducible representation (IR) of the
Sp(3,R) group. The sp(3,R) algebra is realized through one-body operators defined
in terms of harmonic oscillator annihilation and creation operators and contains|1]
the six generators of monopole and quadrupole deformations, the three generators of
angular momentum algebra, the six cartesian components of the quadrupole tensor
and the six cartesian components of the momentum tensor. The realization of the

sp(3,R) algebra in the Fock space is given by the 21 operators:

E Lojali(bo)
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Al (%) =
g 8,i(bo)dwi(bo) (1

Cuu(bo) = 5 Z 1 (Bo)aun(bo) + us(Bo)if(o)
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where the creation and annihilation operators of harmonic oscillator quanta are
defined by: i

o) = Z5(GE + i), ) = ol
where &,,;, p,i correspond to a set of jacobi coordinates and their associated canonical
momenta respectively, the index p stands for the three spatial directions, where by
convention (123) is associated with the (zxy) axis and by = \/_ is the oscillator
size parameter.

The operators A,L(bo) and the raising operators of u(3), [Co.(b),p > v] are
defined as the raising operators of sp(3,R); The operators A, (bo) and the lowering
operators of u(3), [C.u(bo), s < v] are defined as the lowering operators of sp(3,R).
The operators C,u(bo), p = 1 — 3 are defined as being the weight operators of
8p(3,R) which coincide with the u(3) weight operators. The Sp(3,R) lowest-weight



state (LWS) ,|0 >, is defined as the state which is simultaneously eigenstate of the
weight operators and annihilated by the lowering operators, i.e.:
A-1
2
Cun(B)0>=0 (4 < ), Au(B)l0 >=0 Vayv ,

Cou(bo)l0 >= ful0 >, fu=N.+

where N, correspond to the number of oscillator quanta in the direction x. A basis
of states of a IR of Sp(3,R) is obtained by the repeated action of the raising opera-
tors on the LWS. u(3) is a subalgebra of sp(3,R) and the LWS of Sp(3,R) is also a
LWS of SU(3). Therefore the Sp(3,R) model can be considered as a generalization
of the Elliott[2] SU(3) model. In the Elliott model the states have the same har-
monic oscillator energy. In the sympletic model, however, besides the states of the
Elliott model we consider states with excitation energy 2nhw(n # 0) relatively to
the SU(3) model. Because of considerable difficulties concerning computation and
algebraic manipulations wherever the SCM is utilized, calculations using submod-
els of the SCM with less degrees of freedom are often found in the literature[3-6).
When some degrees of freedom are suppressed, one obtains computational feasibility
ecasier. One of the most used submodel is the Sp(1,R) model[3]. In this model the
collective subspace is obtained by angular momentum projection of the basis states
of a IR of the Sp(1,R) group. For prolate nuclei we use the realization of the sp(1,R)
algebra associated with vibrations in the direction of the symmetry axis and in this
case we have the Spy(1, R) model. For oblate nuclei we use the realization of the
algebra associated with vibrations in the direction of the plane perpendicular to the
symmetry axis and then we have the Sp,(1, R) model. The calculations found in
literature using the Sp(1,R) model show that we need to consider high excitation en-
ergy states in order to describe the observables through this model. In these kind of
calculations one often finds bases where the number of oscillator shells significantly
contributing are of the order of 20. This fact makes the physical interpretation
of the mechanisms responsible for the appearance of the excited configurations ob-
scure, and imposes problems of convergence in the calculations. Furthermore this

makes the systematic analysis of the calculations that take into account the mixing
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of Sp(3,R) IR very difficult. This configuration mixing is essential in the study of
the intruder states as the 07 of !2C and €0, The key to elucidate this problem lays
in the observation that in light nuclei the correlations due to deformation are very
important(7]. Thus whenever we use single particle states of the spherical harmonic
oscillator to describe the effects of the correlations due to deformations we need to
introduce highly excited configurations. This suggests that a optimized basis must
be built in terms of single particle states of a deformed harmonic oscillator instead
of the spherical one. In ref.[7] we consider an Spy(1, R) calculation for the ®Be using
a deformed basis. We show that in that case, the basis associated with the ground
state band can be very well described by the projection of few deformed states. We
have also shown that in many situations, bases consisting of the projection of only
one deformed state, are enough for the adequate description of the observables. In
this way the Sp(1,R) model can be considered as & generalization of the method
variation after projection of a deformed core. The aim of this work is to extend the
analysis done in ref.[7] to the prolate basis associated with the ground state band of
8Be, considering also oblate and triaxial bases. We perform an Sp(1,R) calculation
for the !2C using the Spy(1,R) , Sp.(1, R) models in a deformed basis equivalent
to the spherical one. The equivalence follows from the fact that the deformed and
spherical basis are related by a unitary scale transformation, whose generator be-
longs to the sp(1,R) algebra. The method of calculation in the deformed basis is
described in great detail in ref.[7]. Our paper is organized as follows: In section-2
we describe the Sp(1,R) calculation associated with the oblate, prolate and triaxial
bases. In section-3 we describe the equivalent calculation in the deformed basis. In

section-4 we discuss the results and show our conclusions.



2 The Sp(1,R) Calculation in the !2C
2.1 Sp,(1,R) Model

The sp, (1, R) algebra associated with vibrations in the plane perpendicular to

the symmetry axis, which we identify with axis 1, is given by the operators:
Al (o) = al,(t0) + ALi(t) (raising operator)

AL (bo) = Aza(bo) + Aas(bo) (lowering operator) 2
1 1
Aoy (b)) = EC’n(bo) + 5033(50) (weight operator) .
Using the same standard procedure discussed in the introduction of this paper to

the construction of the IR of Sp(3,R), we define the LWS of the Sp 1(1, R) group
|0; 0 > by the conditions:

Aoy (bo)0; 80 >= kyJ0; 50 >, A, (bo)|0;8 >=10,

hence a basis of states of the IR k; of Sp, (1, R) is obtained by the repeated action
of the sp, (1, R) raising operators on the state |0;5 > .

In order to describe the ground band of '3C , Arickx et al[4] uses the Sp, (1, R)
model where the LWS of Spy(1,R), [0(04); b0 >, is given by the intrinsic state
associated with the Slater determinant :

1
V12!
where (nyn;n3) correspond to the harmonic oscillator wave functions in a cartesian
basis with n; quanta in the direction i (i=1,2,3); the upper index 4 indicates that the
four spin-isospin states of each nucleon are occupied and (Au)=(04) are the Elliott
labels that determine the SU(3) IR.

A normalized basis of states of the k, = 19/2 oblate IR of Sp, (1, R) is given by:
T'(19)
I(ny + 1)I'(n, +19)

¥o(04); 3 >=

det (000)*(010)*(001)* ,

In.(04); b >= [AT(bo)]™*[0(04); 30 > (

)l/2 By = 0,1,... 3

O]

The states above correspond to vibrations in the plane perpendicular to the sym-
metry axis with phonon oscillator energy equal to 2hw. This phonon is associated
with the giant monopole and quadrupole resonances. The collective subspace of the
Sp.(1, R) model is obtained by angular momentum projection of the states (2) :

In1(04), LMO; b >= Pfigln (04);0 > , o

where Py is the angular momentum projector[8]. The states (4) form an orthog-
onal basis of the Sp, (1, R) model. In (4) K=0, because the states |n,(04); b > are
axially symmetric.
2.2 Sp"(l, R) Model
2.2.1 Prolate Basis

The sp(1,R) algebra associated with vibrations in the direction of the symmetry
axis, again identified with the axis 1, is given by the operators:

4}(b0) = 41,(t) (raising operator)

Aj(bo) = A1i(bo) (lowering operator)
1 .
Agy(bo) = EC"("") (weight operator) .
The LWS of Spy(1, R) is defined as the state |0;49 > , which satisfies the conditions

Agy(5)10; b0 >= ky|0; 80 >, Ay(bo)|0;80 >=10 .
A basis of states of the IR ky of Sp(1, R) is obtained by the repeated action of the

raising operator in the LWS. In the case of the prolate basis, we consider the state
[0(12 0); by > as the intrinsic state associated with the slater determinant :

[Wo(12 0);Bo >= —-— det(000)*(100)*(200)* . (5)

Vazy

The state above was considered by Bouten et al{10] in a variational calculation as

a possible candidate to describe the second 0% state of the '>C spectrum. The
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normalized basis of states of the k = 35/4 prolate IR of Spy(1, R) is given by:

I(35/2)

Iny(12 0); bo >= [ A} (80)]™[0(12 0); b > (p(,." + 1)[(ny + 35/2

))l/2 wn =0,1,...

(6)
The collective subspace of the Sp; (1, R) model is obtained by the angular momentum
projection of the states (6) :

Im(12 0), LMO >= Pygqlny(12 0); 50 > , (7)

where the states above are orthogonal and correspond to vibrations in the direction
of the symmetry axis, with phonon oscillator energy equal to 2kw. As in the oblate

case, K=0 because the states |n(12 0); 5y > are axially symmetric.

2.2.2 Triaxial Basis

In this case we have not a symmetry axis. Nevertheless we will still use the
Spy(1, R) model. This is due to the fact that we restrict ourselves to the case of
"prolate like” triaxial bases, i.e, bases where the LWS of Spy(1, R) has Elliott labels
satisfying the condition A > p.

The basis of the Spy(1, R) model is obtained in this case in a parallel way to
the last section and thus we will only discuss the peculiarities related to the triaxial
basis. The triaxial LWS we consider is given by the intrinsic state associated with
the state below :

1

[#0(62); b0 >= T Y (—1)fese 1 det(ood)‘(mor(om)"«(010)"ﬂ(2oo)"~(2oo)"‘,

) Ay, J12)
®)
where nangnyn is a shorthand for the spin-isospin (n, = tasa,etc) labels. The
sum }p ,, is done on the 4! permutations of the four spin-isospin labels n+,n-
»P+,p- and Pogys is the parity of the permutation of nangn,ns. The state above was
considered by Bouten et al[10} in a variational calculation for the description of the
13C spectrum. The collective subspace of the Spy(1, R) model associated with the

triaxial basis is obtained by the angular momentum projection of the basis states of

the ky = 27/4 IR of Spy(1, R) associated with the triaxial LWS, [0(62);bo > :
[n(62), LMK ;bo >= Pig|n(62);60 >, my =0,1,..., 9)

where the states above are not orthogonal in the label K. The label K in eq.(9) can
assume the values K=0,2 according to the Elliott[2] rule. Using the Gram-Schmidt
method we obtain the orthogonal basis of the Spj(1, R) model.

2.3 Results of the Sp(1,R) Calculation

In our calculations we use the semi-microscopic hamiltonian Bl of Brink-
Boeker[9) in order to obtain the wave functions and energy levels of the three bases
considered, i.e., oblate, triaxial and prolate bases. Sp(1,R) bases with 30 states were
enough to assure the convergence of the observables considered.

The oscillator sizse parameter by, was fixed in order to minimize the energy of
the lowest state, projected in L=0, for each one of the three considered bases. In
fig.1 we show the energy levels calculated by the model when compared to the
experimental data. For the second 0%, our calculation is closer to the experimental
data when compared with the Bouten[10] calculation. For each lowest 2% state
of the three Sp(1,R) models studied, we show in fig.2 the partial contribution to
the electric quadrupole moment when we consider systematically more model basis
states, eqs.(4),(7) and (9) in the calculation of this observable. In fig.3 as in fig.2
we show the partial contribution to the B(E2,2] — 0} ) between the L=0 and L=2
states of lowest energy in each of the Sp(1,R) bases taken into account. We note
from these figures that the relevance of the excited configurations is evident, as in
the case of ®Be[7]. For these observables the dominant contributions come from
states with n # 0.

3 Calculation in the Deformed Basis

In the following we make a brief discussion of the method we use to perform the
calculation in the deformed basis; the details are described in ref.[7].



In this paper, as discussed in the introduction, we extend our former Sp(1,R)
calculation in an optimized basis to the prolate basis of ®Be to the '*C nucleus,
where now besides the prolate basis we consider oblate and triaxial bases. We
show that, as in *Be case, the use of an optimized basis constructed from deformed
harmonic oscillator wave functions, solves the problems of convergence and physical
interpretation of the Sp(1,R) model in the spherical basis.

The generator of scale transformation in the direction 1 is given by §) =
i(A}f (bo) — Ay(b)) and belongs to the spy(1, R) algebra. Similarly the generator
of scale transformation in the direction of the plane perpendicular to axis 1 is given
by §) =i(A(bo) — AL(bo)) and belongs to the sp, (1, R) algebra. Through the ac-
tion of the operator 5, (S)) we obtain a deformed basis of the Sp, (1, R)(Sp(1, R))
model. The basis of states of the k; IR of the deformed Sp,(1, R) model is given
by:

|n.(04); by >= ezp(-iln(%)S;)InJ_(M); b >

= Y Una, Ini(04)i 5 >, (10)
n, =0

which is a scale transformation of the state |n,(04);5 > , and

T'(2k,)
1 + l)I‘(n_L + 2k1)

I (04);boby, >= [AT(bL)I™ [0(04);bobs > (5 )

where
At(bL) = czp(—iln(%)si)Ai(bq)ezp(iln(:—:)sl)
and

[0(04); boby >= ezp(—-ilu(%)s.l.)m((l‘i);bo > .

The action of the operator exp( —ilu('ﬂ-)S 1) on eq.(10) consists in transforming the
basis obtained from the spherical harmonic oscillator wave functions with b, = b, =
b, = & into a basis obtained from the deformed harmonic oscillator wave functions
with b, = by, b, = b, = b,. The states |[n (04);byd, > correspond to states of
n, deformed vibrational phonons. Our procedure in the deformed basis calculation

consists in using the expansion (10) of the deformed states in the spherical ones,

9 P

where we truncate the sum in (10) in a nua; value that assure the convergence of the
calculations. The coefficients Uy: n, (boby) are calculated by the technique described
in ref.[7). The basis of states of the deformed Sp, (1, R) model is given by angular

momentum projection of the states [n, (04);bdy >, i.e. :
|n.(04), LMO; boby >= Pjyg|n (04); bobs > . (1)

In the case of the Spy(1, R) model we have a completely analogous expression to
€q.(10). In this case the states |n(Ap); boby > with (Au) = (12 0) for the prolate basis
and (62) for the triaxial one, are obtained by scale transformation in the direction
1 generated by S| , and are obtained from the deformed harmonic oscillator wave
functions where b, = by, b, = b, = by . The basis of states of the deformed Sp(1, R)
model is given by the angular momentum projection of the states [n(Ap); boby >
ie :

Im(Aw), LMK boby(K) >= Py lmy(Ms)i boby(K) > , (12)
where in the prolate basis case, as 4 = 0 we project only K=0 and in the triaxial
basis case, we use the Elliott rule to obtain the possible K values. The bases (11)
and (12) are not orthogonal and we use tl;e Gram-Schmidt method to orthogonalize
them.

The bases of the Spy(1, R) and Sp,(1, R) models depend on the parameters
by(K) e by respectively. For the oblate(prolate) case the parameter by ()(0)) is
determined in order to minimize the expected value of the energy for n, = 0(n) = 0)

8 < 0(04), LMO; bob, | H|0(04), LMO; boby > _ )
8b, < 0(04), LMO;bod, |0(04), LMO;bob, > ~

We have shown in ref.[7] that the condition above implies that the matrix element
of the hamiltonian between the L projected vacuum and one deformed phonon state
orthogonalized by the Gram-Schmidt method vanishes. Analogous expressions are
valid in the case of the prolate basis of Sp(1, R) and thus we will omit this discussion.
In the case of triaxial basis of Spy(1, R), to determine the oscillator size parameter
b(K), K=0,2 we have to generalize the method described above to the axially

symmetric case. The procedure now consists in building from the vacuum state
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of the deformed phonon, the most general possible state consistent with rotational
invariance, i.e.:

[FLM >= 3 CL[0(62), LMK; boby(K) > ,
K=0,2

where the coefficients C% are obtained by the diagonalization of the hamiltonian in
the non-orthogonal basis [0(62), LM K;boby(K) >. Note that C; depends also on
by(K). Thus we fix the parameters b(K) so that the energy, for each L value, of
the lowest state [r¢ LM > be a minimum as function of by(K), i.e. :

0 <t .LM\H|r.LM >
Oby(K) <t LM|r<LM >

=0, K=0,2.

The condition above is equivalent to impose that the matrix element of the hamil-
tonian between the state |[rc LM > and the state |1(62), LM K; boby(K) > (orthog-

onalized by the Gram-Schmidt method relatively to the state [rcLM >) vanishes -

for all values of K, i.e. :
< 1< LM|H|1(62), LMK;bob"(K) >gs=0, K=0,2,

where
[1(62), LMK ; boby(K) >gs= [1(62), LM K; boby(K) >
_ |r<LM >< v LM|1(62), LMK ;boby(K) >
< 1<LM|r.LM > )
The basis of states of the model, |, LMK >gs is obtained by orthonormaliz-
ing the non-orthogonal states [n(62), LMK ;boby(K) > and we can show that the
above minimum condition implies that the matrix elements of H between the state

|T<LM > and the 7i=1 basis states of the model vanishes.

In table-1 we show the harmonic oscillator size parameter values which minimize
the expectation value of the hamiltonian in the state obtained by angular momentum
projection of the vacuum of the deformed phonon. The oblate, prolate and triaxial
states of the deformed Sp(1,R) model, are obtained by the diagonalization of the
hamiltonian in the bases of states (11), (12) orthogonalized by the Gram-Schmidt

11

method and are given in the oblate basis case by :

|v, LM >= fj Ci(L)|n(04), LMO; bob, >gs , (13)

A=0

and in the case of prolate and triaxial bases by :

|v,LM >= i Y- cy g(L)la(Ap), LMK ; boby >gs (14)

A=0 K
where (Ap) = (12 0) and K =0, for the prolate basis and (\g) = (62) and K = 0,2
for the triaxial basis. In table-2 we show the probability of finding the state with
7 = 0,1,2 in the expansion of the two lowest energy states with a given L, in the
oblate basis eq.(13) and prolate and triaxial bases eq.(14).

In figures 4 and 5 we show the contribution of the states with n # 0 to the Qu(2])
and B(E2,2} — 0F) for the three considered bases. These figures are obtained as
the figures 2 and 3.

In tables 3,4,5 we show the spectroscopic properties of the L=0,2,4 lowest energy
states, associated with the oblate, triaxial and prolate bases calculated diagonalizing
the hamiltonian in a deformed basis trincated in N=0-5.

4 Conclusions and Discussion of the Results

We see in table-2 that for the three considered bases, the two lowest energy states
with L=0,2,4 of each basis, are dominated by the angular momentum projection of
the vacuum and one deformed phonon state orthogonalized by the Gram-Schmidt
method. We also note in this same table that the probability of finding in the wave
function of the first two 0% and 2% states the corresponding vacuum project states
is larger than 99% .

The contribution of the vacuum projection to the B(E2,2% — 0*) between the
2% and 0% lowest energy states is larger than 98% for the oblate and prolate bases
and larger than 6% for the triaxial basis. In fig.5 we show this dominance of vacuum
projection for the three bases considered. For the electric quadrupole moment, the

contribution of the vacuum projection is larger than 98% in the case of the oblate
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and prolate bases. Nevertheless for the triaxial basis the contribution of the vacuum
projection to the Qu(2) is less than 50% of the exact value. This is due to a
cancelling that occurs among the dominant terms of the wave function, because in
contrast to the former cases, we have now for # = 0 two states, one with K =0 and
the other with K = 2. This can be understood, noting that in the deformed vacuum
projected case, the basis is obtained considering in eq.(12) only the n = 0, and thus
the operator Q.(2]) is given by four matrix elements where the two diagonal are,
in general, dominant. However in the case where L=2 the dominant terms almost
cancel each other and thus the contribution of terms with N # 0 in eq.(14) becomes
important.

In all cases considered, the contribution coming from states with more than five
phonons is negligible, as shown in figures 4 and 5. This can be demonstrated in a
still more evident way through the tables 3-5. We observe from these tables that
for oblate and prolate bases, considering only the deformed vacuum projection, we
obtain results which are leas than 2% different from the exact ones, being the B(E2)
the most sensible observable. In the case of the triaxial basis, the projection of the
deformed vacuum state, excepting the Q.(2]), gives results that disagree in less
than 6% with the exact ones. The triaxial deformed basis with five phonons yields
results that disagree in less than 3% relatively to the exact ones. Making the same
for the oblate and prolate bases we practically reproduce the exact results.

We also note that for the lowest energy states, bases consisting only of the
projection of the deformed vacuum state are an excellent approximation to the
exact calculation. We show that exceptions to the rule above occur in triaxial
basis when there is a large cancelling of the dominant terms. This occurs because
in this case there are states nearly degenerate with the same angular momentum.
The electric quadrupole moment Q.(2]) of the triaxial basis is an example of this
exception, where the basis obtained by the projection of the deformed vacuum state
contributes with less than 50% of the exact value.

Thus we see that the Sp(1,R) model can be considered as a generalization of

the deformed harmonic oscillator variation after projection method of Bouten et

13

al[11] and Abgral et al[12]. In this model we only consider the states obtained
by the angular momentum projection of the deformed vacuum state, which is a
lowest(highest) weight state of the deformed SU(3). In our paper we show that for
representations where A, p # 0 this might not be cneugh. For example, we need
in our analysis of the triaxial basis, to consider bases with phonons of the order of
N=5.

The authors would like to thank Dr.D.P.Meneses for the reading of the

manuscript.
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Table Captions

Table I: Oscillator size parameters that minimize the expectation value of the
hamiltonian in the L projected deformed vacuum of the oblate, triaxial and prolate
bases. In parentheses we show the oscillator size parameters of the spherical bases.
Note that we have for the triaxial basis two size parameters due to the projection
in K=0 and K=2. All sizes are in fm.

Table II: Probability of finding the states with ## = 0,1,2 in the expansion of
the two lowest energy states of the oblate eq.(13), prolate and triaxial eq.(14) bases.
Note that for the prolate and oblate bases we have only K = 0.(Deformed bases
with N=9).

Teble III: Excitation energy and geometric properties of the '*C ground band
calculated in a deformed basis truncated in N=0-5. Energies in MeV, < r* >/2in
fm, B(E2,L—L-2) in €’.fm* and Q. em e.fm?.

Table IV: Excitation energy and geometric properties of the lowest energy states
calculated in a deformed basis truncated in N=0-5. Energies in MeV, < #* >3 in
fm, B(E2,L—L-2) in e.fm* and Q. em e.fm3.

Table V: As in table IV
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Figure Captions

Figure 1: First excitation energy levels of '2C calculated in the Sp(1,R) model
when compared to the experimental data[13]. The 0] and 27 states are associated
with the oblate basis of Sp(1,R) and the 0} with the prolate one.

Figure 2: Partial contribution to the Qu(2;), due to a systematic inclusion,
in the expansion |[vLM >= $ime* Cy g(L)I(Ap), LMK by >gs of the basis states
[n(Ap), LMK ;b >gs, associated with the oblate, triaxial and prolate bases. The
value of Q. at the point n is found by considering, in the above expansion, the
contribution of all terms up to n, inclusive. Note that the GS index and K # 0
refer only to the triaxial basis. The height of each block at the point n of the figure
corresponds to the gain due to the inclusion of the Sp(1,R) n basis state in the
Qa(2]) calculation. We link all the points obtained to guide the eyes.

Figure 3: As in figure 2, but for the B(E2,2} — 0]) between the lowest energy
states of the Sp(1,R) models associated with the oblate, prolate and triaxial bases.

Figure 4: Partial contribution to the Q.(2]), due to a systematic inclusion of
the deformed basis states in the expansion of the deformed Sp(1,R) model states,
€q.(13) and eq.(14). This figure is obtained as the figure 2. Note the change of scale.

Figure 5: As in fig.4, but for the B(E2,2{ — 0}) between the lowest energy
states of the deformed Sp(1,R) models associated with the oblate, triaxial and pro-
late bases. Note the change of scale.
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oblate basis | triaxial basis | prolate basis
(bo=1.36) | (bo=1.58) | (bo = 1.45)
L by by(0) by(2) by
0 1.95 239 — 2.62
2 1.93 2.38 2.40 2.62
4 1.90 2.34 2.36 2.63
Table I
ICZ £ (D)
oblate basis triaxial basis prolate basis
1 2 1 2 1 2
ft K=0 K=2 K=0 K=2
0 0.998 — | 0.999 — — — 0.999 —
1 —  0.937 — — 0.962 — — 0.969
2 0.001 0.045 | 0.001 — 0.029 — 0.001 0.023
0 0997 — 0629 0369 0.369 0.629 | 0.999 —
1 —  0.927 — — — — — 0.969
2 0.002 0.049 | 0.001 — 0.001 0.001 | 0.001 0.023
0 0.993 0.001 | 0.523 0.473 0.468 0.520 | 0.998 —
1 —  0.904 — — 0.001 0.001 — 0.967
2 0.006 0.051 | 0.002 0.001 0.005 0.004 | 0.002 0.022

Table I1
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Oblate Basis

Triaxial Basis

EXACT VACUUM
L EE. <m>Y BE2 Qu EE. <> BE2 Qu
0 — 2.60 - — = 2.60 - —
2 3.07 2.59 15.89 7.75 3.0 2.59 15.70  7.70
4 1149 2.58 23.01 8.70 11.71 2.57 22.55 8.54
2-PHONON 3-PHONON
L EE. <r>" BE2 Qu EE. <> BE2 Qu
0 — 2.60 - — = 2.60 - =
2 3.07 2.59 15.83 7.74 3.07 2.59 15.95 7.77
4 1155 2.58 22.81 8.65 11.57 2.58 23.04 8.69
4 PHONON 5-PHONON
L EE. <> BE2 Qu EE. <r>"” BE2 Q.
0 — 2.60 R — — 2.60 - —
2 3.07 2.59 1591 7.76 3.07 2.59 15.90 7.75
4 11.58 2.58 23.01 8.70 11.59 2.58 23.01 8.70
Table III
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EXACT VACUUM
L EE. <#>" BE2 Qu EE. <> BE2 Qu
0 — 2.99 - = — 2.99 - -
2 137 2.99 55.09 -2.50 1.38 2.99 51.98 -1.14
4 4.54 2.98 82.91 -12.87 4.59 2.97 80.17 -12.43
2-PHONON 3-PHONON
L EE. <> BE2 Qu EE. <> BE2 Qu
0 — 2.99 - = — 2.99 A —
2 137 2.99 56.16 -3.10 1.37 2.99 55.73 -2.78
4 453 2.98 82.82 -12.83 4.53 2.98 83.03 -12.86
4-PHONON 5-PHONON
L EE. <»>"" BE2 Qu EE. <r>7 BE2 Qu
0 — 2.99 - — — 2.99 - -
2 137 2.99 5540 -2.64 1.37 2.99 5523 -2.56
4 4.54 2.98 83.00 -12.87 4.54 2.98 82.96 -12.87
Table IV



Prolate Basis
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EXACT VACUUM
L EE. <> BE2 Qu EE. <> BE2 Q.
0 — 341 — — = 3.40 = —
2 1.04 3.41 232.85 -31.00 1.04 3.41 231.39 -30.89
4 3.46 3.43 339.03 -40.03 3.47 3.43 336.47 -39.85
2-PHONON . 3-PHONON
L EE. <#>" BE2 Qu EE. <> BE2 Qu
0 — 341 = — — 341 — —
2 1.03 341 - 23240 -30.97 1.04 3.41 233.07 -31.01
4 345 3.43 338.24 -40.00 3.46 3.43 339.21 -40.03
4 PHONON 5 PHONON
L EE. <> BE2 Qu EE. <> BE2 Q.
0 — 3.41 — — = 341 — —
2 1.04 3.41 232.91 -31.00 1.04 3.41 232.88 -31.00
4 346 3.43 339.07 -40.03 3.46 3.43 339.05 -40.03
Table V

ENERGY LEVELS
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