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The Physical Content Of The Sp(l,R) Model 
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Abstract 

We analYle the properties of the Sp(l,R) model states using a basis ob­
tained from the deformed harmonic oscillator wave functions. We make an 
Sp(l,R) calculation for 12C and consider basel obtained from oblate, triaxial 
and prolate intrinsic states.' The deformed basis is obtained by angular mo­
mentum projection of vibrational phonons, which are associated with giant 
monopole and quadrupole resonances. 
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1 Introduction 

The sympletic collective model[l] (SCM) is introduced to describe the collective 

motion of the atomic nucleus in a microscopic basis. The SCM is an algebraic model 

whose basis of statea is associated with an irreducible representation (IR) of the 

Sp(3,R) group. The sp(3,R) algebra is realized through one-body operators defined 

in terms of harmonic oscillator annihilation and creation operators and contains[l] 

the six generator. of monopole and quadrupole deformations, the three generators of 

angular momeatum algebra, the six cartesian componenta of the quadrupole tensor 

and the six carteaian components of the momentum tensor. The realization of the 

sp(3,R) algebra in the Fock space is given by the 21 operators: 

1 A-I t� 
Al,(bo) = 2 ~ api(bo)al(bo)� 

,=1 

1 A-I 

A",,(bo) = 2E a"i(bo)alli(bo) (1) 
i=1 

0",,(60) = ~ ~  a!i(bo)alli(bo) +alli(bo)al(bo) , 
,;1 

where the creation and annihilation operators of harmonic oscillator quanta are 

defined by: 
At (I.) _ J...( Z~i .~ A.) A.(1.,) _ [At (J.)]ttlpi UO - v'2 bo +1 Ii. PI" , til" UO - tI"i UO , 

where zpi, ppi conespond to a set of jacobi coordinate. and their associated canonical 

momenta reapectively, the index p stands for the three .patial directions, where by 

convention (123) i. usociated with the (o:y) ws and bo = liE is the oscillator 

size parameter. 

The operators Al,(bo) and the raising operators of u(3), [C",,(bo),p > v] are 

defined as the raising operators of sp(3,R)i The operators A",,(bo) and the lowering 

operatora of u(3), [O",,(6o),p < v] are defined as the lowering operators of sp(3,R). 

The operator. 0l1li(60), p = 1 - 3 are defined as being the weight operators of 

sp(3,R) which coincide with the u(3) weight operators. The Sp(3,R) lowest-weight 
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atate (LWS) ,10 >, it defined as the atate which ia aimultaneoualy eigenstate of the 

weight operatora ud annihilated by the lowering operatora, i.e.: 

A-I 
C~~(bo)IO  >= f~IO  >, f~ = N~  + -2­

CIW(bo)!O >= 0 (p < II), AIW(bo)IO >= 0 'tip, II , 

where N~ correspond to the number of oscillator quanta in the direction p. A basis 

of atates of a IR of Sp(3,R) is obtained by the repeated action of the raising opera­

tors on the LWS. u(3) is a subalgebra of ap(3,R) ud the LWS of Sp(3,R) is also a 

LWS of SU(3). Therefore the Sp(3,R) model can be conaidered as a generalization 

of the Elliott[2] SU(3) model. In the Elliott model tae atates have the same har­

monic OIcillator energy. In the sympletic model, however, besides the states of the 

Elliott model we consider states with excitation energy 2n1iw(n =f 0) relatively to 

the SU(3) model. Because of considerable difficulties concerning computation and 

algebraic manipulationl wherever the SCM ia utilized, calculations using aubmod­

ela of the SCM with leaa degreea of freedom are often found in the literature[3-6]. 

When lome degree. of freedom are suppressed, one obtaina computational feasibility 

easier. One of the moat used submodel is the Sp(l,R) model[3]. In this model the 

collective subspace is obtained by angular momentum projection of the basis states 

of a IR of the Sp(I,R) group. For prolate nuclei we use the realization of the sp(I,R) 

algebra associated with vibrations in the direction of the symmetry axis and in this 

case we have the S"I(I, R) model. For oblate nuclei we use the realization of the 

algebra ulOciated with vibrations in the direction of the plane perpendicular to the 

symmetry axia ud then we have the Sp.1.(I, R) model. The calculations found in 

literature using the Sp(l,R) model show that we need to consider high excitation en­

ergy atatea in order to describe the observables through thia model. In these kind of 

calculatioDi one often finda baaea where the number of oscillator shells significantly 

contributing are of the order of 20. This fact makea the phyaical interpretation 

of the mechaniama responlible for the appearance of the excited configurations ob­

scure, and impoJel problema of convergence in the calculationa. Furthermore this 

makea the aystematic analysia of the calculationa that take into account the mixing 
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of Sp(3,R) IR very difficult. Thia configuration mixing it essential in the study of 

the intruder atata U the 0; of 12C and 160. The key to elucidate thia problem lays 

in the observation that in light nuclei the correlationa due to deformation are very 

important[7]. ThUi whenever we use aingle particle atatea of the spherical harmonic 

oscillator to deacribe the effecta of the correlations due to deformations we need to 

introduce highly excited configurationa. Thia auggesta that a optimized basia must 

be built in terma of aingle particle .tates of a deformed harmonic oscillator instead 

of the spherical one. In ref.[7] we consider an SPU( 1, R) calculation for the sBe using 

a deformed ~.  We ahow that in that case, the buia ulOciated with the ground 

state band can be very well described by the projectioa of few deformed states. We 

have also ahown that in many situations, bases consiating of the projection of only 

one deformed Kate, are enough for the adequate deacription of the observables. In 

this way the Sp(I,R) model can be considered as a generalization of the method 

variation after projection of a deformed core. The aim of thia work ia to extend the 

analyait done in ref.[7] to the prolate basia associated with the ground atate band of 

sBe, conaidering also oblate and triaxial basea. We perform an Sp(l,R) calculation 

for the 12C uain& the S"I(I, R) , Sp.1.(I, R) modela in a deformed basia equivalent 

to the apherical one. The equivalence follows from the fact that the deformed and 

spherical basia are related by a unitary acale transformation, whose generator be­

longa to the ap(l,R) algebra. The method of calculation in the deformed basis is 

described in great detail in ref.[7]. Our paper is organized as follows: In section-2 

we describe the Sp(I,R) calculation asaociated with the oblate, prolate and triaxial 

basea. In section-3 we deacribe the equivalent calculation in the deformed basis. In 

section-4 we diacuaa the reaults and show our concluaiona. 
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2 The Sp(l,R) Calculation in the 12C 

2.1 Spiel, R) Model 

The ,p.1(l, R) algebra u.ociated with vibrationa in the plane perpendicular to 

the aymmetry axia, which we identify with &Xia 1, it given by the operators: 

Al(6o) = A!2(6o) + Ah(6o) (rai,ing operator) 

A.L(6o) = A22(6o) + A33(6o) (Iowm.. operator) (2) 

Ao.L(6o) = ~C22(6o) + ~C33(6o)  (weight operator) . 

Uaing the aame atandard procedure diacuased in the introduction of this paper to 

the conatruction of the IR of Sp(3,R), we define the LWS of the 8p.1(1, R) group 

10i 60 > by the conditiona: 

Ao.1(6o)\Oj6o >= 'J.lOi6o >, A.L(bo)jOjbo >== °, 
hence a buia of .tatea of the IR '.1 of 8p.L(1, R) ia obtained by the repeated action 

of the ,p.L(l,R) raiaiag operators on the state 10i6o > . 

In order to deacribe the ground band of 12C , Arickx et &1[4] uses the 8p.L(l, R) 

model where the LWS of 8p.L(1, R), 10(04)j bo >, is given by the intrinsic state 

associated with the Slater determinant : 

\1/10(04)j 60 >= ~det  (000)4(010)4(001)4 , 
v12! 

where (nln2na) correapond to the harmonic oscillator wave functions in a cartesian 

balia with ni quanta in the direction i (i==1,2,3); the upper index 4 indicates that the 

four apin-itoapin datea of each nucleon are occupied and (..\1£)=(04) are the Elliott 

labela that determine the SU(3) IR. 

A normalised basia of statea of the '.1 == 19/2 oblate IR of 8p.L(1, R) is given by: 

In.L(04);6o >= (A!(6o)]nJ.IO(04);6o > (r(n.L +~}~~~.1 +19»1/2 ,n.L = 0,1, ... , 

(3) 
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The atatea above coneapond to vibrationa in the plane perpendicular to the .ym­

metry axil with phonon OIcillator energy equal to 2Aw. Thia phonon i. aasociated 

with the giant moaopo1e and quadrupole reaonancea. The collective aub.pace of the 

8p.1(l, R) model it obtained by angular momentum projection of the atatea (2) : 

In.1(04), LMO; 60 >= P.f#oln.L(04)i 60 > , (4) 

where PftK ia the angular momentum projector[8]. The atate. (4) form an orthog­

onafbuia ofthe 8p.1(l,R) model. In (4) K=O, because the datesln.L(04);6o > are 

axially aymmetric. 

2.2 Sp\I(l, R) Model 

2.2.1 Prolate Buia 

The ap(l,R) algebra uaociated with vibration. in the direction of the symmetry 

axia, again identified with the axia 1, i. given by the operatora: 

A~(6o) == Atl(bo) ("ai,ing operator) 

Au(6o) == All (6o) (lowenng ope"ator)� 

AoII(6o) == ~Cll(6o) (weight ope"ator) .� 

The LWS of 8P1,(1, R) ia defined as the state 10j bo > , which satisfies the conditions� 

AoII(6o)IO;bo >== kulO;6o >, AU(6o)IO;6o >== 0 . 

A buia ofatatea ofthe IR kUof 8PU(1, R) ia obtained by the repeated action ofthe 

railing operator in the LWS. In the case of the prolate buis, we consider the .tate 

10(12 O)i 60 > u the intrinaic state associated with the alater determinant: 

\1/10(12 O)i bo >= det(OOO)4(100)4(200)4. (5)r/ 
, V(12!) 

The date above wu conaidered by Bouten et al[10] in a variational calculation u 

a pOiaible candidate to deacribe the second 0+ state of the 12C spectrum. The 
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normalized buis of atatea of the kU = 35/4 prolate IR of SPlI(l, R) is given by: 

( +( )]" ( ) ( r(35/2) )]/3Inu 120);110 >= [AU bo 110 120 ibo > r(nU + l)r(nU +35/2) ,nU = 0,1, .... 

(6) 
The collective subspace of the Sptl(l,R) model ia obtained by the angular momentum 

projection of the atatea (6) : 

/nu(12 0), LMO >= PlIolnU(12 0); bo > , (7) 

where the atatea above are orthogonal and correspond to vibrationa in the direction 

of the symmetry axis, with phonon oscillator energy equal to 21i.w. As in the oblate 

case, K=O becauae the atates InU(12 0); bo > are axially symmetric. 

2.2.2 Triaxial Basi. 

In this cue we have not a symmetry axis. Neverthelesa we will still use the 

SPU(l, R) model. Tbia is due to the. fact that we reltrict ouraelves to the case of 

"prolate like" triaxial bun, i.e, bases where the LWS of SPlI(l, R) has Elliott labels 

satisfying the condition .\ > 1'. 

The basia of the SPlI(l, R) model is obtained in thia case in a parallel way to 

the lut aection and thua we will only m.CUII the peculiarities related to the triaxial 

basia. The triaxial LWS we consider ia given by the intrinsic atate associated with 

the atate below : 

1.,0(62);bo >=) E (-It·~· iiI det(000)·(100)·(010t·(010)n~(200)ft.y(200t.,  

y(4!) p.~,  y(12!) 
(8) 

where nan~n..,nl is a ahorthand for the spin-isospin (no = ta.a,etc) labels. The 

sum Ep.~, ia done on the 4! permutationa of the four apin-isospin labels n+,n­

,p+,p- and Pa/hl ia the parity of the permutation of nanf:ln..,nl. The state above was 

considered by Bouten et al[10] in a variational calculation for the description of the 

UC spectrum. The collective subspace of the SPU(l, R) model associated with the 

triaxial buia ia obtained by the angular momentum projection of the basis states of 
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the kU = 27/4 IR of SPlI(l,R) ulOciated with the triaxial LWS, 10(62)ibo > : 

InU(62),LMKibo >= PlIKlnu(62);bo >, nU = 0,1, ... , (9) 

where the atate. above are not orthogonal in the label K. The label K in eq.(9) can 

assume the value. K=0,2 according to the Elliott[2] rule. Uaing the Gram-Schmidt 

method we obtain the orthogonal basis of the SPU(l, R) model. 

2.3 Results of the Sp(l,R) Calculation 

In our calculationa we Ute the aemi-micrOicopic hamiltonian B1 of Brink­

Boeker[9] in order to obtain the wave functiona and energy levels of the three bases 

considered, i.e., oblate, triaxial and prolate buea. Sp(l,R) baaea with 30 states were 

enough to uaure the convergence of the obaervablea conaidered. 

The oacillator aise parameter bo, wu fixed in order to minimize the energy of 

the loweat atate, projected in L=O, for each one of tu three considered bases. In 

fig.1 we show the energy levels calculated by the model when compared to the 

experimental data. For the aecond 0+, our calculation ia cloaer to the experimental 

data when compared with the Bouten[10] calculation. For each lowest 2+ state 

of the three Sp(l,R) models atudied, we show in fig.2 the partial contribution to 

the electric quadrupole moment when we consider systematically more model basis 

states, eqa.(4),(7) and (9) in the calculation of thia observable. In fig.3 as in fig.2 

we show the partial contribution to the B(E2,2t -+ Ot) between the L=O and L=2 

statea of loweat enerlY in each of the Sp(l,R) bases taken into account. We note 

from these figures that the relevance of the excited configurations is evident, as in 

the caae of IBe[7]. For theae observablea the dominant contributions come from 

states with " :# o. 

3 Calculation in the Deformed Basis 

In the following we make a brief discussion of the method we use to perform the 

calculation in the deformed basis; the details are described in ref.[1]. 
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"� 
In this paper, u disculled in the introduction, we extend our former Sp(l,R) where we truncate the .um in (10) in a n..a~  value that usure the convergence oCthe 

calculation in &Il optimised bui. to the prolate bui. of 'Be to the I1C nucleus, calculations. The coefficienh Un~nJ.(bobi."}  are calculated by the technique described 

where now beaidea the prolate bui. we conlider oblate and triaxial bues. We in ref.[7]. The buiJ of .tates of the deformed Spi.(l,R) model i. given by angular 

IIhow that, u in 'Be cue, the uae of &Il optimized bui. conatructed from deformed momentum projection of the .tates Ini.(04)i bobi. >, i.e. : 

harmonic o.cil.l&tor wave function., .olve. the problem. of convergence and physical 

interpretation of the Sp(l,R) modd in the .pherical bui•. 
Ini.(04), LMOj 6obJ. >= P~olni.(04)i6obJ.  > . (11) 

The generator of .cale transformation in the direction 1 is given by SII = In the cue of the SPlI(l, R) modd we have a completely analogous expresaion to 

i(At(6o) - AII(6o)) and belong. to the 'PII(l, R) algebra. Similarly the generator eq.(10). In thi. cue the ltatea\nn(AI')i 60bn > with (AI') = (120) for the prolate buis 

of scale transformation ill the direction of the plane perpendicular to axis 1 is given and (62) for the triaxial one, are obtained by scale tranlformation in the direction 

by Si. = i(AI(bo) - Ai.(6o» and belong. to the ,p.L(l,R) algebra. Through the ac­

tion of the operator Si.(SU) we obtain a deformed buia of the Spi.(l, B)(Spn(l, R» 
1 generated by Su ' and are obtained from the deformed harmonic oscillator wave 

functionl where ba = htl' b~ :::: bll = bo • The basil ofatatea oCthe deformed SPII(l, R) 

modd. The buia of Itates of the lei. IR of the deformed Spi.(l, B) model is given modd i. given by the angular momentum projection of the date. \nn(~#')i  60htl > 

by: Le, : 

InJ.(04)i 6obi. >= ezp( -iln( ~  )Si.)lni.(04)i 60 > Inu(A#,),LMK~i6ohtl(K)  >= P~Klnll(A#')i6obll(K) > , (12) 

where in the prolate basis case, u Jj = 0 we project only K=O and in the triaxial 
= E

00 

U.~.J.ln~(04)j6o>,	 (10) 
ni~ 	 basil cue, we use the Elliott rule to obt~n the pOlsible K values. The bues (11) 

and (12) are not orthogonal and we uae the Gram-Schmidt method to orthogonalize which is a scale tranlformation of the state Ini.(04)i 60 > , and 
them. 

Ini.(04)i60hi. >= [A!(bi.)]nJ.IO(04)j6obi. > (",_ . :~;~~)  Jl/:l , The buel of the SPlI(l,R) and SpJ.(l,B) modelJ depend on the parameters , nI­

bUCK) e bi. reapectively. For the oblate(prolate) cue the parameter bi.(bll(O» is
where 

determined in order to minimize the expected value of the energy for ni. = O(nU = 0)
A!(h) = ezp( -iln(~  )SJ.)A!(6o)ezP(iln(~)Si.) 

8 < 0(04), LMOi bobi.IHI0(04), LMOj 6obi. > = 0 . 
and 8bJ. < 0(04), LMOj 6obi.IO(04), LMOi 6obi. > 

10(04)j6obJ. >= eZP(-iln(~)SJ.)10(04)i6o> . 
We have shown in ref.[7] that the condition above implie. that the matrix element 

The action of the operator ezp( -iln(t; )Si.) on eq.(lO) conliah in tranllforming the of the hamiltonian between the L projected vacuum and one deformed phonon .tate 

buis obtained from the spherical harmonic oscillator wave functions with b, = b~ = orthogonalized by the Gram-Schmidt method vaWlhe.. Analogous expressionl are 

bll = bo into a buy obtained from the deformed harmonic oscillator wave functions valid in the cue of the prolate buis of Spn(l, R) and thu. we will omi~ this diacullion. 

with b, = 60, h6 = b" = bi.. The states Ini.(04)i bobJ. > correspond to states of In the cue of triaxial basi. of Sp,,(l, R), to determine the o.cillator .ize parameter 

nl. deformed vibrational phonons. Our procedure in the deformed buis calculation bll(K), K=_O,2 we have to generalize the method deacribed above to the axially 

consillts in uliDI the expansion (10) of the deformed statea in the spherical ones, aymmetric cue. The procedure now consiah in building from the vacuum .tate 
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of the deformed phonon, the most general possible .tate con.i.tent with rotational 

inva.riance, Le.: 

ITLM >= E CKI0(62),LMKibo~I(K)  > , 
K=0,2 

where t.he coefficientl Ck are obtained by the dia.gona.lization of the hamiltonian in 

the non-orthogonal bui. 10(62),LMKibobll(K) >. Note that Ck depends also on 

bll(K). Thus we ftx the para.metera bll(K) so that the energy, for each L value, of 

the lowest state IT<LM > be a minimum as function of bll(K), Le. : 

IJ < T<LMIHIT<LM > = 0, K = 0,2. 
8bll(K) < T<LMIT<LM > 

The condition above i. equivaleut to impoae that the matrix element of the hamil­

tonian between the state IT<LM > and the state 11(62),LMKibobll(K) > (orthog­

ona.lized by the Gram-Schmidt method relatively to the .tate IT<LM » vanishes 

for all values of K, Le. : 

< T<LMIHll(62),LMKibobll(K) >GS= 0, K = 0,2 , 

where 

11(62),LMKibobll(K) >05= 11(62),LMKibobll(K) > 

_ IT<LM >< T<LMll(62),LMKibobll(K) > 
< T<LMIT<LM > 

The basis of .tate. of the model, In, LMk >GS i. obtained by orthonormaliz­

ing the non-ortholonal .tates In(62),LMKibobll(K) > and we can show that the 

above minimum condition implies that the matrix elementl of H between the state 

IT<LM> and the n=1 basi• .tates of the model vaW.he•. 

In table-l we .how the harmonic oscillator size parameter values which minimize 

the expectation value of the hamiltonian in the state obtained by angula.r momentum 

projection of the vacuum of the deformed phonon. The oblate, prolate and triaxial 

state. of the deformed Sp(I,R) model, are obtained by the diagonalization of the 

hamiltonian in the bases of states (11), (12) orthogona.lized by the Gram-Schmidt 
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method and ue livea in the oblate bui. cue by : 

N 

III,LM >= L C:(L)ln(04),LMOi~6l. >GS , (13) 
A=O 

and in the c.... of prolate and triaxial buea by : 

N 

III,LM >= LLC:.k(L)ln(l,,),LMKibobll >GS, (14) 
A=O k 

where (l,,) = (12 0) and K =0, for the prolate basi. and (l,,) =(62) and K = 0,2 

for the triaxial bui•. In table-2 we show the probability of finding the state with 

n = 0,1,2 in the expansion of the two lowest energy .tates with a given L, in the 

oblate bui. eq.(13) and prolate and triaxial buea eq.(14). 

In figures 4 and 5 we .how the contribution of the .tate. with n 1 0 to the Q.,(2t) 

and B(E2,2t .... Ot) for the three con.idered buea. These figures are obtained u 

the figurea 2 aad 3. 

In table. 3,4,5 we .how the .pectroacopic propertiea of the L=O,2,4 lowest energy 

state., uaociakd with the oblate, triaxial and prolate buea calculated diagonalizing 

the hamiltoniu in a deformed basi. trdncated in N=0-5. 

4 Conclusions and Discussion of the Results 

We see in table-2 that for the three considered buea, the two lowest energy states 

with L=O,2,4 of each bui., are dominated by the angular momentum projection of 

the vacuum and one deformed phonon state orthogonalized by the Gram-Schmidt 

method. We &lao note in this same table that the probability of finding in the wave 

function of the tirat two 0+ and 2+ states the corre.ponding vacuum project .tate. 

is larger than gg% . 

The contribution ofthe vacuum projection to the B(E2,2+ --t 0+) between the 

2+ and 0+ loweat energy .tate. i. larger than 98% for the oblate and prolate bue. 

and larger thu 86% for the triaxial buil. In fig.S we .how thi. dominance of vacuu~  

projecti0!1 for tile three buea con.idered. For the electric quadrupole moment, the 

contribution of the ftCuum projection iI l~ger  than gS% in the case of the oblate 

12 
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a.nd prolate bues. Nevertheleu for the triaxial basis the contribution of the vacuum 

projection to the Qel(2t) is less than 50% of the exact value. This is due to a 

cancelling that occur. among the domina.nt terms of the wave function, because in 

contrast to the former cues, we have now for n = 0 two state., one with f( = 0 and 

the other with k = 2. Thi. can be understood, noting that in the deformed vacuum 

projected cue, the bui. i. obt-.ined considering in eq.(12) only the nil = 0, and thus 

the operator Qel(2t) is given by four matrix element. where the two diagonal are, 

in general, dominant. However in the case where L=2 the dominant terms almost 

cancel each other and thus the contribution of terms with N I- 0 in eq.(14) becomes 

importa.nt. 

In all cues considered, the contribution coming from states with more than five 

phonons is negligible, as .hown in figures 4 a.nd 5. This can be demonstrated in a 

still more evident way through the tables 3-5. We observe from these tables that 

for oblate a.nd prolate bases, considering only the deformed vacuum projection, we 

obtain results which are'" than 2% different from the exact ones, being the B(E2) 

the most sensible observable. In the case of the triaxial basi., the projection of the 

deformed vacuum .tate, excepting the Qel(2t), give. re.ults that disagree in less 

than 6% with the exact ones. The triaxial deformed basi. with five phonons yields 

results that disagree in less than 3% relatively to the exact ones. Making the same 

for the oblate and prolate bues we practically reproduce the exact results. 

We also note that for the lowest energy .tate., bue. consisting only of the 

projection of the deformed vacuum .tate are an excellent approximation to the 

exact calculation. We show that exceptions to the rule above occur in triaxial 

buis when there i. a large cancelling of the dominant terms. This occurs because 

in this case there are states nearly degenerate with the same angular momentum. 

The electric quadrupole moment Qe/(2t) of the triaxial buis is an example of this 

exception, where the basis obtained by the projection of the deformed vacuum state 

contributes with less than 50% of the exact value. 

Thus we see that the Sp(I,R) model ca.n be considered u a generalization of 

the deformed harmonic oscillator variation after projection method of Bouten et 

13 

al[l1] and Abgral et al[12]. In this model we only consider the states obtained 

by the angular momentum projection of the deformed vacuum state, which is a 

lowest(highe.t) weight .tate of the deformed SU(3). In our paper we show that for 

representation. where .\, ~  I- 0 this might not be eaough. For example, we need 

in our analy.it of the triaxial basis, to consider base. with phonons of the order of 

N=5. 

The autholl would like to thank Dr.D.P.Menezes for the reading of the 

manuscript. 
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Table Caption. 

Table I: O.cillator .ize parametera that minimize the expectation value of the 

hamiltonian in the L projected deformed vacuum of the oblate, triaxial and prolate 

bases. In parentheaea we .how the oscillator size parameter. of the spherical bases. 

Note that we have for the triaxial baai. two size parametera due to the projection 

in K=O and K=2. All .iles are in fm. 

Table II: Probability of finding the states with n = 0,1,2 in the expansion of 

the two lowest energy .tatel of the oblate eq.(13), prolate and triaxial eq.(14) bases. 

Note that for the prolate and oblate bases we have only k = O.(Deformed bases 

with N=9). 

Table III: Excitation energy and geometric properties of the 12C ground band 

calculated in a deformed basis truncated in N=0-5. Energies in MeV, < r 2 > 1/2 in 

fm, B(E2,L-+L-2) in e2./m" and QeI em e./m2. 

Table IV: Excitation energy and geometric propertie. of the lowest energy states 

calculated in a deformed baais truncated in N=G-5. Energies in MeV, < r 2 >1/2 in 

fm, B(E2,L-+L-2) in e2./m" and Qcl em ~./m2.  

Table V: A. in table IV 
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Figure Captions� oblate basis triaxial basis prolate basis 

Figure 1: Fint excitation energy levels of nO calculated in the Sp(I,R) model 

when compared to the experimental data[13]. The ot and 2t dates are associated 

with the oblate buis of Sp(I,R) and the 0; with the prolate one. 

Figure 2: Partial coAtribution to the Qel(2n, due to a systematic inclusion, 

in the expansion IvLM >= E~:o·  C~.K(L)ln(.\J'),LMKj bo >os of the basis states 

In(.\J'), LMKj bo >os, associated with the oblate, triaxial and prolate bases. The 

value of Qel at the point n is found by considering, in the above expansion, the 

contribution of all terms up to n, inclusive. Note that the GS index and K -::f 0 

refer only to the triaxial basis. The height of each block at the point n of the figure 

corresponds to the gain due to the inclusion of the Sp(I,R) n basis state in the 

Qel(2n calculation. We link all the points obtained to guide the eyes. 

Figure 3: As in figure 2, but for the B(E2,2t - On between the lowest energy 

states of the Sp(I,R) models associated with the oblate, prolate and triaxial bases. 

Figure 4: Partial contribution to the Qel(2t), due to a systematic inclusion of 

the deformed basis states in the expansion of the deformed Sp(I,R) model states, 

eq.(13) and eq.(14). This figure is obtained as the figure 2. Note the change of scale. 

Figure 5: As in fig.4, but for the B(E2,2t - On between the lowest energy 

states of the deformed Sp(l,R) models associated with the oblate, triaxial and pro­

late bases. Note the change of scale. 

L 
0 
2 
4 

oblate 
v 1 

L n 
0 1.898 

0 1 ­
2 0.001 
0 0.997 

2 1 ­
2 0.002 
0 0.993 

4 1 ­
2 0.006 

(bo = 1.36) 
6.1 

1.95 
1.93 
1.90 

basis 
2 1 

K=O 
- 0.999 

0.937 ­
0.045� 0.001 
- 0.629 

0.927 ­
0.049 0.001 
0.001 0.523 
0.904 ­

0.051 0.002 

(bo = 1.58) (bo 
bll(O) 611(2) 

2.39 ­
2.38 2.40 
2.34 2.36 

Table I 

IC;,K(L)I:l 

triaxial basis 
2 

K = 2 K=O 

- 0.962 
- 0.029 

0.369 0.369 

- 0.001 
0.473 0.468 

- 0.001 
0.001 0.005 

Table II 

= 1.45) 
bll 

2.62 
2.62 
2.63 

prolate basis 
1 2 

K = 2 
- 0.999 ­
- - 0.969 
- 0.001 0.023 

0.629� 0.999 ­
- - 0.969 

0.001 0.001 0.023 
0.520 0.998 ­
0.001 - 0.967 
0.004 0.002 0.022 
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Oblate Basis Triaxial Basis 

EXACT VACUUM EXACT VACUUM 
L E.E. < r 2 >172 BE2 Qel E.E. < r 2 >172 BE2 Qel L E.E. < r 2 >1/2 BE2 Qel E.E. < r 2 >172 BE2 Qel 
0 - 2.60 - - - 2.60 - - 0 - 2.99 - - - 2.99 
2 3.07 2.59 15.89 7.75 3.09 2.59 15.70 7.70 2 1.37 2.99 55.09 -2.50 1.38 2.99 51.98 -1.14 
4 11.49 2.58 23.01 8.70 11.71 2.57 22.55 8.54 4 4.54 2.98 82.91 -12.87 4.59 2.97 80.17 -12.43 

2-PHONON 3-PHONON 2-PHONON 3-PHONON 
L E.E. < r 2 >172 BE2 Qel E.E. < r 2 >172 BE2 Qel L E.E. < pI >172 BE2 Qel E.E. < r 2 >172 BE2 Qcl 
0 - 2.60 - - - 2.60 - - 0 - 2.99 - - - 2.99 
2 3.07 2.59 15.83 7.74 3.07 2.59 15.95 7.77 2 1.37 2.99 56.16 -3.10 1.37 2.99 55.73 -2.78 
4 11.55 2.58 22.81 8.65 11.57 2.58 23.04 8.69 4 4.53 2.98 82.82 -12.83 4.53 2.98 83.03 -12.86 

4-PHONON 5-PHONON 4-PHONON 5-PHONON 
L E.E. < r 2 >1/2 BE2 Qel E.E. < r 2 >172 BE2 Qel L E.E. < r 2 >172 BE2 Qel E.E. < r 2 >1 72 BE2 Qel 
0 - 2.60 - - - 2.60 - - 0 - 2.99 - - - 2.99 
2 3.07 2.59 15.91 7.76 3.07 2.59 15.90 7.75 2 1.37 2.99 55.40 -2.64 1.37 2.99 55.23 -2.56 
4 11.58 2.58 23.01 8.70 11.59 2.58 23.01 8.70 4 4.54 2.98 83.00 -12.87 4.54 2.98 82.96 -12.87 

Table III Tabl~ IV 
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Prolate Basis ENERGY LEVELS 
20� 

EXACT VACUUM� 

L E.E. < r2 >1/2 BE2 QeI E.E. < r2 >1/2 BE2 Qel� 
0 - 3.41 - - - 3.40 - ­
2 1.04 3.41 232.85 -31.00 1.04 3.41 231.39 -30.89 
4 3.46 3.43 339.03 -40.03 3.47 3.43 336.47 -39.85 15 

2-PHONON 3-PHONON� 
L E.E. < r2 >1/2 BE2 QeI E.E. < r2 > 1/2 BE2 Qel� 
0 - 3.41 - - - 3.41 ->�

lU 
2 1.03 3.41 232.40 -30.97 1.04 3.41 233.07 -31.01 ::s

104 3.45 3.43 338.24 -40.00 3.46 3.43 339.21 -40.03 ­>0 0'"4-PHONON 5-PHONON ~ 2 
p::

L E.E. < r2 >1/2 BE2 QeI E.E. < r2 >1/2 BE2 Qel ~ ~ O~ 

z0 - 3.41 - - - 3.41 ~ 

2 1.04 3.41 232.91 -31.00 1.04 3.41 232.88 -31.00 
4 3.46 3.43 339.07 -40.03 3.46 3.43 339.05 -40.03 5 I 2+

1 
2+

1 

OL 0; 0+
1Table V 

EXP. Sp(l,R) CALCULATION 

FIGURE-1 
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