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The Green’s Function in the Bloch-Nordsieck Model
for QED3

B. M. Pimentel' and J. L. Tomazelli?

Instituto de IFisica Teorica
Universidade Estadual Paulista
Rua Pamplona, 145
01405--900 - Sao Paulo, SP - Brazil

Abstract

The electron Green’s function is obtained in the Bloch-Nordsieck appro-
ximation of three-dimensional QED. Dimensional regularization is used in
the intermediate stages of calculation.

PACS. 11.10 - Field theory, 12.20 - Models of electromagnetic interac-

tions.

The infrared problem in QED has been object of investigation since
the work of Bloch and Nordsieck!"), who have pointed out the origin of in-
frared divergences in the radiative corrections to the Mott scattering cross-
section. While some anthors!? have shown that these divergences cancel
oul, if bremsstrahlung is taken into account, otherst® considered the charged
asymptotic states together with their respective Coulomb fields, so that fi-
nite S-matrix elements can be defined. Alternative approaches to the problem
have also been proposed!, even though all such treatinents are still far to
exaust the subject.

Lately, quantum electrodynamics in three dimensions (QE D) has at-
tracted much interest, as a model for the quantum llall effect!™ and also
for the high-Tc¢ superconductivity. Despite of beiug a super-renormalizable
theory, QE D3 suffers seriously from perturbative infrared divergences. A
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number of nonperturbative schemes have been suggested to avoid these di-
vergences; they essentialy consist in softening the low-energy singularity of
the photon propagator through the inclusion of polarization effects due to
zero-mass intermediate statesl®. Another possibility is the use of the gauge
techniquel™. In this work we shall study the infrared behavior of QE D5,
calculating the electron Green’s function G(z,y), as a functional average
of the electron Green’s function in a given external field, G(z,y|A), in the
Bloch-Nordsieck (BN) model!®.

The BN zero order approximation is equivalent to replacing the Dirac
4 matrices by c-numbers wu,, with «? = 1. It turns out that the Green’s
function Gy for a free electron is purely retarded. Therefore, matrix elements
corresponding to closed fermion loops will contain at least one function Gy
equal to zero. Physically, this corresponds to the fact that there are no
antiparticles in the BN model and, in cousequence, no pairs can be created.
Thus, there are no radiative corrections to the photon Green’s function in
the model. In QEDj, where dynamical mass generation occurs!®), this means
that the photon remains massless in the limit of low frequencies, so that a
Chern-Simons counterterm is absent of the renormalized Lagrangian.

The electron Green'’s function in an external field satisfies

{v°[i0s + eAn(x)] — m}G(x,y|A) = —6(z —y) - (1)

Using the Fock’s proper time method, we may write the solution of Eq.(1)
as

GlaylA) =i [ awU(), 2)

where U(v) have the form
. dp . . ) ) )
Uv) = /—3 exp [t K (a;v) + w(up, — m +ie) — ip(x — y)] . (3)
(2r)

The function K satisfies the linear equation

K
%—: = —u"F K (x;v) + eu® A, (2) , (4)

with the boundary condition
K(x;0)=0. (5)



Solving Eq.(4) by means of a Fourier transformation, yields
K(v|A) = W/dsk(uﬂ(k))e‘“‘r -/: dv' ') (6)

while, substituting Eq.(3) into Iiq.(2), gives

G(z,y|A) = : 5 /00 dv exp|—ip(x — y) —wl(m — wp —i€) + il (v|A)] .
(27)" Jo
(M
The electron Green’s function is the functional average
"(I(x,y|A) So(A)6A
Glay) = LAY S (8

[ So(A)6A '

where Sy(A) is the expectation value of the S-matrix in a Fermi vacuum. In
this case it is equal to unity, since the BN model does not include the vacuum
polarization. So, Eq.(8) siinplifics to

1
Glr—y) = ——/d" ) G(p) e~ PV | 9
0= o [ EGw) (9)
Glp)=1 / ™ dpemiAn i) / RGNS (10)
0 .
Inn the present case, of course, n = 3.

The functional integral in the above expression can be converted into an
integral of the Gaussian type with respect to A,. We thus obtain

G(p) = i/lw dvexp —iv(m —up—1id)+ f(v) (1)
()
where
_ ie? 30 Q gy [7 ) ik [C ) —iv (k)
flv)= —W/d Eu Dok ]/(; dv'e [) dv'e . (12)

In the last equation, D,z stands for the free photon propagator,

o boky L L kky
T et Tt T B ik tie

Dap (13)

where a is the gauge parameter. So, substituting Eq.(13) into Eq.(12),

. 9 .
- te v , [ " 3. iluk) (V") I k
f(v) —(2,,)3/2/0 du/o dv /d ke F(k) (14)
(u.k)?
Flky= —— -1)—. 15
(= e * O~ Do (15)
It is convenient for our purposes to rewrite f(~) in the form
v v dZ
R — e ! 1wy, " _ 2) ¢, 1
Jw) = =ie? ["av' [T (PO + (1= ) PO} (16)
where
1 eiu”(u,k)
(), 1y — "
I (I/)_(27r)"/2/( kkz-i-i( , (17)
] eiu”(u.k]
FOW") = 'k . 18
( ) (2”)11/‘1/( (k2+l'6)2 ( )

We have left open the dimension in Eqgs.(9), (17) and (18), to antecipate
that we are going to use dimensional regularization lor the integrals F") and
F® above. One of the advantages of using dimensional as well as analylic
regularization is the fact that, in this particular case, it is not necessary to
attribute a ficticlous mass to the photon, in order to take care of possible
infrared divergences, in contrast with the Pauli-Villars regularization. For a
given n we find

(=)

FOW") = S T /2 = 1) - i), (19)
n-1
FOW") = —(2(_4’_{ T (n/2 = 2)(" —ie)'™ (20)
so that
, ()" P(n/2-1)
flv) = 812(3_1/2) %)_[2 +(1 - a)n - 3)|P(v) (21)
with )
P(v)= = n)[(u — i)' — (—1e)" "] — v(—ie)® " . (22)
4



Making the replacement n = 3 — 5 and expanding around n = 0, we

finally obtain .
fv) = —iﬁ2\/§u+i(32\/§ulog(il//() . (23)

Looking at the expression (23) we note that this result is gauge independent.
We also realize that the electron Green's function has an infrared divergence,
controled by the small parameter ¢, which can be removed through mass
renormalization!®. If we had cmployed the Pauli-Villars regularization, we
would have obtained

!
f(v)=—ic? Z—!ﬁ}»)-u + iﬁ\/gur(o,i,m) , (24)

where the parameter g corresponds to a small photon mass. In the vicinity
of the singularity the incomplete gaimma function has a logarithin behavior,
Thus, expressions (23) and (24) coincide in the Feynman gauge.

Other authors have performed these calculations in a specific gauge 19,
using the Pauli-Villars regularization. However, they start with a mass term
for the electromagnetic field in the Lagrangian density, spoiling the gauge
invariance of the theory. In addition to keeping the photon massless, di-
mensional regularization enables us to extend the previous analisis to other
dimensions than tliree. To conclude, we would like to mention that in four
dimensions we get the same result of reference [8] using dimensional regu-
larization. The parameter € in this case controls the ultraviolet divergences
and plays the same role of the auxiliary mass introduced by the Pauli-Villars
regularization.
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