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The Green's Function in the Bloch-Nordsieck Model 

for QED3 
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A hstrClet 

The electron Green's function is obtained in HH' Bloch-Nordsieck appro
ximation of three-dimensional QED. Dilllcnsiollal regularization is used in 
the intermediate stages of calculat.ion. 

PACS. 11.10 - Field theory, 12.20 - Models of electromagnetic interac
tious. 

The infrared problem ill QED has been object of investigation since 
the work of Bloch and Nordsieck P1 , who have pointed out the origiu of in
frared divergences in the radiat.ivE' corrections t.o the Mott sca.ttering cross

section. While some allt.horsl21 have shO\\'n t.hat these divergencE's cancel 
out if bremsstra.lJltlng is taken int.o a.ccount, ot.hers[3) considered t.he charged 
asymptotic states together with their respective Coulomb fields, so that fi
nite S-matrix elements can be defined. Alternative a.pproaches to the problem 
have also bem proposed[,II, eW'Jl t Iiollgh all such t.reatments are still far to 

exaust. the subject.. 
Lately, quantum el('ctrodyJlamin; ill three dimensions (QED:d has at

tra.cted much interest., a.s a model for the quantum Ha.ll erreet[51 and a.lso 

for the high-Tc superconductivit.y. Despite of beiug a super-renormalizable 
theory, QED3 suffers seriously frolll pcrtmhativc infrared divergences. A 

1Partially supported by eN Pq 
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number of nonperturbative schemes have been suggested to avoid these di
vergences; they essentialy consist in softening the low-energy singularity of 
the photon propagator through the inclusion of polarization effects due to 
zero-mass intermediate states l61 • Another possibility is the use of the gauge 
techniquel71 . In this work we shall study the infrared behavior of Q E D3 , 

calculating the electron Green's function G(x,y), as a functional average 
of the electron Green's function in a given external field, G(x,YIA), in the 
Bloch-Nordsieck (BN) model 181 . 

The BN zero order approximation is equiva.lent to replacing the Dirac 
2 ., matrices by c-numbers tte\'! with u = 1. It t.urns out that. t.he Green's 

function Go for a free electron is purely retarded. Therefore, mat.rix elell1('nts 
corresponding to closed fermion loops will contain at lea.st one function Go 
equal to zero. Physica.lly, t.his corresponds to til(' fact that then' are no 
antiparticles in the BN model and, in consequence, no pairs can be created. 
Thus, there are no radiative corrections to the photon Green's function in 
the model. In QED3 , where dynamical mass generation occurs l91 , this means 
that the photon remains massless in the limit of low frequencies, so that a 
Chern-Simons counterterm is absent of the renormalized Lagra.ngian. 

The electron Green's function ill an external field sa.tisfies 

{u"[i8a +eAer(x)]- m}G(.T,YIA) = -6(;r - y) . (1 ) 

Using the Fock's proper time method, we may write the solution of Eq.(l) 
as 

G(x, YIA) = i 1'X! dv U(v) , (2) 

where U(v) have the form 

3P 
U(v) = f d 3 exp [ig(:l'; II) + iV(II°])" - m + it:} - i]J(:r - V)] . (:3)

(271" ) 

The function 1< satisfies the linear equation 

~: = -uo8aJ«(x; II) + etta A,,(x) , (4) 

with the boundary condition 

1< (:1'; 0) = 0 . (5) 
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Solving Eq.(4) by means of a Fourier transformation, yields 

/((vIA) ==� ~!J3~: (u./l(k))e- ikX r dv' ei"'(u.k) , (6)
(211") Jo 

while, substituting Eq.(3) into Eq.(2), gives 

G(x,yIA) == ~ {'Xl dll exp[-ip(:r - y) - iv(m - ll.]J - it:) + il«vIA)] . 
(211")' Jo 

(7) 
The electroll Greell's fUllction is the fllllctional C\YI'rage 

(;(.r,y) = 1(;(·r,YIA)S'o(A)8A (8)JS'u( A )8;\ , 

where 50 (A) is the expectation value of t.he S-matrix in a Fermi vacuum. In 
this case it is equal to unity, since t.he BN model does not include the vacuum 
polarization. So, Eq.(8) simplifies to 

(;(:1' - y) == _I_! erpG(p) e-ilJ(.r-y) (9)
(211")n/2 ' 

00 
(,'(p) == i1 dlle- i "(III-U"J-H)! ei/\'(vl:\) 1>.'1 . ( 10) 

III the present case, of course, n == 3. 
The functional integral in the above pxpressioJl can be converted into an 

integral of the Gaussian type with respect to .10 ' We thus obtain 

G(]l) = i 1')0 dll('Xp-il/(llI -ll.p - ic) + f(I/) (J 1) 

where 

2 

1(1/) == - ie / !(Pk[1l0 ))"o(l')u f1 j (" dll'e;','(u/;) r dlJ"f-i,'''(u.k). (12) 
2(211") 3 2 JII Jll 

In the last equat.ion, Do {3 stands for the free photon propagator, 

1 kokl~  1 kokfJ 
Dcr� ( 13) 

{3 = k2 + it: (9nl1 - k2 +Tc;') +a k2 + it: k2 + it: ' 

3 

where a is the gauge parameter. So, subst.ituting Eq.(13) into Eq.(l2), 

2 
I(v) == __ie__ r dv' r' dv"! d3ke i(u.kHv") F(k) , (14)

(211" )3/2 Jo Jo 

1 (U.k)2
F(k) == --. + (a -1)-----'---= (15)

k2 +u: (k2+it:) 

It is convenient for our purposes to rewrite I( II) in the form 

v' d2 

. f(v) == -ie2l
v 

d,;' f dl;"{P(J)(II") + (1 - a)-i2P (2)(V")} ( 16) 
o Jo� ell" 

where 

i""(II.k) 

" 1 I d lt k e __. , ( 17)P(J)(II ) == --;;j2 k2 + If 
(211") . 

iv"(u.k)] ! i"'. e .F(2)( ") == -- (h(k .)2� (J8)
' V -� (211"t/2 2 + l( 

We have left open the dimension ill Eqs.(9), (17) and (18), to antecipat.e 
that we are going to use dimensional regularization for the integrals p( I) and 
F(2) above. One of the advant.ages of using dimellsiollal as well as analytic 
regularization is the fact that, in tltis particular case, it is not necessary to 
attribute a ficticious mass to the photon, in order to take care of possible 
infrared divergences, in contrast with the Pauli- Villars regularization. For a 
given n we find 

F (J)( ") = (_i(-J r( I? _ J)( ,,_ . )2-n 
V 2(2-n/2) n - v l( , 

(19) 

P(2)( ") = (_i(-J r( I? _ 2)( /' _ . )4-n (20)V 2(.I-n/2) 11 - I U , 

so tha.t 

. (-i)" 1'(11/2 - 1)
f(I/) == e

2
2(3-n/2) ,,, \ [2 + (J - a)(l1 - 3)]P(II) , (21 ) 

with 
1 . 4-n . 4-n . 3-nP(v) == --[(11 - u) - (-u) ] - v(-u) . (22)

(4 - n) 
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Making the replacement II = :l - '} and expanding aroulJd 1} 0, we 
finally obta.in 

f(v) = -ie2 !i,1 + ic 2 !iIJlog(ill /(). (23) 

Looking a.t the expression (2:J) we note that t.his ref>lIlt is gauge independent. 
We also realize that the electron Grecn '8 function has an infrared divel'gence, 
controled by the small paralllcter t, which can be removed through mass 
renorrnalization l8J . If we IHld I'lllp!o.H'd 1.1)(' Pilllli- Villil.rs rf'glllarization, we 
would have obtained 

. '2 (7f(a+l) '20, .
.I(v) = -1(' V2--2- 11 +1(' V2'/1 (0, Ijl.IJ) , (2/1) 

wh(~rf'  the paramder It corresponcls to a small photon mass. in the vicinity 
of the singularity the incomplete gaHlIIICl function ha.s a logarithm behavior, 
TilliS, expressions (23) and (24) coincide in the Feynlllan gauge. 

Olher authors have performed these calculations ill a. specific gauge (10), 

using the Pauli- Villars rcguIClrizal.ioll. However, t.hey st.art with a nlass term 
for the e!pc\.roll\agnctic lipId in tI\(' L'lgrilngiall dPlIsity, spoiling the gange 
illvariallce of t.he theory. In addit.ion t.o keeping t.he phot.on lIIassless, di
mensional regularization enables liS to extend t.he previous allalisis to other 
dimensions than tllree. To conc!ndl'. we would like to ment.ion that. in four 
dimensions we get the same r('sult of rderence [8] lIsing dimensional regu

larization. The parameter I: ill this ca.se controls the ult.raviolet divergences 
and plays the same role of t.he auxiliary Inass int.roduced by the Pauli- Villars 

regularizat.ion. 
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