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Connection between the Affine and Conformal Affine Toda 
models and their Hirota's solution1 

C. P. Constantinidis', L. A. Ferreira, J. F. Gomes, and A. H. Zimennan 

Instituto de Fiaica Te6ric&-UNESP� 
Rua Pamplona 14&� 

01405-900 Sio Paulo, Brazil� 

ABSTRACT 

·v·( 
It is shown that the Aftine Toda models (AT) constitute a "sauge fixed" version of the 
Conformal Affine Toda model (CAT). This result enables one to map every solution of the 
AT models into an infinite number of solutions of the COITesponding CAT models, each 
one associated to a point of the orbit of the conformal group. The Hirota's T'-function are 
introduced and soliton solutions for the AT and CAT models associated to S'L(r + 1) and 
SP(T) are constructed. 

I Work parually auppor&ecl br CNPq� 
'aupported br FAPESP� 

Two dimenaicmal iRtep'able DOD lineal' models have been .tudied quite exten.ive1y in the 
past year.. More receDtly thOle modell poIIealing COIlf'ormal invariance have received 
special attention. One reuon for that is the CODDection between integrability and conformal 
properties, which endow thOle theories with a very rich Itructure. 

Among the models moet atuctied are the Toda field theories. These can be classified 
in three hiera:rehiea accordinl to the algebraic Itrueture underlying their associated linear 
system (zero curvature condition or Lax equation). First come the Conformal Toda mod
els (CT) associated to the finite limple Lie algebras with the simplest example being the 
Liouville model (SL(2». These are conformally invariant two dimensional field theories 
and their lI01utioDa have been coutructeel usiD& highest weight representations of Lie alge
bras (I]. The Iymmetriea of theee models are described by the so called W-algebras (2,3]. 
The CT theories can be obtained via Hamilkmian reduction from WZNW models (3J. The 
one dimensional version of these models can also be obtained by Hamiltonian reduction 
from non compact Iymmetric lpaces 14,&). Then we have the Aftine Toda models (AT) as
sociated to the loop algebras. These are not conformally invariant but haw been shown to 
be completly integrable 16). Solutions to lOme classes of models of this hierarchy have been 
constructed using dift'eren& methods (7,8). However the analysis of Leznov and Saveliev (lJ 
does not work in this case because of lack of hipest weight representations. The most 
popular member of that hierarchy is the Sinh-Gordon model associated to the SL(2) loop 
algebra. Finally there"are the recently proposed Conformal Affine Toda models (CAT) 
whim are related to the Kac-Moody algebras (9,10,11J. These are conformally invariant 
field theories, and it has been shown that they can be obtained via Hamiltonian reduction 

- from WZNW models associated to two-loop Kac-Moody algebras (9,12J. The symmetries 
of these models are described by some type of W-infinity algebra (13,14J. The solutions 
of the CAT models can be conatructed using the Leznov and Saveliev analysis as it has 
been shown, for the 5L(2) case, in ref. (10]. Here we give the corresponding solution to 
any Kac-Moody algebra. The lI01utions or the AT models can then be obtained from the 
solutions of the CAT modeJa by letting a particular field to zero. However, finding the 
explicit space-time dependence of the solution is quite hard in pratice due to the fact one 
is dealing with representations of the Kac-Moody algebra with non vanishing central term. 

The CAT model contains two extra fields with respect to its corresponding AT coun
terpart with one of them being a free field. In this note we show that the AT models 
constitute in fact a "gauge fixed" vel'Bion of the CAT models. The space of regular solu
tions of this free field constitute an orbit of the conformal group. We then show that the 
free field can be "gauged" away by a conf'ormal transformation leading the CAT model to 
the AT model together with the aecond extra field, lying in the transformed space time. As 
a consequence of this result &DY solution of the AT models can be mapped into an infinite 
number of solutions of the CAT model, each correspondinc to a point of such orbit. We 
also introduce the Hirota'sT' functions for the CAT model and show how to obtain soliton 
solutions for the cases of SLC! + 1) and SP(r). Our results constitute in fact,1 a gener
alization of the analysis for 5L(r +1) given in ret (8]. Explicit examples for 5L(2) case 
are considered. The generalization for the remaining Kac-Moody algebras ~s  now under 
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and it satisfiesinvestigation. 
rauO ra'''tO
E K••r· = 1 , E K~r'  = la-I ,. (13)

The connection between the AT and CAT models "1 "1 
Therefore the exponential of the (negative of) fields ';0, p, " are primary fields of dimensionsThe equations of motion of the CAT model are given by [9,10]: 
(r·,r·),(1a/2,1a/2),(B,B) respectively. ~  

8_8+,;· = ,·cK...• - ,°l'!c-K••••+2,. (1) The general solution of the CAT model associated to SL(2) was constructed in ref [10] 
using the method of Leznov and Saveliev [I}. The generalization to any other algebra is8_8+JI = 0 (2) 
quite straightforward and the result is 

= .! ,oc-K...·+2,.8_8+" (3)
~2  c-.·(s+ ,s_)-P'l'{s+ ,s_) = (l(.) IcK+(~+)M+(z+)M:I(z_)e-K_(~-)  Il(.») (14) 

where Xu = 20•.0./0: is the Cartan Matrix of a simple Lie algebra Q, a, II = 1, ..., rank c-v(s+ ,s_) = (l(o) IcK+(s+).M+(z+)M:I(z_)e-K_(~-) Il(o» (15)� 
Q, t/J is the highest root of Q, K.. = 2~.0./0=,  ~  are positive integers appearing in the� 
expansion '1r = It:r, where o. are the simple roots of Q and qa, tl are coupling constants. and since JI is a free field� 

The derivatives 8j; are w.r.t. the light cone coordinates zj; =z % t.� 
JI(z+, z_) =JI+(z+) +JI-(z_) (16)These equations can be written in the form of a zero curvature condition (associated 

linear system) [10,9] where Pj;(Zj;) are arbitrary functions, Kj;(zj;) are elements of the Cartan subalgebra of 
8+A_ - 8_At + [.4,A_] = 0 (4) the Kac-Moody algebra g associated to Q, containing the parameters of the solution 

where 
NUQ 

K::A;(z:&J = E ~(z::A;)H: T 2J1j;(zj;)D +(j;(Zj;)O (17)At = 8+~ +cu.£+ , A_ = -8_~ +c-ad.£_ (5) , ..' ••1 

and Mj;' are exponentiations of real linear combinations of the positive/negative root step 
1 radQ ~  ~perators·ofa. The parameters in M::A; are functions of z+/z_ only and are determined in1 

~=- E f·~  + pD+ 2,,0 (6) terms of the parameters of the solution through
2 .=1 . 

r.uO rauQ 8+M+M;1 = _e-·rJK+£+
£_ = E ,A~a. +,OE;1 (7) 

(18)
£+ = E ~.+E~. M_8_M:1 = e-·tlK-£_ (19)..1 ••1 

These equations are invariant under the conformal transformations The group elements Mj; appear in fact in the Gauss-type decomposition 

z+ -+ i+ = /(z+) , z_ ~ i_ = 9(Z-) (8) 91 =eK-:- N+M_ , 92 =eK+N_M+ (20) 

if the new fields are defined as: ~'here 91 and 92 are defined as 
c-2• =929.1 (21)

e-~·(i+,i_) = (~)r-( d9 )r-c-"(~+~-) (9)
dz+ u_ The states Il(.», a =1,2, ...rankQ and Il(o») are highest weight states of representations 

e-~i+,i-) = (~)t( d9 )tc-"(~+~-)  (10) of the Kac-Moody algebra awhere the highest weights are the fundamental weights ~(A)  

dz+ u_ and ~(O)  of C. 
f-~i+,i_) = (~)B(  d9 )Bc-"(~+~-)  (11) Eqs. (14)-(16) constitute the general solution for the CAT model equations of motion. 

dz+ dz_ We see it depends upon 2(rankQ +2) chiral parameters. However, in practice, such result 
is not very useful when one wants to know the explicit space-time dependence of a given where h is the Coxeter number of the algebra Q, B is arbitrary and r· is defined as 
solution. The reason is, basically, that the quantities Mj; are exponentiations of an infinite 

roniQ number of generators. Unlike the finite dimensional case [1] they do not belong to a nilpo
r· = E X;.1 (12) tent subgroup. On the other hand, such form of the solutions are very closely related' to.=1 
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drssing transformations, excbaDge al&ebru and are u.erw in the .tudy of the .ymmetries 
of dfe model [15,16]. . 

We now thaw that the Aline Toda model caD be understood as a CAT model when 
the conformal symmetry ia in lOme 8eD8e ",aUF fixed". The idea consists basically in 
conformally tranformiDI the field ,.. away for every IOlution of it. We start by redefining 

~~~as  ~  2 
'PG== .G _ -,.. 'I = -,.. (22)

h h 
In terms of them the equations of motion become 

8_8+'PG = (,GcK..". - ,=,oe-K,,"')e" (23) 

8_8+'1 = 0 (24) 

8_8+" = :2 ,Oe-K..~· e" (25) 

and the quantity ~  in (6) becomes 

1 (roftkg ) 
~= 2 ~ 'PG~+'1T3+"C (26) 

where T3 == ~.JIO + hD, with 6 == l 1:o>0~, is the generator used to perform the so 
called homogeneous grading of a Kac-Moody algebra. Notice thate"- are scalars under 
conformal transformations. If we set the parameter B to zero in (11), e" is also scalar. 
On the other hand e" is a (1, 1) primary field. Performing now a coDformal transformation 
(9)-(11) with 

I'(z+) = ,,'f+(c+) • 9'(Z-) = e,,_(e_) (27) 

where '7:t(z:tJ are solutions of the 'I field, i.e., '1(z+,z_) = '1+(z+)-+7'7-(z_) (see (16», one 
obtains 

I 

e-li-(i+,f_) -+ e-"-(c+,--) , e-'Ii(f+1'-) -+ 1 I ,,-~(i+,i-)  -+ ~-,,(e+.-_) (28) 

Therefore the space of regular solutions elf the 'I field CODStitute::just one orbit of the 
conformal group. Consequently, for eveq solution of 'I, the equa1ions of motion of the 
CAT model can be writtenas! ' 

8_8+.pG = ,~eK.w'  - r:,Oe-K.,~, (29) 

- - 2 0 K .d8_8+& = ,,2 , e- .,w- (30) 

where the new space time coordinates are determined in terms of t~  old ones through the 
given solution of 'I, i.e. z+ = j+ dU+clJ+(J+), z_ = j-dr-""-('-). l-rom now on we drop 
the tildes. 

Eqs. (29) correspond to ·the Affine TOOa equation, which fQf Q = SL(2) become 
the Sinh':Cordon equation. However (29)-(30) can be written in .. more compact form. 
Introduce the fields 

t/12 t/12
c- = 'P

G +r:2"" , (l = 2"&1 (31) 
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Uaing the fact that X..Jt ~ 2oG.,nt//1 IE -XaO and xotrt == -21/J.0~/0:r: == -Koo one can 
write (29)-(30) as 

lJ_lJ+C =9iCK~(1 (32) 

where i,i = 0, 1,2...rcm~,  and where we b.ve introduced the extended Cartan matrix 
K,j of the Kac-Moody algebra~,  Xii == 2oi.0;/0' with a, being the simple roots of 0, 
i.e. ~ =-t/J and the remainiDg a., G =1,2, ...rCln~, as berore. Eq. (32) is not just the 
Affine Toda model since it possesses one extra field. In the literature one finds the Affine 
Toda (or Toda Lattice) model written with one extra field as (6] 

,..ftkg . 

8_8+l = E Xii';"" (33) 
i-o 

The usual Affine Toda ia then obtained by noticing that the extended Cartan matrix is 
singular and therefore bas a null vector, niXe; =0 where '" = n:oG and n: = 1. So, 
the field p == ntpi satisfies 8_8+p = o. Restricting the model to the vacuum p = 0 one 
eliminates one field and obtains the usual Affine Toda as given by (29) (6]. However going 
from (32) to (33) would involve a singular transformation between the fields r and pi and 
therefore they are not really the same model. 

The conformal transformation (27) is closely related to the transformation performed 
in ref. [12] on the currents of the two-loop Kac-Moody· algebra [9] in order to decouple 
the non-zero modes of a .c;entral current . Under (27), the two-loop Kac-Moody currents 
JR<z+) == kj-18+9 and'~h(z_) == -k8_jj-l , where j is an exponentiation of generators 
of an ordinary Kac-Moody algebra (9,12], transform as 

hl(z+)-+ er+ ~+CJtb+)JR(X+)  , Jz,(z_) -+ "r- ~-CJt(II-)JL(Z_) (34) 

where CR/ L are the components of the currents in the direction of the generator D and 
can be written as CR/L(Zs;} == az'l:t(Z:I;} with '1:t as in (27). These are the transformations 
performed in [12J except that there the zero modes of CIl/L were excluded due to the 
periodic bounduy condition imposed on JR/L. 

3 Hirota's method 

We now describe how to use Lhe Hirota's method [17J to construct solutions for the Affine 
and Conformal Affine Toda models. We introduce the T-functioos as 

(j = l1'(- mTi +(7)+ "i 
'. 

(35) 

where It =1 and It. G = 1,2, ...rankQ as before and 

rouQ ((ll~)"0 =0 , "G = !i (RK);.J In -t (36) 
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where R is the matrix with alma Ret = 6•• + nt, wi~ nt being the integers in the 

expansion'" == n:o., It == ii'n: and 10 

fj
_I n

(R ).=&.,- ~  (37)
h 

where h = E~~'tg  n: + 1 is the Coxeter number of Q. The '8. are associated to the 
vacuum of the fields '1'. and were introduced to make Hirota's equations independent of 
the coupling constants qi. We have ~e  freedom to introduce the field u because it will 
drop from the exponential interaction term, since rt is a null vector of the extended Cartan 
matrix Kij't =O. In addition, it is related to the vacuum of the field v, and it will help 
us in decoupling Hirota's equations into a. suitable form. 

To simplify the notation we introduce the operator 

6(F):8+8_lnF= 8+8_F 8+F8_F (38)F -

which obviously satisfies 

6 (FG) =6(F) + 6(G) , 6(F') == 16 (F) (39) 

The equations one obtains by substituting (35) into (32) can be decoupled as 

r·~g  Kit)6(Tj) = -fJ ]! 1'; III" -1 . (40) 

8+8_u :: fJ (41) 

where 

fJ:: teKIII'" lor any j = 0,1, ...,rCln~g  (42)
'1 

which, using (37), one can easily show that it is a constant independent of the index j. 
The solution for u is therefore 

u(z+, z_) = fJz+z- +F(z+) +G(z_) (43) 

with F and G arbitrary functions. From (31) we get the relation between 'T-functions and 
the original CAT model fields 

2 
(44)'1'. =-~In!!.  +'. v = ",2 (u - InTO)

TO 

In ref (8) the Hirota's solution for the Affine Too.. models associated to §L(r + 1) was 
constructed. In order to get the Hirota's equation the number of T-functions introduced 
exceeded the number of fields by one. It is now clear that the extra 1'- function, namely' 
TO, corresponds to the v field and that the Hirota's equation is intrinsically related to the 
structure of the CAT model. 
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Notice that the Hirota'. equation (40) it invariaot ~'.  ' 'ations on the 
T-functioD.l, "j .... .l"j, .mce If it a null vect.or or the ext.endeu \". loI""'his 

guarantees that when both aides of (40) are multiplied by T:»r:, all terms w•• ! 

same order in T. Obviously, the equatiODi will be biliDeal' ill " ODly for those algebrM ~'  ••• 
If == 1 for all j'•. That happenllor the algebras SL(r .... 1) and Sp(r). W. next a.pply 
the Hirota method to the C!a-T model described by (29) ud (30) for thfIH two algebras. 
The application of 10m method to the remainiDg algebru it BOW under investigation and 
it will be published elsewhere. 

3.1 SL(r+ 1) 

For SL(r +1) the N soliton solution from Hirota's method was obtained in (8). The" 
functions for the SL(2) CAT and AT models were also considered in ref.[15,18). Here we 
give a short account of tboee results for comple~ess.  The integers ~,CI  =1,2, ...r are all 
equal to unity in this cue. The extended Cartan matrix is obtained from the usual one by 
adding an extra row and colummCOJTe8pOnding to an extra point in the Dynkin diagram. 
It is given by 

2 -1 0 0 0-1 
-1 2 -1 0 0 0 

K= 
o -1 2 -1 0 0 

(45) 

o 0 ... 0 -1 2-1 
. -1 0 0 ... 0 -1 2 

"'The equations for tbe,tau functions corresponding to (40) becomes 

"1 6 ("j) =0 p(,,]- ";+I"j-I) (46) 

,,1

j =0,1, ...r, where "j+"i'l ="j is understoodl.from the periodicity of the extended Dynkin 
diagram. Tile above s'stem admits N solitoQ solutions of the form 

/ "i = 1 + IT}I) + ... + ,N"jN) (47) 

We now seek for one ~ton  solution. i.e. "j == l + i"jl), where 

1
) =expC1(~ -vt - (»cSj (48) 

The truncation of (47) in order f is consistent ifwe impose the following recursion relations 

&, =6i - 16;+1 "'. (49) 

An obvious solutioa a\atisfyingthe periodicity condition, "!~I  = "JI) is given in terms of 
the (r +1)~th root ol.,uait. i.e. 

cSj =wi (50) 

where'" == exp(~). = O,I,2, ...r. The wave pwameters Tandv are related by (4ct8+ '= 
~-o:)  

, ~.".
21 2(1 - v ) =16fJ sin~( -1) (51)r+ 
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~.2  SP(r) 3.3 The SALf.2) Case 
Again in this case the integers r: = 1,; =0,1, ...r. The extended Cartan matrix is given We now illustrate the proc:edure described in the previous HCtions where the IOlutions 
b)' of the CAT model were shown to be related to those of the AT model with space time 

2 -2 0 o ... 0 0 variables parametrized in terms of a free field 'I as follow. 
-1 2 -1 o ... 0 0� 
o -1 2 -1 ... 0� 1 /-+ r-i = 2(i+ + i_) =2( tl~e"+(')  + tl~e"-(l'»K=I (52)~ I 

1

1 1 /-+ fa.0 o ... o -1 2 -1 i = 2(i+ - i_) = 2( tl~e"+(')  - tl~e"-(l'» (60) 
0 0 o ... o -2 2 

The system of equations for the tau functions corresponding to (40) can therefore be 
obtained by reading of the elements of the extended Cartan matrix, i.e. 

": ~  ("0) = II (": - ,,:) 
":~(".) = 11(":-".+1"._1) foro=I,2, ...,r-l 

":~("r)  = 11(":-":_1) (53) 

The one soliton solutions is again obtained setting "j = 1 +{"jI), where 

,,}1) = exp(")'(z - vt - (»6,; (54) 

This case leads to two solutions. One is obtained setting 60 = 61 = ... = 6r yielding .., :f: 0 
and v2 = 1, i.e., 

.,.p) = exp (-y(z ± t - (»c50 (55) 

implying from (44) 

cpa = f. , II = tP2 
(-In(1 +exp(-y(z ± t - (»c50) + ,8z+z_ +F(z+) +G(z_» (56)2 

The second solution is obtained when «So =~ = ... = 62" and -60 = 61 =63 = ". = 62n+l 

)'ielding 
.,p) = (-IY exp(")'(z - vt - (»cSo (57) 

",here the wave parameters are related as 

272(1 - v ) = 16,860 (58) 

Again from (44) we get 

cpa = f. for (I even 

• In (1- expb(z - (»60 )vt - ..Q I odd cp = - +v. lor (I
1+exp b(z - vt - (»cSo 

II = tP22 (-In (1 +exp (-y(z - vt - (»cSo) + ,8z+z_ + F(z+) +G(z_» (59) 

where a = 1,2, ...r. Notice that 'P. for (I odd constitute copies of the Sinh-Gordon soliton. 
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Let US consider the CAT model described by equations (23)-(25) for SL(2). The solution 
given in terms of the ,,-functiODl in (<<) reads . 

1- iexp(-y(i -vi») 1 90 

cp(z,t) = -In ( 1+ iexp(..,(i -vl) +4ln 91 

- 2i arctan(expb(i-vi)) +iIn :: 

v(z, t) = cr -In[1 + iexpb(i -vi)]� 
,,(z, t) = '1+(z + t) + '1-(z - t) (61)� 

where we have made the choice ( = ~ in (48). Equations (60) stress the fact that there 
are infinite many space time new variables in correspondence with the choice of '1~.  In 
particular for '1+ = '1_ = 0 the solution for the CAT model field 'P is the same as that for 

~ the Sinh-Gordon field . 
Consider, for instance, the usual static (in 1) soliton solution for the Sinh-Gordon 

model, i.e. v = 0 (19). The corresponding solution for the §L(2) CAT model for given 
'1~ will not in general be static (in t). In fact, the solution can be completly different and 
in some cases the solitonic character is lost. This means its topological charge may not 
be preserved by the conformal transformation. We have checked that for ,,~ = z~ the 
static Sinh-GOI'don soliton is mapped into a solitonic solution of the SL(2) CAT model. It 
travels preserving its asymptotic ~viour,  and 80 having a topological charge. One can 
describe its trajectory by giving, for instance, the position of the point cp = ,. 

z = -In(cosht) +Zo (62) 

So, it travels with velocity f = -tanht coming from z = -ocdfor t = -(0) bouncing at 
the point Zo = In(lln(tan(' - !ln$» and then returning to; = -00 (for t = (0). 

Such proced~ can be used to study the perturbation caused by the 'I field on the 
solitons of the Affine Toda models. It would be interesting to develop a systematic way of 
doing that. 
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