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Abstract

Starting from the Schwinger unitary operator bases formalism constructed
out of a finite dimensional state space, the well-known ¢-deformed commu-
tation relation is shown to emerge in a natural way, when the deformation

parameter is a root of unity.

I. INTRODUCTION

From the studies of deformed algebras, which appeared in connection with problems in

statistical mechanics and in quantum field theory (QFT), it came out that the g-deformation

parameter is, in its general form, a complex number. In many applications it assnmes a real
value while in other cases its imaginary part also plays a physical role. Apart from the basic
quantum mechanical study of the g-deformed oscillator by Biedenharn [1] and MacFarlane
[2], in which a real deformation parameter is assumed, Floratos [3], on the other hand,
in his study of the g-oscillator many-body problem, also discusses the case where q is a
pure complex number. Furthermore, in the particular case when q is a root of nnity, it
can be shown that the underlying state space, characterizing the physical system, is finite
dimensional. The g-deformed algebras generate a suitable framework in this case and has
been explicitly used in connection with the phase problem in optics [4]; moreover, it has also
been pointed out their importance in QFT [5].

A long time ago, Schwinger [6] has pointed out that it is possible to construct an operator
basis, in the operator space, once we are given a finite dimensional state space. The two
fundamental unitary operators from which the basis is constructed satisfy the Weyl commu-
tation relation and act cyclically on the corresponding state space, thus admitting as many
roots of unity, as eigenvalues, as is the dimension of the space. Here we will show how the
Schwinger operator basis can be used as a natural tool in urder to obtain the ¢-deformed

commutation relation in the particular case when ¢ is a root of unity.

I1. THE UNITARY OPERATOR BASES

For the complete quantum description of a physical system, a set of operators must. be
found in such a way as to permit the construction of all possible dynamical quantities related
to that system. The elements of that set are then identified as the elements of a complete
operator basis.

One particular set, consisting of unitary operators, has been studied by Schwinger [6]
and will be briefly recalled here. Let us consider a N - dimensional linear, normed space of
states to be understood as the quantum phase-space of the relevant system. We can define a

unitary operator V through the mapping of an orthonormal system {{w, |}, , , , defined



in this space, onto itself, by a cyclic permutation as
(e |V =] k=0,.N =1, (un |= (uo | .

A set of linearly independent unitary operators can then be constructed trivially by mere

repeated action of V,
(up | V= (urys |
with
(e | VN = (u |
thus implying
VN =1, (2.1)

where 1 is the unit operator.

The eigenvalues of V obey this same equation and are thus given by the N roots of unity

o — Wk = 2mik
p =W =exp| —o= |

Furthermore, since that unitary operator has N distinct eigenvalues, the corresponding
normalized eigenvectors, {(v; |},_o _n.; , Provide us with an alternative orthonormal system.

Schwinger has also shown that an operator U exists such that
(e |U = (e |
which is of period N, i.e.,
UM =1

’

thus implying the same spectrum as V for the eigenvalues:

w=w* =ex ik
e = = exp N )

The fundamental point here is that the eigenvectors of U, {{ux |}4..o -, » can be shown
to coincide with the orthonormal set from which the construction started.

From (2.1) we can see that the special operator normalized to unit trace
. 1 N-1 . .
y = -j
G(u) = N jgo Vi, (2.2)
is such that
(| Glow) = (u | b

where
5 1% L
Lk = N ,z:% Uy U‘,'
plays the role of a Kronecker delta modulo N.

Corresponding to (2.2) we can also define

) 1 N2 .
Tlu) = 5 S U (2.3)
j=0

with additional equations similar to the above ones.

Using these properties we can show that the two coordinate systems are related by a

finite Fourier transformation with coefficients

(u | ) 1 . 2mikl
Ly W) = —F—€X -}
k (] \/1—\/‘ P N

Now, a simple verification leads us to the relation

VU = exp (2—’#) UVt (2.4)
which, together with V¥ = 1 and UM = 1, fulfill the conditions which characterize a
generalized Clifford algebra [7-10]. Here, however, we will concentrate on just one special
feature exhibited by such a set of operators, viz., that the set of N? operators,

(m n

Sl (m, n) = W

ymn=01.,N—-1,



constitutes a complete orthonormal operators basis, with which we can construct all possible
dynamical quantities pertaining to that. system [6]. In this way, an operator decomposition
in this basis 1s written as

. N4

O= 3% O(mn) 8y (m,n) | (25)

mn:

where
O(m.n)=1r [‘a‘; (m, n) ()] .

A very interesting property manifested Ly the operator basis {Sl} is the factorization

property
. no
Sy(m.n) = H S (my, )

1=}

where the sub-bases

. (/m,‘/n,
Sy Ggomy) = L = 0,1,.5-1,

' vIi
obey the commutation relations

VU, = UV, # 1y,

‘/I|l]h = exp (%?) (,ly‘lzx . ll = l2 1

I
where h is the total number of primes factors in N including repetitions, with P a prime
factor of N. This decomposition shows that the factorized basis is constructed from operator
sub-bases, each of which associated with a prime number of states, the pair of operators U
and V of each sub-basis being classified by the valiie of the prime integer /, = 2,3,5, ... It
is straightforward to verify that the paiv [/ and V assuriated with the canunical coordinate-
momentum pair ¢ — p is obtained in the particular case /7 = o0, Then, according to
Schwinger, due to this factorization property and mutnal orthogonality, each of these sub-

bases is associated to a particnlar degree of freedom of the physical system.

5

In order to emphasize the complete symmetry between I/ and V', we want. also tu observe

that we could have introdnced the new form for the operator basis elements

5 umve immn vrym ~immn.
Sy (m,n) = N exp( N )= N exp( N ) ,

which preserves all properties already discussed under the snbstitntions {7 — V and V —

U, combined with m1 — n and n — —m.

For different degrees of freedom we must conveniently chuuse the range of variation of the
state labels in order to correctly treat the system kinematics: for instance, it is impurtant to
emphasize again the canonical case, i.e., I = oo, for, in such a case, the unitary operators

are immediately identified with the well-known shift uperators

‘/' - CiqP

U o @

when one cunsiders the symmetric interval mn = —2:1 4=l and then takes the

N — oo limit by prime numbers [6]. However, it is also pussible to perform a constinction
of the unitary operators U and V in such a way to obtain an explicit “angle - action™ pair,

characterizing an Abelian two-dimensional rotation; in this case it can be shown that,

2T .
V sexpli—J 2.6
o (7 N ) (26)

[/ — exp (7@) . (2.7)

Here, the interval of variation of the state labels are suitably defined to be mn =

b1 ...,+ﬁ2;] and n = — M1 ...,+—’\%7r in such a form that, in the himit of N - 0o,

2 z
one recovers m. = {—o00,...,+00}. mnning by integers. and n = {—a, 7} [11].
For the sake of cumpleteness it is important to go back to the uperator decumpusition

procedure, Eq.(2.5), and discuss the importance of the particnlar choice of the operator

basis. In fact, in order to emphasize the discrete phase space character of the deseription,



it was shown that [11], the Fourier transform of the original Schwinger basis S, (1, n) must
be considered so that a disciete Weyl transform can be directly identified out of the de-
composition scheme. With this new basis it is straightforward to recover the well-known
Weyl-Wigner transformation for the canonical continnons case as well as a transformation
for an angle - angular momentum degree of freedom as special cases of the N — 0o limiting
procedure. Furthermore, since the Schwinger basis S, (1, n) is not invariant inder a modulo
N operation when the state labels are unrestricted in their domain, it was shown that a new

operator basis could be devised in urder to preserve this symmetry, namely [12]

N
HI H Z Z
(L

e‘(p [——— (mj+nl)| ,

where

(1) = S2 (G Dy exp fimg (j, L N}

The phase ¢ (j,[; N) guarantees the mod N invariance.

II1. Q-DEFORMED ALGEBRAS

Since the Schwinger unitary operator bases formalism is constiucted out of a finite-
dimensional state space, the relabelling procedure defines the unitary shifting uperators,
which have as many eigenvalues (roots of unit) as is the dimension of the nnderlying state
space, V.

Let us now counsider the set of eigenstates of the unitary operator V. (Based on the
symmetry stated in the last section. this choice is not essential for what follows and could
be replaced by the set of eigenstates of the vinitary operator U as well.) Since {| w)},_o v,
is finite-dimensional and the unitary operator {7 shifts cyclically the states of this space, one
cannot interpret U and V as the curresponding creation and annihilation operators. In fact,
in the space of eigenstates of V' the original pair of unitary operators are represented as

-Ye 1( ) Lo = 3 v o |

10 -0

~1

= i: | (3.1)
=0

N-1
U= Z [ e ) (3.2)
=0

Nevertheless, starting from the unitary operators and making a convenient choice for the
state label range, we can construct a pair of operators which will play the role of creation
and annihilation operators in this finite-dimensional space.

To begin with, it is immediate to see that, die to the symmetry of the circle embodied
in the unitary operator definition, one is not able to fix a vacuum state solely from kine-
matical considerations, i.e.. their action does not select "a priori” any particular state as
a vacuum state, since the unitary operators act cyclically in the state space. In this case,
one must adopt some criterion to characterize this particular state. This choice will break
the symmetry of the circle and is not related to the kinematical content of the description
of the physical system. More precisely, one must construct an operator ont. of the nnitary
operators in such a form to annihilate the vacuum state; in addition, we must also have a
creation operator which generates the “excited ” states of the multiplet.

The general form of the creation and annihilation uperators will reveal the possibility
of particular choices for underlying algebras. To accomplish the construction, we draw our

attention again to the relations (3.1) and (3.2). By comparison we can write these operators

as
N1
=Y g(k) F o) (i |
k=0
and
N-

Z v ) |-

The form of the creation operator only states that one jumps from the vacnum state np

to the last (N — 1) state and so on cyclically. In what refers to the annihilation uperator



we see that a particularly suitable choice for the unknown function g(k) must use an anti-
symmetric function of the state label &k so as to select the vacuum state. Now, the natural
antisymmetric periodic function defined on the circle is the sin(8) function, what requires
odd N’s. Therefore, the proposed annihilation operator is then written as
N-1gin (22
a = ‘Z“ 3((—%—-)2 oM en | .

According to the discussion in section 2. we can decompose these operators in the oper-

ator basis,
- N I ~
O=3Y 0O@mn)G(m,n)
mmn -0
obtaining
al =1l
and
VAR V) |
o =U '¥
w-w!
respectively.

The question that can be pused nuw is if there exists sume relation between the bilinear
products of the creation and annihilation operators, a, a. Starting from the Weyl relation,
Eq. (2.4), the definitions Eqs. (2.6) and (2.7), where instead of J we now use N | the
number operator and using the above expressions for a and a'. we can immediately obtain

the following relation

an! —wala =w V.

Therefore, we have seen that. starting from the Schwinger unilary operators, the well-
known g-deformed commutation relation emerges in o natural way, when the deformation
parameter is a root of unity. Furthermore, it is immediate to verify that the creation and
annihilation operators, a and a' propused here are divectly related to the & and ¢ functions

proposed by Floratos in his discnssion of g-deformed algebras for the bosonic case [3].

0

IV. REMARKS AND CONCLUSIONS

The main objective of this paper was to show that the g-deformed algebras can be put
in correspondence to Schwinger’s unitary operator bases formalism, when the deformation
parameter is a root of unity.

Furthermore, it was shown that this formalism is the natural arena for the disenssion of
recent work on general finite dimensional quantum mechanics problems. Particularly, the
Schwinger’s formalism was used to represent any operator acting on any finite dimensional
state spaces {11,12]. To be specific, it has also been nsed to stndy the Liouvillian dynamics
in the general finite dimensional phase spaces [13] as well as to describe physical systems
from the particular case of a spin 1/2 (N = 2 space) np to the canonical continnous case (as
the limit N — 00). The special case of phase and number operators appearing in connhection
with quantum uptics has alsu been treated within this framework [14]. This latter problem,
or equivalently its Pegg-Barnett description [4], being jnst a particnlar case of the general
Schwinger formalism, can therefore be also embodied in the g-deformed algebra context

along the lines studied here.
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