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Tunneling Tilne through a Barrier 
using the Ternpu8 Operator 

Donald H. Kobe and Valelir C. Aguilera-Navarro >I<� 

Department of Physics� 
University of North Texas� 
Denton, Texas 76203-0368� 

Abstract 

The time a particlE' spends in a c1assicaJly forbidden region of a potf'ntial 
barrier is expressed as an expect.ation value of t he tempus operator in t.hat 
region. Classically, tempu., is canonically conjugate to t hE' eUN~ and is 
equal to the time for a conservativ(.' system. The tunneling time is calculat E'd 
by this appro8<'b for a rectangular barrier, which gives a complex tinlP. The 
imaginary part of the time is nonne~ative, so it is interpreted as a tunneling 
time. The real part gives a negative value for some values of f he paramt"tl'ls, 
and is therefore rejected because it violates causality. This tunneling time 
is compared with other tunneling times that have been suggE'sted by also 
calculating them for the rectangular barriE'r. 

PACS number: 03.65.Bz 

On leave of abllence from Instituto de Fisica Teorica, Sao Paulo, SP - Arazil. with 1\ grl\lIt 
from FAPESP, Brazil. 

1. Introduction 

Quantum mechallics ha.<; aIlSW('H'd Ulall\' qll<'stions aholll. the Illicroscopk wor!J, 
hut som£' questiolls still remain Oil£' slIch question, adJress£'d ill t his paper, is 

how loug does a quantum part ide sp<'ud iusit!P a classically forhid<l£'11 region, Two 
related quest.ions are how long does it take for a qU<l.Ut.Ulll partic!P to traverse a 
dassically forhiddell r('gion, <l.ud how IOllg does it take for a quant UI1l part ide to 
he reflected from a c1assicall~' forbidden regioll. AIt.hough there has heen inlpllse 

interest in answering these quest ions bet'ause of the neel! to design nanoscale elec
tronic devices Ilsing semiconductor heterostrudllTes, no consensus has yet euwrged 
[II-If;]. There are several different approaches to thl' above quest ious, which iu 
general give quite diffen'ut answers, Thev include t.he followillg. (1) The Ff'ynmall 
pat.h iutegral is uspd t.o obtain all awrage t.ill1(, the particle tmv('rli('s the forbid

deu region 17I-ln]. ThisF'eynman time is a complex number, and a criterioll is 
ueeded to illterpret, tIl(' real awl imagillan' part.s, (2) The Pollol;-Millf'T" limp, also 
complex, is f11<' time aVt~ra/!,e  of the qllilutal III icroc<lnollkal flux-flllX (,on<'1aliou 
fUllction 114, }.">]. (:q Tht, Il1m'll ti1lle time is t.he time a partide slwuJs in the 
classically forbidoen IT'gion 1161-119). It is obtaillf'd 1)\' di"i<Iing tIl<' prohahilit.v of 
finding llH' partide in the barrier bv the in<'irklIt prohability flux. ('1) Thl' /lOI/.1/.(.·P 

lime is t he I illlC requircd for a parlirk 10 traverse the harricr wheu it s sp('c(1 is 

equal Lo the magnit noe of its illlaginar~'  momentum illsi<Ie the harriN divided 1>y 
its mass [18,20,21. 221. (S) The Martin-Landaner I1.me Uses a nwthod ill which 
Lhe barrier is modulated by a small oscillatory perturhation [18,201. It is ext elided 
to arbit.ran' potclltials. )'('gartlkss of ,vhet.her fr('(' wan' propagatioll or lUlIlleling 

is involved 12:31. (6) The Lam101' timf' [24, 25, 161 is obtained by usiug a neutral 
part.icle wit.h a magnet ic lllorncut and I!1ca..<;uring it.s pf(~CeSSioll whell a weak mag
ueLie field is applied ill the classically forhi(ldeu 1'egioll, (7) The Ihiuikc1'-Lanc!aua 
timp is ha.<;ed Oil the ellt'rgy lllodniatioll of the heam of iucolllillg pari ides 1:20, :261. 
(8) The phase delay 117lw is oht ailIct! 1>" <Ii IfelTl1liat illg wit h )'('s!)('d 10 t !II' energy 

t he phase shift duc to tl\(' barri('f [271j:n I. (9) The Hohm fimp lIS('1i I he qual1t1l11l 
poL('lIt ial 111l'l.hotl alit! int <'1'pr<'l at iOll of <Jnalll nm lIl('chauics of ()m'id Bohlll j:l21
Fnj. (10) NnllH'rical sinl1\latiolls 1:38. :~9, ,101 havt' e!uciJated the dYllal11i<'s of the 
wave fUllctioll ill harrier prohlems amI have given insight iuto analytical methods. 
(11) The lIlethoo of Olkhovsky anti Recami 1411-14~llllakes  usc of t la(' cxp('cf at.iOll 
value with resp('c\ to thp e\lf'rg,· of their time op£'Tator. (12) The PlUjf'c\.iou OJ)£'T
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ator method of Muga, et al. [441-[491 gives agreement with many previous resulf.s 
and also gives new results. (13) The stay time 1501 is based on the Feynman path 
integral and gives a real time. It gives insight. into the ('o\llplpx time of method 
(1). In this paper we give a new approach to the above question of how long a 
particle spends inside a classically forbidden region. We calculate an expf'dal iou 
value of the tempus operator [511 in the classically forbidden re~ion.  The templl-S 

operator is the operator canonically conjugate to the energy operator. The time of 
evolution is still a parameter. Classically a canonical transformation can be made 
to a new set of canouical variables, in which the new canonical 1lI0melll Ulll is III(' 
energy and the new canonical coordinate conjugate to it is called tempns 152. 5:3\. 
For a conservative system, tempus is numerically equal to t.he time of (!voluf.ioll, 
but is conceptually different from it. Since the Poisson hracket is a cllllollical 
invariant [541. the Poisson bracket of tempus and energy is equal to one. When 
the system is quantized the commutator of the tempus operator and the pnergy 
operator is equal to ilL. The argument of Pauli 1551 that a time operator in quan
tum mechanics does not exist does not apply. since the domain of definition of the 
tempus operator is restricted [56, 57, 43, 42, 511. The time that a quantum parti
cle spends in a classically forbidden region is calculated by taking an "expectation 
value" of the tempus operator using the wave function in the classically forbidden 
region. Which of the large number of tunneling times proposed is correct can 
only be decided by experiment. Different types of experiments may give different 
results for the tunneling time. The tunneling times based on the use of some kind 
of clock raises the question as to whether or not the result is independent of the 
type of clock used. If it is independent, then a universal intrinsic tunneling time 
exists. Very few experiments haven been performed up to now, and so the issue 
is undecided [581. In this paper the new approach to the tunneliug tin1£' question 
is given in Sec. 2. This new approach is applied in Sec. 3 to a rectangular harrier 
and the real and imaginary parts of the time are obtained. In Sec. 4 this method 
is compared with other methods for the rectangular barrier. The con('}usion is 
given ill Sec. 5. 

2. New Approach 

In this section we discuss a new approach to the time a particle spends ill a 
classically forbidden region based on the concept of the tempus operator. The 
classical concept of tempus is defined and the quantum tempU8 operator is given. 
An expectation value of the tempus operator in the classically forbidden region is 
defined. 

In c1a~sical  mechanics a canonical Iransformation can be made from the old 
canonical variables (q, p) to new canonical variahles (q', pi), where q (q') is the 
old (ucw) generaliz('d coordinate and p (pi) is t.he old (u('w) canonical moment.um 
conjugal (' 10 il. If we uow c!loose pi to hI' Ihe cnergy E. til(' callollical g('ueralizpu 
coordillate q' conjugat(' to it is calkd teTllpus, and denot.ed hy T [:')2. 5:~j. Becausc 
('uergy alld kmpus are canonically conjugate and the Poisson bracket is a canon
ical invariant IStll. l'n('fI~~' and tP.TII]Hl," sal isfy t.he sam£' Poisson bracket.s as q and 
p sati~fy. 

{T, E} 1. (2.1 ) 

In quantum mechanics variables are replaced by opemtors and Poisson brack
el s arc replaced hy ('01l1mul ators. Therefor(' the energy l~  is replaced by an energy 
operator E, and tP.lIIIJUS T is replac('d hy a tp.mpus operat.or T. Together t.he t.wo 
OP('Hl.ton; satilify t.he standanl conlllllltal,ioll relations of quanl IIUI mechanics, 

Ii. EI iTI, (2.2) 

correspondiug t.o Ihe classical Poisson bracket in E<d2.1). A realization of the 
elwrgy operator it ~= E and the tempus operator T= ihH/lJE sat.isfies Eq.{2.2). 

The time-independent. Schrodinger equation for a part.icle of mass m and wave 
function ~)  (x) in one dimension is 

2
Tl " 

--\7-~I(.r)  l "(.r}l.ir(.r) .~ H q>(.I'), (2.:3)
2m 

where \' (;1') is the potential ('nerg~r  and f: is Ihe' ('ll('rgy eigenvalue. The Wav(' 
f\luction depends in general ou the ('nergy. 

\\"1' lakp iln "exppclation \'alue" of the tl'1/1]11/8 oppralor to be Ihe IlInneling 
time. A IWW t~'J>e  of "exp('dalion valm'" for t.he tPTllPUS operat.or in the barrier 
region B is ddined as 

'f' )\' -I {d " 7' 
I == <- > JV iB .q! 4' I (2..1) 

where Ilw nOrlwtlization inl ('gral N is defined as 

N [ rI.I'~'·~'. (2.:;)./B 
The tf.1IIP1L.'> operator f ihtJ/fiE act.s on t.he energy parameter ill the WaVe7C 

function and thus is HOt. a Hermitian operat.or in t.he Hilbert space. Therefore 
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Eq.(2.4) for the tunneling time is complex T = TI + i T2, where the real part is T] 

and the imaginary part is 

~  Ii 8lnN 
72 = ~m < T >= ---. (2.6)

2 8E 
A criterion is needed to interpret t.he real and imaginary parts of T a~ "t.un

neling times". 

3. Tunneling through a Rectangular Barrier 

In this section the new approach is applied to thf' case of a reet angular barrie!'. The 
Schrooinger equation is solved exactly for this case and an expe<'tation valuf' of 
the tempus operator is calculated. The real and imaginary parts of I\Il expectation 
value of the tempus operator are plotted for different energies aud thickuf'sses. 

For a rectangular barrier the potential energy is 

~r(:r)  = { '-''0 if - a/2 ~:r  ~  a/2 (:~.l  )o otherwise 

where the barrier region B is (-a/2, a/2) in Eqs.(2.4) and (2.5). The solutiou of 
the Schrodinger equation in Eq.(2.1) for t.his pott>ntial is tltt> wave function 

eikx + Ae-ikx for x < -a/2 
1/1:- Be/(x t Ce-KT for - a/2 ~  x ~  a/2 0·2) 

{ Deikx for;1' > a/2 

where the wave number k is 

k - (2mE)'/2/n, (:~:\) 

II: ~-12m(Vo - 1'7)J I/2 /r" (:U) 

and the energy E ~ Vo is equal to or less than the barrier height. 
For the wave function and its first derivative to be continuous at J' =- -a/2 

and at x = a/2 it is necessary for the complex coefficients A. B. and (' to satisf~'  

A = -i(k5/2Kk) sinh(Ka) D, (:~.:)  ) 

B -:: expl(ik - K)(1/21 {(K I ik)/2K} n, CUi) 
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and 

C = expl(ik 1 K)a/2) {(K - ik)/2K} n. (:l.7) 

in terms of the transmission amplit udf' J). wllf're the charad.Pristic wave IIllIlll)('r 
ko is definf'd as 

"'0 (21T11o)1/~/11 (:t8) 

From Eqs.C~.:3).  (:~.tl)  alld (:uq WI' han' kl~  I;~  I k'.2 Th(' ('Olllp!('X trilllSlllis· 
sion aInplit 11<1f' J) ntll be' writ tPII as 

J) ex p( i ,jJ ) T \1'.2. (:\.q) 

whf're t he phase rj> is 

(jJ -ka 
[ 

(k'.2 _ ",.2) ] 
I arctan . t.anh(,...a).

2,...k 
(TIO) 

and til(' t.ransmissioll (,of'ffil'ient T IJ) 1'.2 is 

(2""k / k5)'.2 
(:U 1)

T . 1<'( (2 k/ 'o ")"sm l~  I\a) I ,....: "ii ~ 

When Eq.(:3.2) for the wave functiOlI is suhst.ituted into Eq.(2.:J) for the nor
malization il1te~ral.  and t!lf' [('snit is snhstitutrd into Eq.(2.f;). Ill<' ililagill<ll.\· part 
of the cOlllPl<'X t UlllW)illg Iilll<' is 

12 kn)'2 [(Oknf!(::!hll)-l Sillh(2/'a) I 'l(k:2- ,,'2)/"'I~1  .,
- I ------- ---------- (.1 I::!)(In k siuh'.2(lI:a) I (2/\klkif):! . 

I [mSh(2I',a) - (2Kn)-I Sillh(2Kn) I ('2K/kn)'.2] 
- 2(11/ kof - ('2h'n t 's inh('2f;a) I (,,2 - k'.2)/kg- , 

in lerlIls of Ill<' charad<'fistil' lillll' 

In 11/'2 \ (l. p.n) 
wllNe k, "'. alld ko are giwll by Eqs.I:!.:3). (:~.,1) and (:U~),  r("sp('ctin,)y. )o;cIllatioll 
(:3.12) is plotted in Fig. :U a.s a. funetioll of til<' dilII('nsionless CtWlgy F: E/la 
and thf' dimcnsionkss width ako. For all \'alnes of til<' parameters the illlaginary 
part 12 is nOllucgatiV<'. so that it satis(jes callsalit~·  ill thf' seuse' tllat the' particle 
dOl's lIot ('Il\('q~(' frolll III<' far side of till' harri("r I)('fol<' if arriH's at l!r<, lWitr sid£'. 

(i 



10 
N ... 

o 

3 
0.8

aka 
FIG, 3.1: Imaginary part of the tunneling timf' T2 in Eq.(3.12). in units of TO 

h/2Va. is plotted as a function of the energy e = ElVa and the barrif'r width uko. 

The real part Ilof T = < T> in Eq.(2.6) is obtaillpd by suhstitutillg j·;q.(:J.2) 
into it and taking the real part, which gives 

~ = aka {Sinh2(Ka) - 2~2Ka)-lsinh(2Ka) 1 (k/ko)2 
(:J. J.1) 

TO klko Sillh-(Ka) +(2Kklka)2 

(2Ka)-1 sinh(2Ka) - 2(l>:a)-2 Siuh2(lw~ + I} . 
2[(2Ka)-1 sinh(2Ka) f- (K2 - P)lkol 

This expression is plotted in Fig. 3.2 as a function of E = EII'a and ako. 
For some values of the parameters, Tl becomes negative, which violatf'S causality. 
This violation of causality for some values of the parameters is sufficiellt reason 
to reject this expression as a legitimate tunneling time. 

5� 
..... 0� 

-5 

ako 5 
FIG. 3.2: Real part of the tunneling time TI in Eq.(3.14, in units of TO 1illl l). is 

plotted 88 a function of the energy e = E IVo and the barrier width ako. 
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4. Other Approaches to Tnnneling Times 

III this section some other Ill<'thods that have beeu proposed for the tunneliug 
tilll(' all' sllrn'Y('d and applic'<! to a )'('clangular barrier. 

4.1. Feynman Path Integral Approach 

The Feynman pat.h int.egral has been another approach t.o tUIlneling times [71
II :31· FOI a n'eI allgular harrin of hc'ight \ (l, the FC'ylllllan time TF for tunneling is 
complex III 

(lqi ndin T 
/r:' -11- I /--- (4.1) 

r iWo 2 (Wo 

The phase' ¢ is given in Eq.(:t 10) awl t hp transmission ('()('ffiC'ic'\It T is givpu 
ill Eq.(:3.11). 

Tht, real part of t.he Ft"ynJllan t unnding time is obtained hy substituting 
Eq.(3.10) for tht" phase aud Eq.(3.4) into Eq.(1.l). \\'hen t,he rpal part is taken 
we obtain 

IRe /F • '" [(I\~ - k~)lk5 j (2KU)-ISillh(2KU)] 
-- Un '), ') . (4.2) 

/0 (2I\klkfj)1. f sinh-(Ku) 

where the characteristic tillIe 70 is defined ill Eq.(3.1:3). This tUlllleling t.ime is 
plotted as a fUllction of the energy F = E'I\"o and the wiclth ako in Fig. 4.1. The 
real part of t.he l<eymnan tunneling time is llonllegative, so it can be t.aken as a 
legit imate tUllneling tillle. 

aka 
FIG. 4.1; Real part of Ff'ynman time TF for tunneling in Eq.(4.l), in units of 

TO" 1i /21 ll' is plottf'C1 as a fund ion of the energy c = E/1"o and th€' barrif'r width ako. 
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The imaginary part of the Feynman time is obtained by substitutilll?; Eq. (:l.ll) 
for the transmission coefficient and Eq.(3.4) into Eq.(4.1). When the imaginary 
part is taken. we get 

~m TF ,--- ( )2 [(Kn)-2 sinh
2
(Ka) - (2/W)-1 Sinh(2/W)] 

(,1.~  )- aka 2 " 
TO sinh (Ka) ~. (2I\k/k5)~ 

This time is plotted as a function of E and aka in Fig. 4.2. 
The negative times in Fig. 4.2 for some parameters violate causality, which 

provides a sufficient reason for rejecting t.he imaginary part of the Feymna.n lime 
as a tunneling time. 

It 0 
~ -2 
E: ... 1.0 
.... -6 

~~.> -/ 0.8 
~.......z 0.6 

2~ 0.4 E 

ak 3 4 0.2 
o 5 

FIG. 4.2: Imaginary part of the Feynman time TF for tunneling in Eq.(4.3), in units 
of TO = hI2l'o. is plotted as a function of the energy e = ElVa and the barrier width 
aka. 

4.2. Pollak and Miller Approach 

Pollak and Miller 114, 151 applied the quantal flux-flux correlation fUlldioll to 
barriers to obtain a complex tunneling time, in analogy with the use of classical 
flux-flux correlation functions to obtain characterist.ic times in chemical syslellls. 
The imaginary part of their tllll11pling time is PI 

TPM=~m{_iTialnD} = _~81nT (.1.4)
iJE 2 DE ' 

when Eq. (3.9) is used. This expression is similar to the imaginary part of Eq. (4.1), 
except for a minus sign &lid in the derivative the total energy E is lIsed insl ead 
of the height of the barrier Vo. 

9 

WIH'n the trallsmission coeflicienl ill Eq.(1.II) is sllhslitllted info J·;q.{-l.·l), 11)(' 

result for Ihp redallglliar harrier is 

(~~)~ [~_=-~2 /A~)J"a )~~~~~2(KO) - (2"0)-1 sinh(2Kn l]TPM (.1.:' ) 
/0 2 Sillh'~(liO) I ('2""/k~)'~  

This expH'ssion is plolled in Fig. 4.:~  a.<.; a flllWlioll of 1he elIerg\' > alld tllf> wid Ih 
a ko and is llollllegal i\,(' for all paralll(·INS. 

2 5 
a. 

.... 0� 
-5� 

5 

FIG. 4.:1; Th<' imaginary PIU't of the Pollak and MilIf'T tunneling time TPM in 
Eq.(4.5). in units of TO 11/2\'0. is p)oltl'd <IS 11 function of tllP ('1ll'11(Y E 1-:/10 
and I lip barriN width a"o. 

The real part of I Iif' pxpression ill hrac('s ill Eq. ('1.1) gin's t lu' real part of I he 
Pollak f\ I iller lime 

(14)
I \R( J_i II ilJ.t~.-'-)_ } 11- (-l.ti)'/'!l! \ ;1 r; iI!',' . 

when Eq.(:l.9) is llsl'd. This pxpressioll is similar 10 thp rpal part of Eq.(4.1), 

excepl for II}(' minlls sign and in I Ill' derintl in' tIu' 101 al pll\'rgv !,' i~ used instead 
of I h(' hei~ht  of the barripr \'0. 

When Eq.(1.1O) is sllbstillllpd into Eq.(,Uj). we obtain for t!Ie rcal parI of Ihe 

Pollak\Jill('r till1e 

7~M aka ako lk:?(f,':? - k 2 )/k5 I (2"'0)-1 sillh(2/in ll 
----- (1.7) 

In 2(klko) (k/kn)--1(2Kk/k~f I sinb:?(".n)1 .--

10 



The first term on the right-hand side of this equation is due to the contrihutioll 
of -ka in the phase <P in Eq. (3.1O). The second term on the right-hand side is 
the phase delay time discusscd in Sec. 4.8. Equation (1.7) is plott.ed in Fig. 1.1 
as a function of the energy E and the width aka. 

l 2 
~~  01.~ 

-2 

1 
0.8 

0.6 
E 0.4 

0.2 r 1 ak 
o 0 

FIG. 4.4: The real part of the Pollak and Miller tunneling time TpM in Eq.(4.7), in 

units of TO = h/2t'O , is plotted as a function of the energy c = F, flo and t hI' barriN 

width aka. 

4.3. Dwell Time 

The dwell time [16\-[19\ is defined as the relative probahility for a particle to he in 
the barrier 8 divided by the probability current density J of the incident partidp, 

1D =- IB d:r1/J·~J (-uq
J 

The probability current density .J for all incident particle wit II a wa\'(' fllnd iOB 

1/Jinc = exp(ikx) as in Eq.(3.2) is 

.J -=- iRe ~':nc(p~./m)~]i7lc .,. hk/Tn, (.UJ) 

where Px = -ina/ax is the linear momentum operator. For a rectangular harrier, 
the barrier region B is the region from (-a/2. a/2). When Eq.(2..5) is evaluated 
for a rectangular harrier using Eq.(3.2) and is substituted into Eq.(4.8) alollg with 
Eq.(4.9), the result is 

TD ( [(2I1:a)-1 sinh(2Ka) + (1\2 - k2)/k~]  

- = 2ak) (1.10) 
TO sinh 2(Ka) t (2K.k/k6)2 

11 

This ('xpre!i!iioll in plotted ill Fig. 4.~ as a. function of t.he energy alld the width 
of the harrier. The dwell time is a measure of how long the particle stays in t.he 
harrier, regardless if it is ultimately refleeted or transmitted. It is positive for all 
patalllPl ('rs. 

5 

FIC. 4.5: Dwplltirne TV ill Eq.(4.1O), in units of TO , lz/2l·o. is plotted as a function 

of the pn('r~'  E E It '0 and tht' harrier width uko. 

4.4. Bounce Time 

The bounce time 118,20,21, 22J is the time that. it takes a particle in a barrier 
B with a velocity which is the magnitude of its imaginary momcntum '/I~(;r)  -c' 

[b' - \. (.r) p/2 divid('d hy its lIlass m tot ravel t.hrough th(' harrier 

IB l m 
d.r---. 

B n/'i(.r) 
(·1.11) 

For a H'('lalJglllar barriN of width (I thiH bOlllJ('e time reduces to 

r11 

II) 

ako 
/;/kl)' 

(·1.12) 

wlwn writlell in din1('llsioll1<'s!i form. 
TIll' addil iOB of a small oscillatory pNt Ilrbation to I he potential ~ives  an adi

abatic regime for low freqllen('y and a high frequeuc)' regime [18, 20]. The two 
regimes arc separah'd by a frequency corresponding t.o the houllce time. 

Figure 4.6 shows the boun('e time as a function of the elJergy E aud the diuH'll
siOldelis widl h ako. It is Ilollliegativc for all pal'amet(·rs. 

12 
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FIG. 4.6: The bounce time TB in Eq.(4.12}, in units of TO = h/2Vo. is plotted as a 
function of the energy c = E/\'o and the width ako. 

4.5. Martin and Landauer Time 

In 1993 Martin and Landauer 1231 reconsidered a met.hod 11s£>d by Hiittiker alld 
Landauer [18, 20] in which the barrier is modulated by a small oscillatory pertur
bation. For an arbitrary potential ban·jer prf'ceded hy a region of fref' propagal iOIl. 
they find that the interaction time is 

8In(8D/8E)!� (1 '»
TML=1i BE '� ,.1.) 

1 

where D is the transmission amplitude. They determine the interaction time 
by observing how the transmission of the barrier with an oscillaton' lIlodulal iOIl 

superimposed. upon it begins to deviate from adiabatic behavior. 
For a rectangular barrier, the transmission amplitude D is gi\'en ill Eq.( :1.9). 

When this expression is used in Eq.(4.13}, the Martin-Landauer time lMl, is ob
tained for a rectangular barrier. Figure 4.7 shows TM L for a rectangular barrier 
as a function of the dimensionless energy c and the dimensiolllf'SS widlh nko. 
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4.6. Larmor Time 

'I'll(' Larll10r pr(,(,f'ssioll 12,1. 2:'] of a TWlllral parI ide wi l.1l a magllet ic III01ll<'lll ill a 
weak lllagllefir fidd (',UI 1)(' IIs('(l as a clo('k. Biittikl'r 1161 show,,<! Ilia! if IllP spill 
of 1he parI irk W('J"(' polarizl'd ill I hI' !I din'd iOIl p('rpendicular 10 lite dirl'ctioll 
of th<' maglletic jiPid (z din·('tion) illld Ihe dirf'dioll of lIIol.ioll of 1111' part i('k (.I 
dirf>('tioll), tlU' li1llP ass(J('jaled willt th<' pn'('<'ssioll of (1)(' spill is 

(lch
Ii,

11 ii-� (-1.1 '1) 
iI' ~) 

The t.ime associal ('d wil h Ihp rot alioll of Ih(' spill out of Ibp .qJ plalH' is 

11 ilill T 
(1.1:-, )

2 il\'o
Ii, 

This ('ff<>d is <!Uf> 10 Ihe fact that tlU' spill <lowII stall' bas a dillNent ellerg~'  

Ihall tIt(, spill IIp slale. alld ('oIlS('qlJ('lllh' Ih(' two spill states aI(' IrallsllliUed 

I hrough th£' hani£'T dif[<>ft'lIt.ly. 
As shoWII b\' SokolO\'ski all<l Baskill 171. tllP tinl<'s in Eqs.(,Ll4) and ('1. ]:"',) are 

the negal.in' of I.hf> real and imaginarv paris of Ih(' h'nllllilli lime ill "~q.(,1J),  so 
Ij~  c -Rl'I[- and It -~ml"..  

BiittikN IJ 61 argued Ihal a tot al LarmOT IUllIleliug Iimp II should he specified 
by takiug the sqnarf' root of Ilw SHill of tlH' squarf'S of the tlUllwlillg Iillws ill 

Eqs.(4.14) and (4.J,')). which gives a IIlefL'illT£' of the total rolalion, 

I r I(I n~ I (I n~ I' !~ "'·1 .� (·1 Hi) 

H 



where TF is given in Eq.(4.1). 
For the rectangular barrier the total Larmor tUllllelillg tilll(' 1Z' iH oht aill('<l 

by substituting the negatives of Eqs.(4.2) and (4.3) for Eqs.(4.14) aud (4.1.')), 

respectively, in Eq.(4.16). The result. for the total Larmor tunneling tillle is plotted 
in Pig. 4.8. 
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5 

FIG. 4.8: Total Larmor tunneling time rl' in Eq.(4.16), in units ofro li/'1.\"o. as a 
function of the energy E E / t'o and the barriE'T width aka,c-:: 

4.7. Biittiker and Landauer Time 

In 1985 Biittiker and Landauer [20, 261 suggested using a modulat('d iucident 
amplitude, which was investigated further by Martin and Landauer [:nl. This 

method yields the Biittiker-Landauer tuuueling time TBL defined aH 

iJlunl
18l, !I-- (-1.17)

DE 'l
where D is the transmission amplitude. When the transmission amplitude /) in 

Eq.(3.9) in terms of the phase <P and the transmission coefficient T is subst.ituted 
into Eq.(4.17), we obtain 

" ')] 1/28¢ ~  Ii 81u T ~ 

C1.lR)'HI. -= (h 8E) I (28£) .[ 

The Biittiker-Landauer time T81. is equal to the magnitude of the cOl1lplex 

Pollak-Miller time in Eqs.(tl.4) and (4.6), TBL =. IT~M  t T~~111/2::  I,;,,\[ I ;(/,,\/1· 
For a rectangular barrier Eqs,(4.7) and (4.5) can be used for the real and 

imaginary Pollak-Miller times in Eq.(4.18). The resulting Biittiker-Landauer time 

,TBL obtained is plotted in Fig. 4.9. 
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FIG. 4.9: Thp Biittiker-LandallPr time THl, ill Eq.(1.18), in units of TO -c' 1I12\'(), is 

plot ted as a flllidioll of til<' energy E' Ell '0 and th<> barriPr width a~·o·  

4.8. Phase Delay Time 

The phase delay time 1et> is defined a:;; 1271+311 

nt:J.1fi
'<I> 11- (,1.19)

iJE . 

when' 6.<jl is the phase chauge due to the preHE'Il<'C of tht' harrier. 
For the rectangular harrier the phmw chauge t:J.¢ is dpfiuE'd as 

p.2 - .....2) 1 
6.<1) ka 1</) an' Iall tallh(h'o) , (4.20)

[ 21\k 

frolll Eq.(:l.lO). \\'hen Eq.(4.20) is differentiated with respect to the enerj?;,Y, and 
written ill a dimpnsiolll('sH for III , WP find that for thp r('ctan~ular  harrier the phase 

<Ida,\' t illl<' (t1> is 

(ako) Ik'2(,,2 - k2)/k~  I (2 ..... a)-1 Hinh(2fia)1'et> (4.21 ) 
(0 (k/ko)'- [sillh2(~;)-1  (2h/k5)'2j 

where 10 '1/2\'0 is a charactpristic time. Equation (-1.21) for the phase <Ielay 

lime is plot tf·d ill Fig ,1.10. 
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FIG. 4.10: The phase delay time Tfb in Eq,(4.21), in units of TO -: T1/2l(). is ploll('d 

as a function of the energy IE = E/Vo and the harrier width ako. 

5. Conclusion 

\Ve give a new formulation of the tunlldillg lime as an expectatioll vah\(' of lhe 
tempus operator in the barrier region. The templLS operator, conjugate to the 
energy operator, is not. Hermitian and only acts on the energy as a paramder, so 
its "expectation value" is complex. For a rectangular barrier of widt.h a and height 
Vo we calculate the real and imaginary parts of this tunneling time, and plot I hem 
as functions of the dimensionless energy c = EIVo and barrier thicklless ako, The 
imaginary part of this time is nonnegat.ive for the rectangular harrier, wher('l\s the 
real part is negative for some values of the parameters. The tunneling time has t.o 
be nonnegative for causality not to be violated, so the real part of th{' cakulatf'd 
tunneling time if. rejected, Only the imaginary part of the tunneling time. which 
of cours~  is a !elll number. has physical significance. For the rectangular harrier 
we also calculate other tunneling times that have been proposed, and compare 
them with our results. The other tunneling times we calculate for the redaugular 
barrier are the Feynman lime from the path integral method, the Pollak-Miller 
time, the dwell time, the bounce time, the Martin-Landauer time. the Larmor 
time, the Biittiker-Landauer time. and the phase delay time. 
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