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Singular potentials in Quantum Mechanics

V. C. Aguilera-Navarro
Instituto de Fisica Teérica - UNESP
01405-900 Sao Paulo, SP - Brazil

E. Ley Koo
Instituto de Fisica - UNAM
01000 México, DIF

This paper is a review of some mathematical mcthods as recently developed and applied to
deal with singular potentials in. Quantum Mechanics. Regular and singular perlurbalive methods

as well as variational lrealments arc considered.

1. Introduction

Since the papers by Klauder {l], Ezawa et al.[2]. and Detwiler and Klauder [3] singular
potentials have been receiving increased interested in the literature [4]-{18]. Th_ese po-
tentials are present in a number of situations which are mathematic'fll'ly challenging a'nd
physically interesting . As is well known, standard Rayleigh-Sc.hrodmger perturbtft_xve
method are of very limited help in cases where singular potentials are prt?ser}t, falllmg
definitely when the singularity is of high degree. In such cases,.the po.tentxal is sau.i to
be supersingular— a quantitative classification of the potential smgulanty may be given
in terms of the analytical results obtained by Harrell, as we shall discuss later in Sectwn
2. In other words and in terms of perturbation theory, a potential is called supersingular
if its matrix elements in the representation defined by the unperturbed eigenvectors are
infinite or do not exist. In consequence, we must not expect to be abl'e to find a con-
ventional perturbation (power) expansion for either the eigenvectors or eigenvalues. A_s a
matter of fact, logarithmic term and fractional powers of A may appear in the p'erturbatxve
expansion. Such nonpower expansions are called singular perturbalive ezpansions.
The Hamiltonian we will be mostly dealing with is given Ly
d? s A
H=-—(—l;§+.n +m-';,(!>0 (1.1)
Due to the graphical appearance of the term A/{x|®, the system described by Eq. (1..1)
is usnally called a spiked oscillator. Depending on the magnitude of A, we can classify

three kinds of regimes, namery, woan, 1o ._

of the parameter A, the spikelike term has little effect on the harmonic vsctllator ui ure
region away from the origin. However, for A big enough it can temporarily dominate the
oscillator in a large interval of z values. These situations require different perturbative
approaches which will be discussed in Section 3.

One peculiar feature of the Hamiltonian (1.1), when a is sufficiently large, is that its
perturbed solution, when it exists, may not converge to the harmonic uscillator solnution
as A — 0. This unexpected behavior, first mentioned by Klauder [1], was said to be a
vestigial effect of singular potentials (2}, and is presently known as Klauder's phenomenon.
What this effect shows is that once the perturbation is turned on, it cannot be completely
turned off any more. As commented by Harrell [4], from the work by Ezawa et al. [2] it
follows that Klauder’s phenomenon occurs only in one dimension.

In the next Section we discuss the essential features of singular perturbative expansions
as studied Ly Harrell. In Section 3, we address the case of nonsingular perturbative
expansions related to weak and strong couplings. Variational methods are discussed in
Section 4. Finally, some works that are being develuped by the authurs and collaborators
are discussed in Section 5.

2. Singular perturbative expansions

A variational treatment for the ground-state energy of the spiked oscillator made by
Detwiler and Klauder [3] leads to upper bounds for the first energy corrections. These
corrections are proportional to AInA when a = 3 and proportional to AV when
@ > 3. These results were proved to be currect by Harrell, who also found the lowest-order
corrections to the ground-state energy for all positive values of v {4]. Harrell elaborated
on a special perturbation theory, named singular perturbation. theory, and determined
the leading contributions to the ground-state energy of the spiked harmonic oscillator
described by the Hamiltonian Eq. (1.1) with small value of A. Harrell’s results are the
following

Eo(\) = 3+ [2r(1/4)/\/7?] A+ [16/VA] X2 In A4+ 0(0), o =5/2 (2.1)
Fo(A) = 3+ [2r((3 - @)/2)/Va) A+ [A0(1 = )™ [ VAT (1 + )] X 4 O(3),
5/2 < <3 (2.2)
Eo(\) = 3- [4/ﬁ] AlnA- [nwﬁ] A+0(A\n2)), a =3 (2.3)
Fo(A) = 3+ [40(1 ~ vy yar(1 + | A = [40(6 - @)/2) /v - 3] A +00¥),
3<a<d (2.4)
Fo(A) = 3+ [AD(1— )/ V/aT(1 + VX +00), o> 4 (2.5)

where 7 = 0.577216... is Euler's constant, and v = 1/(a-2).
Notice the presence of logarithmic and noninteger-power terms in the above singular
perturbative energy expansiuns. The particular case o = 5/2. for instance, the expansion



Eq. (2.1) shows that there exists at least one perturbative contribution between the first
and second power of the coupling constant A.

Examples of occurrences of logarithmic terms and fractional powers of the perturbative
parameters can be found in physics. The low-density expansion of the energy per patticle
of a many-busun system at zero temperature is given by [19]

E/N = Copa [L+ Ci(pa)'/ 4+ Cy pa’In( pa®) + Cy pa’ + .| (2.6)

where C; are constants and the dimensionless smallness parameter, that plays de role of A,
is expressed in terms of the density p and the scattering length @ as /pa®. The electron gas
system alsu admits of a weak as well as a strong conpling singular perturbation expansions
[20].

It is very difficult to obtain the next terms in Harrell's singnlar expansions Eq. (2.1)-
(2.5). Indeed, up to our knowledge, they are not known yet.

Other studies and approaches have been done for spiked vscillators. In the remaining
sections, we will report sume recent works treating this problem using perturbative and

variational methods.

3. Nonsingular perturbative expansions

In this Section we will be mostly concerned with perturbative treatment of the spiked
oscillator with « < 5/2. For this range of values of the parameter «, there is some hope
in using standard (nonsingnlar) perturbation theory.

Let us rewrite the Hamiltonian Eq. (1.1) in the form

o
i = -3‘71 et A = Ho+ Ma®, x>0 (3.1)

and consider the (unperturbed) eigenfunctions ¥®(x) of Hp that satisfy the Dirichlet
boundary condition ¥{?(0) = 0. The eigenenergies associated with these eigenfunctions

are given by
EM=3+4n, n=0,12,... (32)

In order to get the perturbative corrections to the energy, two cases must be analysed
separately. First, we consider the weak interaction regime (small values of )) and then
the strong interaction regime (large values of A).

3.1. Weak coupling perturbation expansion
For small values of the perturbation parameter A, we define the weak coupling perturba-
tion expansion{11]

Fo=E + SO0+ SAt 4 .. (3.3)

By using standard perturbation theory, we obtain

S = (8~ a)/2) .
F‘(3~“/2) (3.4)

and

G2 2" (a/2)2

5 o g,‘; 4n(2n + 1) (3:5)
where (z), is the Pochhammer symbol[21]. These results for S, and S, are valid for
a < 5/2. For a =5/2, Eq. (3.4) is still valid and reproduces the result Eq. (2.1) obtained
by I.iarrell [4]. The summation appearing in S, cannot be carried ont exactly but for
particular values of c. It is infinity and slowly convergent. A method for acceleratin
the convergence of that sum is described by Aguilera-Navarro and Guardiola {11 Thesf
authors evaluate the energy Eq. (3.3) for « = 1/2, 1, 3/2 and 2. They also sht;w that
for the very specific case @ = 2 the sum in Eq. (3.5) can be exactly evaluated giving

Sz(a = 2) = ~2. Indeed, the case o = 2 admits of exact solution [22]. the corresponding
energy being given by

Eola=2) =2 +4n + V1 + 4. (3.6)

. Unfortunately the perturbed eigenfunctions cannot in general be obtained in this same
simple way because infinity terms arise in the evaluation of the curresponding expansion
coeflicients {11].

3.2. Strong coupling perturbation expansion

When the coupling parameter A is large, both terms z2 and A/x% in Eq. (3.1) are impor-
tant. In order to define a strong coupling perturbation expansion {10], we first expand
the potential

V(x) =2 + A/x" (3.7)

around its minimum z;, = (Ax/2)M 2 Now introduce

P=T— Ty (38}
and expand V(z) around p = 0 getting
2, 2 ot
V(p) = Viio + (¢ + 2)p” + Z(~1)K~((l);uk—z~ (3.9
pard @ k! '

w!'nere Vinio = V(€mia) = #72(1 + 2/a) and p = (2/2)' (4D = 1 /g, . The quantity i
will play the role of a perturbation parameter as it is shown in the following. l
The Schrodinger equation is written as

Hy = (g + H)) = Ey (3.10)
where



-

d? 2 ) 3.11 1 12 1032 348864
Iy = _;i—,ﬁ + {4+ 2)p" + Vinin ( ) B\ = A\ -3 + SV + i + - ] , Alarge and negative. (3.19)
and o (3.12) For the strong coupling regime, the first few terms in the energy pertnrbative expansion
Hy= Zl/‘ H, ) are (the authors explicitly give all terms up to p'?)
" — — - 3 W 3Tt 2\'* y
with Hiwp = (—1)F(2/c)(@)sp" /! BI)—  E== 43—+ FToW to, u= (X) . Alarge and positive. (3.20)
. . . - d the eigenfunction as e - —
Defining now the expansions for the energy and the €igen Finally, for the weak coupling regime, the energy is given by T
‘ » ~-25 by 4, 2y 314)
17 = B(0) = ¢t + Bo+ 1l + 1P By + ( , 2 (2+2In2-
) =1 2 ’ P=34+"=— M—f—)v-k»n , A small. (3.21)
and , , VT T
=) = Yo+ pr t+ ﬂzl/’2 + ... (3.15)

From Eq. (3.11), we can see immediately that. the first two contributions to the energy

are given by

JE g+ g = (L4 2/)p ™ + (a4 2)'7? (3.16)

Fiom perity considerations. it results that [‘?2,,,} = 0, n = 0,L,2,... . il?he1 hlglher
order contributions can be gotten throngh a projection terhmgue [10] Numerical va 1lles
of Fp for a=1/2,1,3/2,2 and 5/2; and n = —2 (2) 20 are given in Relf}[zlll wherle. z?tslo
exact algebraic expressions in terms of rational funchons inw = (@ +2)"? are explicitly
given for n = —2 (2) 10. As an example, 17 is given by

Jig = (W — 10u° ~ 390" + 320w” — 272)/1728uw (3.17)

Is there any path connecting the weak regime region wi'th the str-ong one? dThls_ 152 a
difficult problem to be solved for all values of . Howeve.r, in the region arou‘n a= ,3
constructive method, based on two-parameter perturbation expansion, can be designe
which leads to the solution to this problem for arbitrary value of the coupling parameter

ALl

3.3. The charged harmonic oscillator
The so called charged harmonic uscillator, defined by the Hamiltonian

& a2 (3.18)
,I:~E;5+1 + .

was considered by Aguilera-Navarro ¢l al.[15]. This problem is analys'ed in three regimes:
(a) coulombic, corresponding to large and negative values of the coupling parameter )\;-(b)
strong conpling, corresponding to large and positive value of A; and. {c) weak coupling.
’ nding te itiv i ralues of A.
rresponding to small (positive or negative) val \
~ In}Zhe Coulombic regime, by using hypervirial relations and the Hel.Jmananeyl?n.aan
theorem, the authors find that the ground-state energy is given by (they indeed explicitly

give all terms up to A7%)

Those authors also found elementary solutions associated with the Hamiltonian (3.18).
These solutions can be expressed as the product of an exponential function and a power
expansion. For the present case, elementary solutions can be found of the furm

oo
p(r) = exp(=22/2) 3" pur” (3.22)
n ¢
where the p, coefficients satisfy the recurrence relation

M+ )+ 2paja=Apu i +(2n+1-Ep,, pop=1 (3.29)

Elementary solutions exist only for particular values of the coupling parameter \.
In order to have a finite number of terms in the summation of Eq. (3.22), reducing it
to a polynomial, it is necessary that the coeflicients p, satisfy the fullowing two equations

and

Pt (F5,0) =0 (3.29) /

E=2n+1, n=2,341,.. (13.25)

Thus. for all odd and positive values of the energy I7 > 3, we can find values for A, through
Eq. (3.24), that cut the infinite summation in Eq. (3.22). In this way, an infinite number
of elementary solutions can be found. The particular case IY = 3 corresponds to A = 0
and reduces our problem to the trivial case of the simple harmonic oscillator.

The simplest elementary solutions are found to be [15]

o(r, 12 =58) = r(L + r)exp(—12/2), A = 2, (3.26)

and
o(r, B =1) = r(1 + V5r + r?) exp(—12/2), A = V2. {3.27)

Those authors also use renormalization of series and Riccati-Padé summation fech-’
niques to deal with different regimes of the charged harmonic oscillator (3.18).

6 |
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3.4. The Lennard-Jones-like Hamiltonian

It is worth mentioning the very extensive study of the anharmonic oscillator, Lennard-
Jones-like Hamiltonian, 2 o ) . .
that was carried out by Guardiola and Ros{13). This Hamiltonian has many mtere;‘t;lng
and important properties examined and amply elaborated on by those authors. ey
discuss the large coupling regime, curresponding to b and/or ¢ large, and the small cou-
pling regime when buth b and ¢ are emall. Guardiola and Ros{13] also found elementary

solutions of the form

2
212 5

o(r) = exp [J% - —"-73] 3 par” (3.29)

associated with the Hamiltonian Eq. (3.28).

4. Variational approaches

Many efforts have been done to deal with spiked harmonic oscillat.ors by ‘cangmg u_ut
vatiétiunal analysis of the Hamiltonian in a space spa.nned b.y cor.xvemer}t basxs.b <:I:>ncxs:=i
description of the method nsed in most the cases we d)scufs in this Se.ctlon can be P rase}
as follows. Given the Hamiltonian // defined in some region R, consider a s?t basis {(f)ﬁ
in R that satisfies appropriate boundary conditions at infinity 'ar}d at the oxfgm (u;ua I){(
the Dirichlet boundary condition ¢n (0) = 0 is imposed at the orxgxn). Then-dl'agom% l’z;e !
in the space spanned by the basis (¢} As it is well .known, this procedure is equivalen
to expanding the variational function e, in the basis {¢n}

d’l-ar = Z ‘lnd)n (41)
and then minimize the expectation value
(@ulH1]n) w
(d’n“ﬁn)

with respect to the variational parameters dy,. 'l"he diagonalization pfocEff p'rodulce tol th.e
eigenvalues and eigenfunctions of . One additional advantage of this vz?uahona ana _y;}s
is that we can, in a systematic way, find the trend of the method 'by just (‘}?anglng the
dimension of the variativnal space varying the mumber of elements in the basis {¢,} .

4.1. The potential \/r®
In this subsection, we will discuss the spiked uscillator described by the Hamiltonian [10]
2

1 = ;dii Fat 4+ A= Ho+ M2 20 (43)
T

The method used consists in diagonalizing /1 in a convenient basis. The problem requires
that in choosing a variational basis, some care must be taken with its behavior at the
origin. One appropriate basis set is formed by the normalized eigenfunctions u,(z) of the
linear harmonic oscillator Hy that satisfy the Dirichlet boundary condition u,(0) = 0.
With this prescription, apart a normalization constant, the functions u,(z) are given by
the product of a Gaussian function and a Hermite polynomial of odd degree

tn(z) = Ape™* 2oy (z), n=0,1,2,... (4.4)

These functions define a complete set of orthonormalized functions in the interval 0 <
z < 0o, with normalization constant given by

A2 =420+ 1)W/T. (4.5)

Obviously, Iy is diagonal in this basis, its diagonal matrix elements being given Ly
(4n + 3). The matrix elements of z7* are found to be given by[10]

U TB2) B o Dk 43/2 - /2T~ k 4+ a/2)
DR kS o v/ DI ) R et 7774 ey T A

where

T, = (=1)" /(25 + 1)1/2%! (4.7

We can obtain information about the trend of the variational method by diagonalizing the
Hamiltonian Eq. (4.3) in variational spaces of increasing dimension. This was done[10]
for @ = 5/2 and A varying from 0.001 to 1000. The resulting F/,,, energies were com-
pared with the energy E;,. obtained from numerical integration of the curresponding
Schrédinger equation. For a 20-dimensional variational space, the maximum relative error
|Lezact — Evar] / Evar occurs for A = 0.1 and is of the order of 0.011 or 1.1%.

4.2. The potential 72 4+ \/r!

The Hamiltonian

¢ 2d s A
”—-F—;&;—F? +;:“ (4.8)
was studied in Ref.[17] where the authors develop a variational analysis of I/ using as
trial function a linear cumbination of the non-orthogonal basis set

Ra(r) = A M(=n,3/2,r%) exp(—ar? = b/r), n=0,1,2,.. (4.9)

where M(p, q, z) is the confluent hypergevmetric function[21]. The analytical form of the
exponential function is important to guarantee the appropriate behavior of the solution
at infinity and at the origin. More specifically, the parameters a and b are determined
such that Ry(r) has the correct asymptotic form as r — 0o and » — 0. These values were
found to be @ = 1/2 and b = V/X. Since the basis set Eq. (4.9) is not orthogonal, a special
diagonalization procediire is required and detailed in the paper{17}. The variational results




are in excellent agreement with the corresponding exact values, i.e. those obtained by
Fernéandez [12] through a numerical integration of the correspunding Schrédinger equation.

The Hamiltonian Eq. (4.8) allows us to study only the fundamental and excited s-
states of the system. A global analysis of the ground and excited states for successive
values of the orbital angular momentum was carried out by Aguilera-Navarro and Ley
Koo[18]. These authors made a variational analysis of the Hamiltonian

1d ,d  £f+1) , A
g E+“—;2—+1 +r4 (4.10)
using as variational basis the orthonormalized set of functions
(1) = Nugre ™" "M (=1, p + 3/2,wr?) (4.11)
which are exact eigenfunctions of the auxiliary Hamiltonian
1d ,d f+1) B 2 9
o fael N T R 112
2 dr ! r? + 72 e (412)

with B = ¢(¢ + 1) — p(p + 1). All required matrix elements of (4.10) in the basis (4.11)
are determined in a closed form.

The analysis is carried out in two steps. Firstly. the Hamiltonian (4.10) is variationally
analysed with respect to the two-parameter radially-nodeless state (N is a normalization
constant)

'/'trinl = NrPe™ r2/2 (4 13)

producing two equations for p and w involving the angular momentum f and the spike
intensity A
Then, for given values of A and ¢, the values of w, p and B are determined and
used to define completely the variational function (4.11) and the corresponding matrix
representation of the original Hamiltonian (4.10). The diagonalization of the resulting
matrix yields the eigenenergies and eigenfunctions with well defined angular momentum
" £. Their treatment led to a reliable description of the vibrational-rotational energy spectra

[18].

5. Other approaches

Fernéndez(12] considered the Hamiltonian

@ , a b ¢
—aﬁ'*-?' +7‘—2+7‘_" 6 (5.1)
and look for a simple solution of the form
P(r) = 1" exp(~s/2rF — tr2/2), s> 0, t > 0. (5.2)

The idea here is to get the appropriate behavior of the solution at the origin by means of
the factor function exp(—s/2r?).

Solano-Torres el al.[14] consider the Hamiltonian defined in Eq. (3.18) for o« = 4
and @ = 6. Those authors evaluated the ground-state energy using two methods: (a)
numerical integration of the associated Schrodinger equation, and (b) Padé summation
of the strong coupling perturbation expansion described in the Subsection 3.2. They
compare their results with those obtained with the methods of Detwiler and Klander[3].
Harrell[4] and Killingbeck[8].

A nonperturbative treatment was developed by Miller[23] to be applied in the deter-
mination of the eigenfunctions and eigenenergies of the Hamiltonian (3.18). The method
is similar to the Lanczos algorithm|24] extended to self-adjoint operators. Miller applied
his method to the case @ = 5/2, and compare the ground-state energy obtained after 6
iterations with the corresponding perturbed energy L., obtained by Aguilera-Navarro
et al.[10]. The relative “error” |Easaier — Fpertl/ Fpere 15 of the order or 1%.

6. Works in process

The variational method is being applied by Aguilera-Navarro, Ley Koo and Mateos
to study the fundamental and excited (vibrational-rotational) states of sume spiked-
oscillator-like systems. These authors use as variational set basis the exact orthonor-
malized Kratzer-Fuies eigenfunctions[25]

() = N1’ exp(— ) M(—n,2p + 2,203,7) (6.1)

which are solntions of the Hamiltonian

1d,d  f+)

b ¢
r2dr dr 72 tat r + 72 (62)

They have already considered the supersingular plus Coulomb potential D/r* — Ze?/r.
This same basis is being used to study the supersingular Hamiltonian

_1d,d fe+l) A B (6.3)

r2 dr  dr r? A 3 :

Dedication

The authors want to dedicate this work to Professor Paulo Leal Ferreira with admi-
ration and affection on the occasion of his seventieth birthday.
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