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Abstract 
I� 
I� 

ThE.' importance and IIsefulness of renormalization are emphasized in nonrelativistic 

quantum llIE.'chanics. The momentum space treatment of both two-body bound state 

and sca.ttering problems involving some potentials singular a.t the origin exhibits ultravi­

olet divergence. The lise of renormalization techniques in these problems leads to finite 

converged results for both the exact and pE.'rturbative solutions. The renormalization 

procedure is carried out for the quantum two-body problem in different partial waves for 

a minimal potential possessinJ!; only the threshold behavior and no form factors. The 

renorrnalized perturbative and exact solutions for this problem are found to be consistent 

with each other. The useful role of the renormalization group equations for this problem 

is also pointed out. 
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1 Introduction 

The ultraviolet divergences in perturbative quantum field theory can be eliminated in mall 

cases by renormalization to define physical observables, such as charge or mass, which are OftE 

termed the physical scale{s) of the problem [1, 2,3,4]. Ultraviolet divergences appear in eXal 

as well as perturbative treatments of the nonrelativistic quantum mechanical two-body problel 

in momentum space interacting via two-body potentials with certain singular behavior at sho] 

distances [,5, 6, 7, 8, 9, 10, 11] in two and three space dimensions. Renormalization of tt. 
pot.ential model leads to a scale{s} and a finite physical observable{s) [6]. 

Renormalization of a physical quantuIll mechanical model is essential in reproducing expe: 

imental results irrespective of whether the original model exhibits ultraviolet divergence or no 

Renormalization removes the effect of different uncertainties and approximations of a physic: 

model on the observables and brings some of the theoretical predictions in agreement wit 

experiment. Such uncertainties exist in all quantum mechanical models. Even in the mOl 

well-understood quantum mechanical hydrogen-atom problem only the long distance behavi< 

of the Hamiltonian can be considered to be known. For distances smaller than the radius of t~  

proton, the electron-proton potential is not the bare Coulomb potential but some regularizE 

Coulomb potential which, unlike the original Coulomb potential, does not diverge and lea< 

to a constant value as the electron-proton separation r goes to zero. Also at this scale t~  

effect of field theoretic corrections to the Hamiltonian is relevant. The detailed behavior ( 

this regularized Hamiltonian for small r depends on the charge distribution of proton and 

not usually known. The role of renormalization is to remove the uncertainty of the regulariz 

potential by fixing some of the observable{s). The effect of renormalization in the hydrogl 

atom problem is small and not evident as the radius of the proton is very small. The effect 

indispensable in large atoms and specially in muonic atoms where the orbit of the mu mes 

could have a significant overlap with nuclear matter. 

In the above-mentioned Coulomb problem the potential is divergent at r = O. In spite of t 

singularity of the Coulomb potential at r = 0, both the scattering and bound state proble 

with the original potential are solvable and do not produce ultraviolet divergences. The r, 

of renormalization in this problem is to introduce a regularized well-defined potential whi 

reproduces some of the observables. 

The situation is different for potentials with a stronger divergence at r = 0 than the Coulo 

potential. These are the potentials which lead to the above-mentioned ultraviolet divergen 

in momentum space. If these divergent potentials are attractive at r = 0, the original proM 

does not permit convergent solution in either momentum or configuration space. The bOll 
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state problem collapses and produces an infinite number of bound states with an accumulation 

point at infinite binding. The scattering Lippmann-Schwinger equation for these potentials 

possesses a noncompact kernel and hence is not amenable to numerical solution. Finite and 

meaningful physical solution is obtained only after renormalization. If the divergent potentials 

are repulsive at r =.0, in the configuration space treatment one can obtain a finite convergent 

solution essentially by imposing some constraints, such as the solution should vanish at some 

small r. In this way the trouble with integration over the singular potential near r = 0 is 

avoided. In case 01 many repulsive divergent potentials, this procedure works and produces 

physically meaningful results, some examples being the repulsive soft and hard core potentials 

exhibiting ultraviolet divergences. Even in these cases the momentum space treatment, after 

an appropriate truncation of the Hamiltonian at small r, may lead to a Lippmann-Schwinger 

equation with noncompact kernel. Renormalization is then necessary to produce finite and 

physically meaningful results. 

The usual difficulty in momentUllJ space treatment with the Coulomb potential is the large 

distance or the infrared divergence. This could be avoided with the usual Yukawa potential 

in nuclear and atomic physics. The Yukawa potential possesses the same large momentum or 

short distance behavior as the Coulomb potential but no infrared divergence. For a Yukawa 

potential without ultraviolet (and infrared) divergence(s), renormalization improves the large 

momentum or short distance convergence properties. In this problem renormalization is not 

necessary but is only desirable. Renormalization makes this potential smoother and hence easier 

for numerical and analytic treatment. However, renormalization is indispensable for problems 

with ultraviolet divergence ill momentum space. 

In this work we shall be limited to the study of renormalizatioll of the three dimensional 

two-body problem possessing ultraviolet divergence in momentum space in close analogy with 

field theoretic problems. An account of parts of this work has recently appeared [6, 7]. Most 

of the present ideas can also be used in two dimensions and in configuration space treatments 

[6, 9J. We illustrate the present procedure for a minimal potential in different partial waves. In 

momentum space this potential possesses only the threshold behavior and is given by Vdp',p) = 

p'L ApL, where L is the angular momentum. As the scattering Lippmann Schwinger equation 

has the same generic form for all partial waves, the ultraviolet divergence of this potential 

model becomes stronger and stronger as L increases. The leading ultraviolet divergence of 

the momentum space integrals, encountered while solving the Lippmann-Schwinger equation 

with this potential, is linear (cubic, ... ) in nature for L = 0 (1, ... ). The renormalization of 

this potential model can be performed by fixing at least one observable, or equivalently, by 
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introducing at least one physical scale. It is also possible to renormalize by introducing more 

than one physical scale. We renormalize both the exact and the perturbative solutions and find 

that the renormalized exact and perturbative solutions are consistent with each other. 

We also derive the renormalization group (RG) equations for this problem. These equations 

clearly exhibit the important scaling behaviors of the different renormalized solutions. The RG 

equations can be written for the scattering solutions expressed in terms of certain physical scales 

closely related to scattering observables. These equations are valid in general, independent of 

the existence of ultraviolet divergence in the original problem. Such RG equations and the 

associated scaling behavior involving observables are interesting from a physical point of view. 

The ultraviolet divergence of the present problem for L = 0 can be compared to the ul­

traviolet structure and high energy behavior of the A</!4 field theory [2, 4, 9, 11J. The super­

renormalizable A</!4 field theory in 1+1 dimensions possesses ultraviolet logarithmic divergence, 

requires regularization, and is perturbatively renormalizable [2, 4]. The nonrelativistic scatter­

ing problem with contact interaction in two dimensions also has similar logarithmic divergence 

[9]. The renormalizable A</!4 field theory in 3+1 dimensions has both logarithmic and quadratic 

divergences [2, 4]. We have verified that the nonrelativistic scattering problem with the present 

minimal potential in two dimensions also has similar logarithmic and quadratic divergences. In 

the present study of scattering in three dimensions, although the divergent terms are of differ­

ent nature, the renormalization can be performed in a similar fashion. In the field theoretic 

problem, one cannot go beyond few lowest orders of perturbation theory. On the other hand, 

the llonrelativistic scattering problem with the present minimal potential possesses stronger ul­

traviolet divergences than in the >..¢;4 field theory and can be solved to find both the exact and 

the perturbative solutions analytically. In the present work we find that the exact renormalized 

solution is consistent with the perturbative one. The study of the present analytic model will 

allow liS to understand most of the suhtleties of renormalization and RG equations. 

The plan of our work is as follows. In Sec. II we perform the renormalizatioll of the exact 

soilltion for the millimal potential in different partial waves. In Sec. III the renormalization 

of the perturhative solution is carried out and consistency of the renormalized eXi'ct and per­

turbative solutions is demonstrated. In Sec. IV we derive the RG equations and discuss the 

scaling properties of the renormalized solution. In Sec. V a brief summary of the present work 

is presented. 
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2 Renormalization of the Exact Solution 

The partial-wave Lippmann-Schwinger equation for the scattering amplitude TL(p, q, P) in 

three dimensions. at cm. energy P. is given by 

l L(p',p,k 2) = l'l,(p',p) + ~ Jq2dqVdp',q)G(q;k2)Tt{q,p,k2), (1) 

with the fref' Green function C(q;P) = (k2 - q2 + iOt l , in units 1i = 2m = 1, where m is the 

rrducecl lIIass. 

\Vf' discuss pot.elltial scattering with t.he minimal potential in different partial waves. The 

presellt minimal pot('lItial in the LlII partial wave is taken to be Vdp',p) = 1l/')..I/, which is 

f lIP usual is potential for I, = O. For increasing L this potential presents stronger and stronger 

ultraviolet divergf'nce. The reason for studying this potential i;, Uldt it is analytically tractable 

<llld presents arbitrarily strong ultraviolet divergence as L increases. It is not a priori dear 

that potentials with arbitrarily strong ultraviolet divergence can be meaningfully renormalized. 

Physically. this potential is one of arbitrary short range in higher partial waves and should be 

cOlllpaied with til(' S wave (~  funetioll potential. If a meaningful solution of the problem could 
I 

be found they could be of use in different areas of physics where the details of a potential is 1I0t 

of COI)('erll. (a) The renormalized solution of the minimal potential could be used in problems 

of statistical mechanics, such as, in Cooper pairing in superfOnductivity. There are evidences of 

pairing in higher partial waves [12]. In t.his case the details of the phonon induced short-range 

electron-electron potential is irrelevent. The Cooper and the Bardeen-Cooper-Schrieffer (BCS) 

equations in superconductivity, have heen satisfactorily renormalized in S wave, but not in 

highf"r partial waves {I2]. The present work should be of relevance to the renormalization of 

the Cooper and BCS equations in higher partial waves. (b) The present renormalization scheme 

is also of interest in deriving a lIucleon-nucleon potential from an effective field theory [13] as 

suggested by Weinberg [.5]. In this derivation one needs to sum an infinite series of Feynmann 

diagrams. In the lowest order, the nucleon-nucleon potential as derived from the effective 

field theory includes an attractive delta potential, the solution of which has been successfully 

renormalized [1~3].  However, in higher order one obtains a potential with stronger divergence 

involving powers of momentum (see, for example Eq. (3.4) of Ref. [14]). Such a potential 

should be renorrnalizable following the scheme presented here. 

The present approach is also applicable to other potentials with weaker ultraviolet diver­

gences and/or permiting only numerical solution. A numerical study of the renormalization 

scheme has recently been made {I5]. 

For the above rnentiolled minimal potential, the t matrix of Eq. (1) permits the following 

analytic solution 

TL(p',p,k2) = p'LiL{k)pL, (2 

with the i function defined by 

iL(k) [,\-1 - h(k)tl, (3 

h(k) (2/'rr) Jq2dqq2LG( q; k2). (4 

As the i function completely determines the t matrix, we shall consider only the renormalizatiol 

of the i function. Here the condition of unitarity is given by 

~1L(k) = -kl1'dkW, (5 

where TL{k) = TL{k, k, k2) and ~  denotes the imaginary part. 

The integral h(k) of Eq. (4) possesses ultraviolet divergence. For L = 0 (1, ... ) the leadinl 

divergence of this integral is linear (cubic, ... ) in nature. Finite result fort he t matrix of Eqs. (2 

and (3) can be obtained only if ,\-1 also diverges in a similar fashion and cancels the divergeno 

of h(k). The function )..h(k) is the trace of the kernel of the integral equation (1) and possesse 

ultraviolet divergence. The kernel of Eq. (1) is noncompact and it does not have scatterinl 

solution. 

Hence some regularization is needed to give meaning to Eq. (1). This can be achieved b; 

using a regularized Green function involving a cut-off. One example is the following regularize, 

Green function with a smooth cut-off A for L = 0 as in Ref. [6] 

Gn(q,A; k2 
) (k2 

_ q2 +iotl + (A2 + q 
2tt, 

P+A2 

(k 2 _ q2 +iO)(A2 +q2)' 

However, in the present work we shall use the following regularized Green function with a shar 

cut-off 

Gn(q, A; k2
) = (k 2 

- q2 +iOt l 0(q - A), 

0(x) = 0 for x > 0 and =1 for x < O. In Eqs. (6) and (7) A(» k) is a large but fini 

quantity. The reason for choosing Green function (7) is that it is equally applicable for 

types of ultraviolet divergences in all partial waves, whereas Green function (6) is only valid r. 
a linear divergence as encountered in the L = 0 treatment of Ref. [6] and requires modification 

the divergence is stronger as in this work. Though we use Green function (7) with the minim 

potential in the present treatment, the present idea of renormalization can be extended 
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other (singular) potentials and to other regularized Green ~unction(s).  The imaginary part of 

the Green function is unaffected by this type of regularization, and this guarantees unitarity 

condition (5). 

In the end, the limit A -+ 00 has to be taken, which will reduce the regularized Green 

function to the free Green function. Finite results for physical magnitudes, as A -+ 00, are 

obtained only if the coupling A is also replaced by the so called bare coupling AL{k, A). The 

choice of the bare coupling is different for differrnt I, and can be fOlilld by inspection of the 

following regulariied expressions of the integral h(k) of (4) for different L 

2! 'J. 21 7.InL(k, A) == -; qdqq 'Gn(q,A;k), (8) 

2[ k A-k] . -- A+-Inl--I -Ik L=O (9)
11" 2 A+k ' , 

32[A3 
k A-k]-- -+k2A+-Inl--1 -ik3 L=1 (10)

11" 3 2 A+k ' , 
2[A 5 

PA3 P A-k]
-- -+-+k4A+-lnj--1 -ik5 L=2 (11 )

11" 5 3 2 A+k ' . 

Consistent with the large A(» k) limit, the logarithmic terms in the above expressions for 
•IRL(k, A) tend to zero, and for a general L we have in this limit 

2 L k2(L-i)A 2i+1 

IRdk, A) = --L. - ik2L+1
. (12) 

11" ;=0 21 

All the terms in the summation in Eq. (12) diverges as A -+ 00. Except for L = 0, these 

divergent terms are momentum (k) dependent. In the present work, the leading divergence is 

much stronger for a general L compared to the S wave case. In Eq. (12) the leadillg divergence is 

like A2L+J. The S wave treatment of the J potential in Ref. [6] had only an energy independent 

term diverging linearly as A. For a finite k«< A), the stronger divergence and the energy 

dependence of the divergent terms ill the present case do not introduce any complication and 

the ideas of Ref. [6] can be generalized. 

In order to obtain a finite renormalized T function, the coupling>. should be replaced by 

the so called bare coupling defined, for example, by 

2 L P(L-i)A 2i+J 
AL: 1(k,A) = --L. - Audh~2), (13) 

11" i=O 2z + 1 

where the function AoL{k2
) defines the physical scale(s) of the system and characterizes the 

interaction. In the end the physical scale(s) in AoL{k2 ) sh~uld be identified with a physical 

observable(s). If the problem is characterized by a single physical scale, e.g., the scattering 

length aL, it is appropriate to take AoL{P) to be independent of k2; Aodk2) = -ljaiL+J. If 

~ 

the problem is characterized by two physical scales, such as a scattering length aL and another 

physical scale bL, it is natural to take the following expansion 

Aod!.:2) = -ljaiL
+J - bt-2Lk2 . (14) 

We have taken both the scales aL and bL to have the dimension of length. A third scale CL can 

be accommodated similarly through 

Aodk2 ) = -1/(11/,+1 - bt2L k2 
- cl-2I.k", (15) 

where CL has also been chosen to have the dimension of length. Equation (15) is just a Taylor 

series expansion of AodP) at low energies. It is realized that in the present renormalization 

the number of divergent terms and the number of scales are not related. 

The regularized T function of Eq. (3) can now be rewritten as 

Tdk, A) = [ALI (k, A) - lRL(k, A)t 1
, (16) 

where for a finite A, IRdk, A) is a convergent integral. As A -+ 00, however, this integral 

develops the original ultraviolet divergence. In this limit, the quantity XLI (A, k) of Eq. (13) 

has t.he appropriate divergent behavior, that cancels the divergent parts of lndk, A). In Eq. 

(16) the explicit dependence of the T function on A has been introduced. 

Next the limit A -+ 00 has to be taken in Eq. (16). With this regularization, the renormal­

ized T functioll can be writtell as 

TRdk,An(k,JL),Jl) = [ARt(k,p) -IRdk,p)t l
, (17) 

where p is the scale of the problem and emerges as a result of renormalization. The renormal­

ization scale p should be contrasted with the physical scale(s) in Aodk2). The renormalized 

T function will be independent of p. In Eq. (17) the explicit dependence of the T function on 

both Ji and the rcnormalized coupling ARL(k,p) has been exhibited. The limiting procedure 

implied by A -+ 00 in Eq. (16) leads to the following definition for the renormalized coupling 

ARdk,p) 

A/li(k,p) = lim [A L
1(k,A) - {lRdk,A) -IRdk,p)}]. (18)

A-+oo 

In Eq. (18), if the limit A -+ 00 taken, we get 

ARdk,p) = Adk,A = p). (19) 
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Relation (19) between the renormalized coupling and bare coupling depends on the regulariza­

tion scheme used. Equations (l:J) and (19) lead to the following expression for the renormalized 

coupling 

2 L k2(L-i)J-l 2i+l 
Afit(k,/t} = -- L ' - Aodk2 

). (20) 
7T i=O 2z + 1 

The rellorlllalizc<! coupling for two n'normalization scales J-l and J-lo are related by the following 

flow cquat.ioll 

2 L k2(L-i),1 2i+1 2 L k2(L-i)J-l 2i+J 
Afi},(k./t) +- I: ')' + I = An})k,llo) + - I: 2' 0 (21) 

iT i=U ~l  11" i=O 1. 

For a gClIcral L, this flow cqnatio!l is pncrgy dependent but independent of the regularization 

~dl('l1le.  For L = 0, as in Hd, 16], the renormalized coupling c.uJ the flow equations are energy 

illd('pend(~nt.  The absolut.e vallie of tlw renormalized coupling ARL{k,J-l) increases with J-l. Thus 

if we start with a small Andk,l'o) at a given r<'llormalization scale J-lo, the effective coupling 

'Ollst.ant increases with Il as in the >.¢4 model {2J. With tIle increase of J-l one can reach a 

large ~lIough  ARdk,'l), where perturbative treatmellt is not valid. The energy dependence 

of the renormalized coupling (20) and the flow equation (21) for L f. 0 does not create any 

colllplicatioll and one can rCllormalize the results and write the RG equations. 

The presellt scattering model permits analytic solutions for all L. The renormalized T 

fundion is given by 

2 L P(L-i)J-l 2i+J ]-1
TRl.(k, ARdJ.~,I'),I') = [>'n})J.~,,1)  +- L ' + ik2L

+l , (22) 
7T i=O 21. + 1 

Explicitly, using the renormalized lOupling (20), the renormalized T function can be written as 

1Tln(k, >'ndk,/l),/l) = [ik21.+ - Aodk2)rl. (2:3) 

This T function depends on the renormalized coupling >'Rdk, J-l)' but not on J-l, that is' the 

explicit and implicit (through ARt{k,J-l)) dependences of the T function on J-l cancel. Physics 

is determined by the value of >'Rdk,lt) at an arbitrary value of J-l [9], or the following J-l 

independent quantity 

2 L P(L-i),l 2i+J 

>'nl(k,/l) +- L 2' + 1 = -AoL{k
2 

), (24) 
7T i=O z 

as can bf' seen from Eqs. (20) and (22). 

From Eq. (23) we find that the renormalized T function is a funet.ion of AoL{P). It is 

convenient to express the renormalized T function in terms of the physical scales aL, bL , and 

CL introduced in Eq. (1.5). Once this is done, TRL is determined by the physical scaJe(s) whicl 

are closely related to the observables of the system. Then Eq. (23) reduces to 

TRL{k, aL, bL, CL) == TRL{k, AR(k, p),p) == {ik2L
+J + IjaiLH +bl-2L k2+ci-2Lk4t J

• (25 

The name 'physical scale' given to aL, bL, and CL, is justified as these quantities are a measurl 

of low energy scattering in each partial wave. 

We have here renormalized a divergent physical problem and obtained the well-define( 

solution (2,1'». As the original problem is ill-defined, it is interesting to ask if this renormalize( 

solution is physically acceptable or is just a finite answer obtained by a mathematical tricJ 

from the unregularized original problem. The fact, that the renormalized result is physicalI) 

moti vated, can now be established by a careful examination. For L = 0 Eq. (25) is just the usua 

f'ffective range expansion for the t matrix [16]. The same is also true for higher partial wavel 

[16J. Hence the renormalized solution (25) is the physically expected solution of the problen 

for a short-range potential alld should lead to acceptable results for other observables. So th. 

present renormalization scheme for L f. 0 should be considered as a natural generalization 0 

our previous results presented in Ref. 16]. 
To bring further evidence to the acceptability of the present result and to demonstrate thl 

self-consistency of the present renormalization scheme, we perform perturbative renormaliza 

tion of the same problem in the next section and establish the equivalence between the tW4 

approaches. 

3 Perturbative Renormalization 

In the last section we performed the renormalization of the exact analytic solution. In t 

simplest field theoretic >.¢>4 model the exact solution is not known because of the creation 

annihilation of particles and also because of the quartic nature of the interaction. In that c 

one usually performs perturbative renormalization. Though it is expected that the result 

perturbative renormalization should be consistent with that of exact renormalization, there 

no general proof in this regard. As the present problem is much simpler than the A4>4 model, 

is also illustrative to perform perturbative renormalization of the present problem and to sh 

that the result is consistent with the exact renormalization of the last section. This consisten 

can also be established in the case of the exactly soluble Schwinger model for massless quant 

electrodynamics in 1+1 dimensions. 

From Eq. (3) the perturbative solution of the present problem is given by� 

TL{k) = A[1 + A/nL{k, A) + >.2 [~dk, A) + >.3 /~dk, A) +...J,� 
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where we have used the regularized version of the integral IRL{k, 1\) given by (12). 

Up to the first order in perturbation theory in Eq. (26), we take A~~)  = ~L and consequently 

to this order in the redefined coupling strength ~L,  TI1)(k) = ~L  and there is no divergence as 

A --t 00. In order to find the result finite to first order one could have taken A~)  = A. But if 

we would like to obtain finite results in all orders of perturbation theory, which are consistent 

with the exact renorrnalized result of the last section, a different finite coupling (~d  has to be 

introduced in all orders as in this section. 

The second otder T function with this ~L,  given by, 

T2)(k) = ~dl  +~IJHdk, 1\)], (27) 

however, diverges as 1\ -+ 00, because in this limit the regularized integral InL{k, 1\) of (12) 

diverges. A finite result for the T function up to the second order in ~[,  could be obtained by 

employing the following coupling 

I, P(I,-i)1\2i+l]
A~) = ~I,[1 + ~I,~ ~ 2i +1 . (28) 

,I
With this modified coupling, the second order T function (27) is given by 

T2)(k) = A~~)(1 + A~~) ludk, 1\)], (29) 

where IRdk,1\) is given hy Eq. (12). With A~~)  given by (28), the second order T function, 

TI2)(k), contains terms up to the fourth order in ~L' Up to the second order in ~L,  TI
2)(k) is 

finite in the limit 1\ -+ 00 and is given by 

T2)(J.·) = ~dl - ~I,ik2L+I]. (30) 

With the second order coupling constant given by Eq. (28), the third order T function 

(3) k d 2)[ d2) 1. \ \(2)2 /2 1 \)]
TI, (-) = /II, 1+ /II, 'nr,{r.:,l ) + /II, RI,(II:, j (31) 

diverges in the limit 1\ -+ 00. In order to obtain a finite T function in this limit up to the third 

order in ~L,  one could employ the following third order A 

(3) - [ - 2 L k2(L-i)1\2i+1 -2 (2 I, k2(I,-i)A2i+I)2] 
AI, = AI, 1 + AL- L 2' + 1 + AI, - L 2' + 1 (32) 

1l'i=O l 1l'i=O l 

in the following expression for the third order T function 

Ti31 (k) = A~;)[I + A~) lnr,{k, 1\) + AP)2 ,kL (J.:, 1\)1. (33) 

11 

, 
This third order T function now contains terms up to the sixth order in ~L'  If the third order 

T function is truncated up to third order terms in ~I" and the limit A -+ 00 is taken, we obtain 

Tf)(k) = ~d1 - ~I,ik2L+1 + ~i( _ik2I,+1)21· (34) 

With the third order A given by Eq. (32), the higher order T functions TIl), [ > 3 diverges 

in the limit 1\ -+ 00. In order to obtain a finite TIl), [ > 3, one should modify the coupling 

strength A. A finite TIl) lip to [th order, in the limit 1\ -+ 00, can be obtained by employing 

the following coupling 

(I) - [ 1-1(_ 2 I, k2(L-i)1\2i+l)j]
AI, = AI, 1+ L AI,- L 2' . (35) 

j=1 1l'i=O l + 1 

With this A, the [th order T function is given by 

TI')(J.:) = A~~)[I  +
I-I

L A~)J 'kL(k, 1\)]. (36) 
j=1 

Once the limit A -+ 00 is taken in Eq. (36) and terms up to the order of ~~  are maintained, 

the following result is obtained 

I 

TP(k) = ~d1 +L( -~Lik2L+1  F]· (37) 
j=1 

Unlike in the case of A¢4 field theory, one can calculate the result to an arbitrarily large order 

in perturbation theory. The summation in Eq. (37) is a geometric series and as [ -+ 00 this 

series can be summed to yield 

1 
(38)T/n(k) = l/~L + ipI,+I' 

which is the result of perturbative renormalization. 

If we compare the result of perturbative renormalization (38) with the exact renormalized 

solution (2:3) we realize that these two are equivalent if 1\odk2 
) of Eq. (23) is identified as 

-~LI  of Eq. (38). If this identificatioll is made, the result of perturbative rellormalization 

is consistent with the exact renormalized result. Then we find that the parameter AoL{P) 

of exact renormalization is intimately related to the strength parameter ~I,  of perturbative 

renormalization. 

4 Renormalization Group Equations 

The renormalized T function is independent of J-l, so is invariant under the group of transfor­

mations J-l -+ exp(s )J-l, which form the RG. In the present case, as in the A¢4 model, it is 
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convenient to work in tenus of the dilllellsioniess .oupling, 9ndIL), defined by 

9ndk,f1) == ;/2L l-lAnd k,p), 

The renormalization condition is gi\'f'll by 

d 
11-/Tndk,9ndl.~"t),It)= 0,

qt 

or, 
I 

0 0 ]II.~ + fJ,,(k,gndk,/t),It}-!:j- Tnd k,9nl,(k,p),p) = 0,[ Ull 0.QnF, 

wlwre 
agnL(k,p)

11,.(k,9ndk,II),II) = It 9 . 
qt 

Equatio1l (-11) is the HG f'quation. 

(39) 

(40) 

(41) 

(12) 

As the presellt prohlem permits analytic solution, the constant fh of Eq. (42) can be exactly 

calculated. From Eqs. (~9)  and (42) we have 

2L+2 aAnL( k, p)
/h(k.9ndk"t),/I) = (2/, + l)gnL(k"t) + It a . (43)

IL 

With Am,(I.:,II) ddlIwd by Eq. (20), we have from Eqs. (39) and (43) 

!h(k, 9ndk,p),'I.) = (2L + 1)9nL +gAL ~ t PU,-i)1l 2(i-L). (44) 
1r ;=0 

For I, = 0 the 13 functioll is energy independent and depends implicitly on II through coupling 

gRI" whereas for L i 0 the I~  function has explicit dependence on both energy and p. 

The following equation expresses the invariance of the T function TRd k, gnd k, p), fl.) under 

a .hange of momentum scale: 

Tnd "(k, gndk, It), It) = "(-12L+I)Tndk, gndk, 11),11"(-1). (45) 

Equations (22) and (39) are consistent with scaling (45). In Eq. (45) the change of scale is 

effected on the explicit momentum (k) dependence of the T function and not on the implicit 

momentum dependenre of the coupling ronstant gnL. From Eq. (45) we obtain 

[)~  +Jl ~t + (2L + 0] TRl,hk,gRdk,p),/t) = o. (46) 

Eliminating the partial derivative p(fJrnL/op) between Eqs. (41) and (46) we have 

( 
0 a]

"(7) - /1dk,9ndk,'I),p)~ + (2L + 1) TRLhk,9ndk,lt),P) = 0, (47)
U) U9nL 

with fh given by Eq. (44). RG equation (47) expresses the effect on the T function of scaling 

up momentum hy a factor "(. 

The RG equations (41) and (47) involve the renormalized coupling 9RL and the renormal­

ization scale p and are not closely related to the physical observables. However, one can write 

equivalent RG equations in terms of the physical scales aL, bL, and CL of Eq. (25), which are 

closdy related to experimental obsl'rvables. From Eqs. (22), (25), and (39) one has the identity 

0] [0 a 0 0][I a"(
a 

- fh OgRL TRLbk,9RL, iL) = "( a"( - aL aaL - h ab - CL oeL TRL(-yk, aL, bL, cd,
L 

(48) 

so that the Re: ~ql1ation (17) hecomes 

0 a a a ]
"( a"( - °L OaL - bLab - CL aCL + (2L +1) TRLbk, aL, bL,CL) =0, (49)[ L 

EqnaLions (47) and (49) express the fact that the effect of a change in the momentum scale 'Y 

on TRL can be compensated by the effect of a change in gRL or equivalently, in aL, hL' and CL, 

respectively. In RG equation (49) aL, bL , and CL are physical scales. RG equation (49) implies 

the following scaling 

TRLb k,aL, bL,cd = "(-(2L+I)TRL(k, "(aL, "(bL,"(cL). (50) 

Hence from the knowledge of the T function or the t matrix at a certain energy one can predict 

the T function at another energy. RG equations allow one to extrapolate the T function from 

one energy to another. 

In principle, RG equations can be solved to yield the exact renormalized T function. How­

ever, it is illustrative to obtain the asymptotic high-energy behavior of this T function from RG 
equations (47) or (49). At high energies "( ~ 00, and Eqs. (47) or (49) reduces to 

"( aTR~bk) + (2L + 1)TRLbk ) = O. (51 

This has the simple solution liffi..;-+oo TRL("(k) "J 1h2L+1 again consistent with the T function 

Eq. (25). 

The RG equations of this section yield certain general scaling properties of the renorm 

ized T function. Similar RG equations should be valid in general for potentials with certai, 

renormalizable singular behavior at short distances. The RG equations in terms of the physic 

scales and the associated scaling relations, e.g. Eqs. (49), (50), and (51), should be valid 

general independent of whether the original problem had ultraviolet divergence or not. Hen 

such equation should be useful in general. Obviously, such equation could now be generaliz i 

to incorporate more physical scales. 
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5 Summary 

We have emphasized the role of renormalization in nonrelativistic quantum mechanics. Renor­

malization is desirable in most of quantum mechanical bound state and scattering prohlems, 

if one is interested in comparing the result of a physical model with experimental observables. 

Renormalization is essential in some problems exhibiting ultraviolet divergence, as in quantum 

field theory, in order to yield well-defined and finite observables. In both cases the final renor­

malized results cotlld he expressed in tf'f1ns of certain phy~ical  scal(>s which are closely related 

to physical observables. 

We have renormalized a potential model exhibiting ultraviolet divergence ill all partial waves. 

As this model permits analytic solution, we have renormalized the solution exactly and also 

perturbatively. In field theoretic model only perturbative renormalization is possible. As the 

present model permits both perturbative and exact solutions it gives us the unique opportunity 

to test the equivalence of the two. Such equivalence is established under very general conditions. 

The final renormalized result can be expressed equivalently, in terms of a renormalized coupling 

ARL apd renormalization scale J.l, or in terms of some physical scales related to observables. 

Fihally, we derived RG equations for the renormalized amplitudes expressed in terms of both 

renormalized coupling and physical scales. Though the physical content of both are identical, 

RG equations in terms of physical scales seem to be more II sefuI from a practical point of 

view. Such RG equations in terms of physical scales are valid irrespective of the existence of 

the ultraviolet divergence in the original equation. These equations provide interesting scaling 

behavior of the physical scattering amplitude. The RG equations are expected to be very 

useful in situations where the analytic solution is not known, for example, in other few- and 

many-body problems. The study of renormalization and RG equations in these cases will be 

an interesting topic for future investigation. 
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