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Abstract

, We study the dinamically generated photon mass, the electron self-energy and the
vertex in the causal theory of quantum electrodynamics in three-dimensional space-time
(QED3). We also provide a general discussion of the regularization and gauge (in)depen-
dence of the photon mass. A last section is devoted to challenging open problems.
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I. Introduction and Summary

Quantum electrodynamics in (2+1) space-time dimensions (QED;) (1] has attracted m
interest in recent times. It is a successful model of both the integer and fractional quantum I
effects [2]. Some aspects of the model are also of some interest for high-T. superconductiv
insofar as electrons seem to experience an attractive potential, with formation of bound sta
([3],[4]). The greatest interest lies, however, in serving as a laboratory for one of the m
important conceptual problems of quantum field theory: the connection between dynami
mass generation, gauge invariance and regularizations. The classical Lagrangian density o
system of {ree electrons of mass m and photons of mass y is

-, 1
L=9P(IP—-m)yp — ZFWFF" + %c”""Fu.,A,, - 51;(0‘,/1“)2. (1

Above, 3 denotes the electron field, D, = 0, + ieA,, is the covariant derivative, A, the phot
field with F,, = 8,4, — 3,4, the electromagnetic field tensor, 4a = A,7%, ¥, = i P, a
7-(9,A*)? is a gauge fixing term (a = 0 is the Landau gauge and a = 1, the Feynman gaug
The spinor and y-matrix indices run from zero to three, with

P =0, 4t =igt | 4% = ig? (L.
in terms of the usual Pauli matrices o', In this paper, we adopt a two-dimensional representati
for the Fermi fields in d=3 because it is irreducible and from this point of view most natur:
Since the Pauli matrices forin a complete basis, there is no 7* and thus chiral symmetry is n
defined in the standard fashion. Other discrete symmetries are broken in connection with ma
generation. An example of a parity transformation in d=3 is

o B
™ = At 2,

1 0 0
Ap=10 -1 01|,
0 0 1
with detA, = —1 as it should be. We might also let the z;-component change sign, instead
the z,-component, but not both z,- and z,-components, since, in two space dimensions, this

equivalent to a rotation over 180° with determinant +1. The effect of the parity transformatic
P on the fermion and photon fields is [1]

P'(z') = Pp(z)P~' = o'(2')
A/“(II) - PA"(:C)P_l = APFVAV(Q)

where & = (7o, 21, 2), and

and hence it is easy to see that both mass terms my and £e*o F,, A, change sign under 7
In the term £e#“*F,, A,, p may be considered to be a bare photon mass. Indeeed, th
term is bilinear in A,, and the bare photon propagator has a pole at k? = u®. This term
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often called a topological or Chern-Simons niass term, because, for non-Abelian gauge fields,
the corresponding mass term is a topologically non-trivial quantity, which must be quantized
in terms of windiug numbers on manifolds to mantain gauge invariance. Under the gauge
transformation
d' — e—ie!\,w
A, — A+ A
this term changes by a total derivative, and hence tlie Lagrangian density

L— L+ a,(-gifw F.,A).

If the fields vanish at infinity, i.e., are physical fields, the action S = [ d*z £ is thus gauge-
invariant. Hence, physical quantities are gauge-invariant. The Lagrangian density (I.1) de-
scribes the so-called Maxwell-Chern-Simons theory, which has been studied extensively {5],
most recently in the Coulomb gauge [6}, which presents subtle problems. Another interest-
ing direction of recent work was the construction of a pseudoclassical model for Chern-Simons
particles ([7],[8]). In this iutroduction, we should like to explain some relevant issues, and
summarize the content of the following sections.

In this paper we do not wish to cousider (I.1) with the explicit Chern-Simons mass term,
but rather see how this term is generated from the theory with u = 0. This is the problem of
dynamical mass generation. The question arises how mass is defined in the quantum theory. We
assume a covariant quantization, which generally implies the use of an extended Hilbert space
with indefinite metric (see, e.g., [9] for a concise description of this formalism). We may either
restrict ourselves to the physical subspace of Fock space (with positive uetric) or consider a
non-self-adjoint A° operator.

Let 1 and A4, denote the canonically quantized fermion and photon fields, respectively. The
corresponding propagators are defined as

Sale ~y) = 10T ¢a(x)P4(1)]0), (1.3)
Dofe-y) = —i(0TA(x)A.(y)]|0), (1.4)
where T’ is the time-ordering operator and |0) denotes the physical vacuum. The bare propaga-

tors S (z —y) and DY, (z —y) satisfy the equations (for the moment, d is general and denotes
the space-time dimension)

(G -m)S%x —y) = &z -y),
v 1 v 0 d
{_q“ o- (1 - ;1-) P ] DO (z-y) = 60 x—uy),

where g** (= ( (l) —01 g ) for d = 3} is the metric tensor and ¢ is the d-dimensional delta
function. In mon(:engnm s—place,

$p) = / dla P78 (r) = 2 _1 —, (1.5)

D(k) = -—% <gm, - l_ci;::) - ak;f" . (1.6)

3

The propagators satisfy the Schwinger-Dyson equations:

87 p)=5""Yp) - Z(p), (17)
Dl (k) = D, 7 k) = T (k), (1.8)

Fry nv

where X(p) is the fermion self-energy, and Il,,, (k) is the vacuum polarization tensor. In lowest
order of perturbation theory,

dip'
Bp) = ie? [ SIS0y Dt ~ ), (19)
d¢
(k) = ~i€? [ (—2‘"_%1‘1‘[7“50(1) ~ k) S (1.10)

Both (1.9) and (1.10) diverge in the ultraviolei, tlie self-energy for d>3, and the vacuum
polarization for d>2. Because of this the integrals have to be regularized, and at least three
covariant methods are used largely: the Pauli-Villars-Rayski (PVR) regularization {12}, based

on the replacement
1 1 1

_.) -—

k? — m? k?—m? k2 A?
with A a cutoff, the dimensional regularization, due to Bollini, Giambiagi {13} and t'Hooft and
Veltman {14], which relies upon an analytic continuation from complex dimensional d, and
analytic regularization of propagators (see [15] and references given there).

As is well known, gauge invariance implies

(L11)

(k) =0, (1.12)

which is the condition for the vacuuin polarization to be transverse. Defining the three ortogonal
projectors

1 k.k, . kP
P’EL) = 5 (g“u - —i,)— + 1f,,u/7ﬁ) ) (I.].’ia)

1 kuky . kP
P,EZ) =5 (g;u/ - # - N,‘uaﬁ) , (1.13b)

k. k,
PO = =55 (1.13¢)
it follows that
I = A0(PY 4 POy 4 m(PW) — pEYVEII® (1.14)
From (I.8), we obtain the modified propagator in the Landau gauge:
~1 k.k, . k@

D, (k) = k‘z——m [g,w T + lm(,,mﬁr:m—? ) (1.15)

where
m2(ﬂ(2)(k2))2

) = e ¢ N

(1.16)



Assuming that
(k) 22 ox? (1.17)

with (! > 0 (see section 111}, we see from ([.15) that D,, (k) has a pole at a real positive value
of A2, il we assute that

11,(0) # 0 (1.18)

and hence a photon mass is dynamically generated, under conditions (1.17) and (1.18).

This is a phenomenon of the utmost importance, both in particle physics and in many-body
theory. In the latter the mass squared may be identified with the square of the inverse screening
length A=%. Screening is the basis of several phenomena in condensed matter physics, including
the stability of matter (sce [16] for a clear introduction, and references as well).

The basic property (1.18) shows that dynamical mass generation depends on the infrared
structure of the underlying field theory. For QEDq this was studied in ([17], [4]) and, accord-
ingly. some of the concepts and resulls are reviewed in section 1.

Osnie of the main problems connected with {118) is the so-called regularization ambiguity:
(118} does follow if dimensional regularization [I8] or analviic regularization [15] are adopted,
but fails if naive PVR regularization (1.11) is used [1]. This dependence of the renormalized
mass on the regularization, as well as on the choice of gauge [1], points to deep probleins in the
conceptual structure. In section 1 we revisit this problemn, following ref. (19], in the standard
approach to quantum field theory. In section IV we introduce the causal theory ([10], {11]), as
d[)[)ll( o QEDy, following [20], with a new discussion of general aspects, snch as the causal
phase. based on [2t]. In this theory, no ambiguity due to regularization or to the choice of
gauge arises. This is proved in section V. which also completes the treatment of [20], with a
new treatment. of the vertex based on [22].

Use of the Dysou-Schwinger equation (1.8) in (1.15) shows the non-perturbative character of
dynamical mass generation: (1.8) may he written in symbolic form

D= 1>°f(111)“)“ (1.19)

n=0

In (1.8}, as well as in (L.19), H is the full vaccum polarization tensor, which satisfies

. d? -
() = =it® [ LB, S0OT .S, (1.20)

where I', is the vertex function, S the full self-cnergy of the electron, and k = p' — p. In our
treatment of dynamieal mass generation in the causal theory in section V we have assumed,
however, that the 11, (in (1.8) and (1.20)) is the one-loop vacunm polarization, which is given by
(L1.10) in lowest order of perturhation theory. We shall return to this, as well as other unsolved
questions, in section VI, which is devoted to the conclusion and discussion of open problems.

ot

II. The Infrared Problem

The method for dealing with non-stationary processes as electron scattering by an exter
potential with the emission of a finite number of low-energy photons, using the Dyson § mat
expansion, leads to the so-called infrared divergences in the probability amplitudes in QED

The program of taking iuto account the collective eflect of low-energy photons was fi
accomplished by Bloch and Nordsieck [23], who showed that the probability of emission
a finite number of low-energy photons is zero and not infinite, as predicted by perturbati
theory, anud the transition probability must be extended to all possible final states to end
with a finite result.

One can attribute to the infrared divergences an incorrect choice of the asymptotic stal
which can be compared with the experimental data, besides the ill definition of the scatteri
operator, where the asymptotic dynamics is not taken properly into account [24]. In t
70’s Faddeev aud Kulish {25] proposed a model where the Fock space representation of t
Hilbert space, containing a finite number of low-energy photons, is replaced by a coherent-sta
representation for an infinite number of these photons [26], in such a way that matrix elemer
of the Dyson S operator between these states are finite and nonzero. These investigations «
four-dimensional gauge theories can be extended to the three-dimensional case, where a caret
analysis of the IR problem is demanded [17).

Consider a quantum system described by a Hamiltonian H constituted by two terms

H=Hy+V(t), (1L
where Hy is the free Hamiltonian and

t—lfti(}m V({)=0. (1L
This iinplies that asymptotically the scattered particles are supposed to be free. Thus, sin
in scattering processes the particles are observed only in asymptotic regions (f - +oo), tl
asymptotic states are eigenstates of Ho.
Using these ideas, one defines the S operator in perturbation theory assuming that tl
asymptotic dynamics is given by Hp:

S = aut"vmy (ll:
where W;,, are the wave operators ‘
Win = lim 1/ (t, )t =it (11.
and .
U(t,s) = e HO=9, (I
Using (I1.5), one rewrites the § matrix as
1Hot —iHgs
_t_llinoo eI (b, s) e~ 00, (1L



The transition probability from this state to another final asymptotic state ¥ is given by
\g2
(@Sl (11.7)

where the asymptotic states belong to the Fock space.
Solving the equation of motion for the time evolution operator, the S-matrix can be rewrit-
ten as a time-ordered product

S:'I’Pxp{—i/_:O V’(t)dt}, (1L.8)

where V(1) is the potential in the interaction picture. If in addition to (I1.2) we require

/fm ds HV’ (s)

thien the Dyson series for the S operator (11.8) is absolutely convergent. Thus, the S operator
is unitary in Fock space, provided the particles hiave free dynamics in asymptotic regions.

The above method is not suitable to describing scattering processes when we consider long-
range potentials such as the Coulomb potential. In this case, even at regions very far this
potential cannot be neglected.

Followmg [27], let us consider the scattering of a charged particle by a Couloinb potential
in two dimensions. The Hamiltonian of the system has the following formn:

| < oo, (1L.9)

-+2
=2 yghr=1il+Vv (11.10)
2m
where m is the niass of the scatlered particle and g is the product of the charges of the particle
and the scatlering conter.

First of all one coustriicts the potential shape in the asymptotic region in the interaction
picture and then one obtains Lhe wave packet which wxll wpresent the scattered particle in this
region. For this purpose one considers the observables Z and P as the position and momentum
operators in the interaction picture. In this representation these operators satisfy the following
equations of 1notion:

dO;

o
Using the Hamiltonian (11.10) and the above equation, we see that the momentum of the
scattered particle is a constant of motion:

- %[0,,1101. (1111

-
TR
’—dli =;[73,110] =0. (1L12)

Similarly, the equation of motion for the coordinates

a7 1 F
o= 1-[ NAE =~ (11.13)

whose solution
N

-

7 =2 + 24, (11.14)
m

which describes the time evolution of the coordinate operator of the scattered particle, is
identical to the classical trajectory of a particle in uniform rectilinear motion. From these
results one can obtain the shape of the interaction potential at large distances, assuming that
in this region the particles behave as classical particles with well defined trajectories. Thus, for
Jt] = oo

V(t)=gln [—Z—'i ) (11.15)

This potential, which describes the interaction in the asymptotic region [t} — oo, is not abso-
lutely convergent and its contribution to the asymptotic dynamics cannot be underestimated.
In other words, the asymptotic dynamics is not governed by Hy but by the operator

-
P
H,()=Ho+V,,(1)=Hy+¢gln %t . (11.16)

With this Hamiltonian describing the asymptotic dynamics and taking into account that V,, (¢)
in the interaction picture is the same as in the Schrodinger picture, since

the wave function which describes the behavior of the particle in this region is obtained by
solving the Schrodinger equation for H,,

2 e, ) = I (1) o, 1), (11.18)
di

where |a, 1) is the physical state of the scattered particle. In the momentuin representation the
above equation becomes

ij—t\p(ﬁ’,z)= o +g|n U ¥ (7.,1), (IL19)
whose solution is
B0 = o [dFu(P)el
= %/d; e';‘-"‘c (;;)
—2 —+ -
X exp —i%l——ig {in Lﬂlli—l —toln ’—:—l!to—l . (1L20)




The choice of this solution is due to certain initial conditions for equation (I1.19). These are
determined by considering that the time variation of the coordinate and momentum distribu-
tions for the particle represented by the wave packet (11.20) for |¢{] — oo must be governed by
the classical dynamics.

The wave packet (11.20) can be written as

i

W (¢) Uas ()W
—+ -+

~iHot s 'Pl —1l - lp' _

e exp{ —ig|tln i—1 toln to—1 v, (I11.21)
m m

This means that the choice of the Hamiltoniau which describes the asymptotic dynamics
depends on the physical origin of the problem, in contrast with the usual definitions in the formal
theory of scattering, where Hy is taken as the asymptotic operator in the wave operators.

We then redefine the wave operators in the following way:

W= tim MU (). (11.22)

out 1=F2¢

We may derive the asymptotic operator U, (t) in quantum electrodynamics [27]. The inter-
action operator of the system of photons and charged particles, in the interaction representation,
is givén by

\

i= [ Aua)d R, (11.23)

where 7* () is the current operator

J)y = W)Y () (11.24)

The decomposition of ¥ (z) into a creation part ¥(-) (), and an anuihilation part ¥+) (z),
separates j* () into four terms

jett = C‘\F(’f),),u\p(ﬂ’ (11.25)
= g, (11.26)
e W<+)7uw(—) ., (11.27)
Pt = e Gt (11.28)

We can investigale the asymptotic behavior of this expression for |t{ = oo. In this limit
only 3#*~ and j*~* survive. In fact, since V; () contains the time t in the form e, only those
terms for which a approach zero within the range of integration over momentum space will
survive. Thus, the terms j*~~ and 7#** do not contribute in the asymptotic region.

Thus in (2+1) dimensions, the potential which describes the interaction between elect
and positrons with the electromagnetic field in the asymptotic region is given by

o [ 47 47 Ziep () o (8) 54 (£) ]

= m)f \/mj“(’“ ) Jou () e+ ol (- ¥) ], (a

where p (?) is the charge-density operator

p(B) =t ()b, (3) - ! (B) d. (3)], (1L
j:,( ) /pe’L"L' (? )dp: (IL

is an operator that has the shape of a current distribution of a particle with charge dens

it

Va, ()

and

/) (7;) and uniform velocity ﬂ%. In fact, the eigenvalues of the operator (11.31), acting in a spi
of charged particles, are classical current densities due to the motion of these particles, showi
that, asymptotically, the scattered particles behave as classical particles.
As in the non-relativistic case, the Haniiltonian that describes the asymptotic dynamics
given by
Hyy = Ho+V, (1), (I1.3

where Hy is the free Hamiltonian. We can obtain U,, ({) by solving the Schrodinger equati
for the time evolution operator

iditu(z) =HWU (), (113

where H is the Hamiltonian of the system. Iu our problem H = H,, and, therefore, the abo
differential equation must be satisfied by the operator U,, (¢).
The asymptotic operator consists of two factors that commute. The first involves phot;
operators. The second is a phase factor which can be written as
t)] ; (113

4,rfd‘7fdl’—p (3):{1—1;1(2

showing thal this is a relativistic generalization of the above mentioned Coulomb phage. T
spectrum of this operator acting in a space of charged particles derives from the Coulor
interaction among all the particles of the system.

The complete asymptotic operator is

Uy (1) = e Hot R g14(1) (11.3

- -

r q

qo

where R(1) = —i fy VL (r)dr, VI (1) = eV, (t) e ot and, following the non-relativis
generalization, the operator S is expressed as

S =, _l}moo Ut (tye H =y, (s). (11.3
10



Thus, the asymptotic dynainics in QED; in the infrared region is governed by an evelution
operator which contains an infrared phase factor and a factored contribution of the asymptotic
electromagnetic field. This leads to definition (11.36) for the S operator, which differs from the
Dyson S-matrix (11.4) by the replacement

et 4 1L, (1), (11.37)

since the infinite range of the Coulomb potential destroys the behavior of free dynamics in
_asymptotic regions. According to Faddeev and Kulish, the new S operator maps spaces of
coherent states of the electromagnetic field, instead of Fock spaces of initial and final states of
free particles into one another. One may also embed the asymptotic dynamics in the S operator
by performing an arbitrary splitting of the interaction hamiltonian into H,+Hy, where H, carries
the contribution of the soft photons [28].
In spite of the conceptnal relevance and elegance of the present approach, there remains
the long-standing problem of turning the Faddeev-Kulish formalism iuto a algorithm for the
effective computation of ifrared-divergence free cross-sections.

III. General Discussion of the Regularization

Ambiguity
H

Gauge theories in (241)-dimensional space-timne [1], may exhibit inconsistencies at one loop,
due to the choice of the regularization method to evaluate ultraviolet divergent amplitudes such
as the photon self-energy in spinor QED. In the latter, if we use analytic [15] or dimensional [18]
regularization, the photon is induced a topological mass, in contrast with the result obtained
through the Pauli-Villars-Rayski regnlarization, wlere the photon remains massless when we
remove the regulators. Recently, alternative treatments have been given to the subject and,
by using dispersion relations {29], it was shown that the photon indeed dynamically acquires a
topological mass.

In order to get a new insight, let us reexamine the ordinary PVR prescription and analyse
the conditions that must be imposed on the masses and coupling constants of the auxiliary fields
such that a regularized closed fermion loop in 241 dimensions is rendered finite. Consider the
integral corresponding to a ferinion loop containing n vertices with n external photon lines
atached, with momenta k; (1=1,2,...,n). This integral is proportional to

./ 3 Trlyu(m + ) va(m +p+ B vp(m+p+ .+ faci)] (HL1)
(m?—pt4ie)m? — (p+ k) +iel fm?— (p+ ...+ koot )2+ 1] .

so, for large p, its integrand behaves like p™ whereas for n < 4 the integral diverges as

/°° pldp /”" dp
o p* o pﬂ—2

The integrand T in equation (111.1) behaves like
I~ Z1n."a-(,,+1,)(p) , (111.2)
X

11

where
a_(uery(p) ~ p~ (111.3)

Therefore, in making the substitution
ny
I(m) — Zc,-I(M.)

where n; is the number of anxiliary fermion fields, we must impose in the vacuum polarization
case (n = 2) the constraints

1)/

Ya=0, (T11.4)
ny
Z(‘,]\[,' =0, (111.5)

in order Lo get rid of the linear and logarithinic divergences, respectively.

Having settled down the basis for the Pauli-Villars-Rayski regularization method, we calcu-
late the vacuum polarization tensor in spinor QED;. In the standard notation, the regularized
expression for the vacuum polarization tensor reads

M;)
114 (k ¢ | &p Pm: , 111.6
) g f P (M - ps?) (IL6)
where
co=1, Mo=m , Mi=mk (i=1,.,ny) (IIL7)
and
P(M;) = Tr{v.(h+ M)n.(f+ M)} . (I11L.8)

We choose both the electron mass aud that of the auxiliary field M, to be positive quantities;
the coefficients A; ultimately go to infinity to recover tlie original theory. Using the Feynman
paratnetrization

1 ! i
=f{d , 1.9
(M? = p ) (M = p?) /0(E[M,~2—p1""~(Pz’—pnz)fl2 (1)

we obtain kk
M (k) = (g — ~SM(K?) + imeak® Y (K?) (I1L.10)

where
&p 1
MY = 4ieh®S ;| dEL1-¢ —_—, 1L.11
() z [aecr-of 3 P T AT (11L.11)
M) = _2_’6_ Lp 1

n¥e?) = Zc, f df/ P OT (111.12)

12



with
Ql= MP—¢(1 — k. (11L13)

The vacuutn polarization tensor results to be transversal as expected by gauge invariance.
From the subsidiary conditions (111.4) and (111.5), we realize that the nuinber of regulators
must be at Jeast two, otherwise we can’t get the coefficients A; cannot become arbitrarily large.

So, et us take

a=0-1, g=-a , ¢,=0; j>2, (111.14)

where the parameter a can asswine any real value except zero and the unity, so that condition
(1114} is satisfied. For |A}. |22} — oo, 1D(D) = 0, whereas

2
20 = 2% (1 y), (111.15)

Arm
s=sign(t —a™t). (111.16)
i 0 < @ < 1. which corvesponds to s = — 1, HP(G) 7 2: in this case the photon acquires a

topological mass, proportional to 11¥(0), coming from proper insertions of the antisymmetric
sector of the vacuum polarization tensor in the free photon propagator. If we assumme that a is
outside this range, s = 1. ¢; and ¢, have opposite signs aind 11'¥(0) vanishes. We then conclude
that this arbitrariness in the choice of the parameter o reflects itself in different values Tor the
pl\ol(;n mass. The new parameter s may be identified with the winding numnber of honmotopically
nontrivial gauge transformations and also appears in lattice regularization [30].

Now we must look for the value of o leads to the correct photon mass. From equation (111.12)
and we see that 11™(k?) is ultraviolet finite. We remind that a closed fermion loop nust be
regularized as a whole (IH.7),(11.8) so to preserve gauge invariance. However, having done
this, we have affected the finite antisyminetric sector of the vacuum polarization tensor and,
consequently, the photon mass. The same reasoning applies when, using PVR regularization,
we calculate the anomalous magnetic moment of the electron; again, if care is not taken, we
obtain an incorrect physical result.

In order to solve this problem we should take the value of a which caucels the contribution
coming from the regulator fields. This occurs for « = 1/2. Hence

62

12Y0) = (ITL17)

drm
in agreement with the other approaches already mentioned. We should remember that PVR
regularization violates parity symmetry in 2+1 dimensions. Nevertheless, for this particular
choice of «, this symmetry is restored as the regulator masses get larger and larger. The
result quoted above suggests that the ordinary parity-breaking PVR regularization, if carefully
implemented, does not introduce any residual contribution to the photon topological mass.

IV. General Aspects of The Causal Theory: the Phs
and Superrenormalizability

Although the physics of the quantized electron-positron field in interaction with a class
electromagnetic field is well understood, some mathematical aspects of the theory have not
established themselves as standard textbook niaterial (an exception is {11}), in spite of ]
fundamental importance. We therefore review briefly one of these aspects, which we neec
this section: the scattering operator S in Fock space for quantum electrodynamics in (2-
dimensional space-time, in an external time-dependent electromagnetic field A.

We start from the one-particle Hamiltonian (II.1) with

Vit) = e(V(t,E) - &.A(L, 7)) . (v

The potentials are assumed to vanish for t — oo in such a way that the wave operat
exist, together with a unitary S-matrix (11.3). The second-quantized free Dirac field is giv
on Fock space by

W) =8P + AP (v

Here P{ are the projection operators on the positive and negative spectral subspaces of t
one-particle free Dirac Hamiltonian Hp, respectively.
The second quantized S-matrix in Fock space is now defined by

P(StF) =S19(f)S , (v.
WS =SS, VieH, , (1v.

if it exists, where H, denotes the one-particle Hilbert space. We have taken the adjoint St
the test functions since ¥(f) is antilinear in f. It follows from the above definitions that S
unitary and uniquely determined up to a phase. However, this phase A[A] is physical becau
it depends on the external potential A,(z). As we shall see this phase will be fixed by tl
requirement of causality of S.

The S-matrix S in Fock space exists, if and only if P,SP_ is a Hilbert-Schmidt operatc
In this case it is given by

S — Ces+'5:'~b"" . e(Si}'—l)b'b . e(l—S:'_)dd' . es:'_s-m; , (v.
where : : denotes Wick ordering,
Si; = PRSP, 14,j=+,~ (IV.

and
|C]? = det(1 - S,_8,) . (Iv.
The first factor in (IV.5) describes electron-positron pair creation, the second one electr
scattering, the third one positron scattering and the last one pair annihilation.
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n the one-particle theory the condition that a change in the interaction law in any space-
time region can influence the evolution of the system only at subsequent times can be translated
into the factorization of the S-matrix [31]

Sl =55, 5 sl av.8)

where we have written the electromagnetic potential as
Az = Af(x) + Ay(x) (1v.9)
which is the suni of two parts with disjoint supports in time
supp &; C (~oo,r} , supp 4, C [r, +00) . (1V.10)
A similar factorization should hold for the S-operator S in Fock space,
(2,89) = (2,825:9) . (IvV.11)

We call (IV.11) global causality condition for the Fock space S-operator in contrast to the
differential condition

s sS
: 0,s! 0
! §A(y) ( §A,(x)

) =0, for 2?° <y . (IV.12)

We mentioned that the S-matrix in Fock space can be uniquely deterinined up to a phase,
S =S, (IV.13)
where § is unitary, and given by expression (I'V.5). lnserting (IV.13) into (IV.12) we obtain

§ 3
Y] =
S$A(y) (SQ' 5#1,,(1‘)( >
& S (SQ 98 Q) (1V.14)

S e St iae

It can be shown from the unitarity of § that the last term in (1V.14) is purely imaginary.
Consequently, the real part of the cansality condition (IV.12) is automatically satisfied while
for the imaginary part we may choose ¢ conveniently such that (1V.12) holds.

We now turn to the determination of the causal phase in lowest order of perturbation theory.
From (1V.5) we have

SO =+ Y (Se- )bl diQ+..) (IV.15)

mn

where we have put S-! equal to the unity in lowest order. Taking the functional derivative of

(IV.15) with respect to A,{«) and keeping only terms of order O(A) in the resulting expression,
we arrive at

~ 68 o ¢ 854
(SQ, mﬂ) =1iC*ImTr (S_+(5A,,(:r) . (1V.16)
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In lowest order we may set (% = 1.
The local causality condition (IV.12) together with expressions (IV.14) and {(IV.16) yield

pe 68,

, def P i § £ _
Fen) = simsae T s ((“q*‘) (SA,,(;P)) =0 (v.17)

for 2% < ¢°.
Next we calculate the second term in (IV.17). In lowest order of perturbation theory, we
have

81 = —i(2n)7 Pu(p)r e Ay + 9P-(~a) . (1V.18)
Using the following representation (1.2) for the Dirac matrices, we obtain from (1V.18)
§ 88, -
Sy )l =
T
62(27f)_5f dsz dqe Pt P (~q)yy Py(p)r°r" P-(—q)]
—_ ) 3. ik{z~y) Duryp.
= 5 /dke Pe(ky (1V.19)

P (k) is related to the tensor of pair creation in (2+1) dinensions.
Since the symmetric and the antisymmetric parts of P*(k) are, respectively, real and
imaginary, we can write
d%p
Fla,y) = o7+t
§A,(y)6A,(2)

I : L
-G M |, Pk sink(z — )Py (k) - z/

ko>

P cos k(e — y)f{x"(k)] L ava0)

In order to write the last term in (IV.20) as a complex Fourier transform we must continue
PEY (k) and PyY(k) antisymmetrically to &y <0

F(z,y) = e - i/dﬂke—"*“-ﬂ[d“"(k)-d“”(k)] (Iv.21)
VT SAL A (x) (2r2 § A ’
where
4% (k) = (k"k* — K2g")B(K?) (1v.22)
&% (k) = ime* ok, Ik . (1v.23)
and
o =€ kP am? 1, 2 580(ko)
B(k*) = 24n)? 4 O(k* — 4m*) = (IV.24)
—e? k )
O = =% _@(k? — gm?) 80k V.25
(k%) 22! ( m?) T ( )
16




According to a theorem by Titchmarsh, the Vourier transforin of a cansal function vanishing
for £® — y° =t < 0 satisfies a dispersion relation. Since d%’(k) and d%’(k) are real and purely
imaginary. respectively, they cannot be the Fourier transform of a causal function. The lacking
imaginary pact of dg’(k) and the lacking real part of @4’ (k) must de supplied by the first term
containing the phase [1].

62LP — 1 i 13 —ik{z—y)r: uv uy
S~ " aea ] TR )~ g ), (1v.26)
where .
110 (k’)
‘ — —
(k) = r/_v M
y 1"2
e e [ (Y (1= RN '
= ”(}, ko~ 12q )[\/k—z(l+ 5 log ——l e + % sgn(ko) , (Iv.27)
and
(u _ 2 —ld‘“‘ ]\t)
ath) = p/ !(I -1

'
' k 1 - 4m?
= —gm:""’ _log —\/—Tz sgn(ko) . (1v.28)

R
with o = —?/[2(4m)%) and 3 = —¢?/]2(27)"]. In the above dispersion relations, P denotes the

principal-value of the respective integral.
The causal phase is obtained by two integrations

_ 1 1 3 52‘P .
ol = §fd x [ 4 Vo ) +O(4"

ke kY
= g/ &L [(___kz _ guv) ﬂsl)(k) + im,guuakoﬂsz)(k)] Au(R)ALE) (1V.29)

where

- /B
(”(k) [\/E; (1 + 4m? )log (l——kT) + 4177] sgn(kg) , (I1v.30)
+

k? 4m?
k?
1 - /At
Ny = - L KV san(ko) . V.3
(k) n\/k_z()g 7 /i sgn (ko) (1v.31)

If we decompose the electromagnetic fields which appear in the integrand of (1V.29) into the
respective real and imaginary parts we see that of[4) is indeed real. The S-operator in Fock
space S[.4] is then completely determined.
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The vacuum-vacuum amplitude is
(2,80Q) = Ce#(Q, e5-52284'q) = Ceiv (1v.

The absolute square

Q.80 =C?=1-P aav.

must be equal to one minus the total probability P of pair creation,
P=—-2x / Lk PP (k)AL (k) A% (k) | (.

since the external field can change the vacuum state only into pair states.
The resulting expression for the vacuum-vacuum amplitude reads

s k* k¥
(2,80) = exp{zE/ Pk [( =

- g“u) (k2 + ime ok, T3)(K?)

x A (k)AL(k)} (1v.3
where
HOG%?) = 10k - iV (*?)
HDKk?) = 1P (k) — P(k?) (Iv.3
and
%) = a\/—(l + —) O(K* — 4m’) , (V.3
2 _ 2

N/

For k? < 4m? the expression between square-brackets in (IV.35) coincides up to a mult
plicative factor with the complex conjugate of the two-point function that corresponds to t}
vacuum polarization tensor. The vacuum-vacuum amplitude is ultraviolet finite and exhibi
an additional contribution fromn the antisymimetric part of the vacuum polarization tensor |
(2+1)-dimensional space-time, which emerges from the topological structure of the theary. W
should like to emphasize that our construction of the phase above is entirely perturbative.

The program of constructing the S-matrix by means of causality in quantum field theos
goes back to Stueckelberg and Bogoliubov (see {32]). The S-matrix is completely determine
by causality and translation invariance, supposed the coupling 7} is given:

S(g) /dr, B, T{Th(z1)... Ty(x)}o(z1) . .. g(za) » (IV.3

1
ﬂ—O n

where g(r) € S(R?) is a C-uumber test function, assumed to be in the Schwartz space. W
consider that the limit g — 1 exists for the right physically measurable quantities. Howeve
{1V.39) contains ultraviolet divergences for n > 1, and, consequently, must be renormalized.
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In the early 70’s, Epstein and Glaser {10] proposed an axiomatic construct where ultraviolet
divergences do not appear, leading directly to the renormalized perturbation series. They have
shown that in the causal theory no UV probleni arises if the causal distributions are correctly
split (distribution splitting) [10].

In the causal theory the S-matrix is viewed as an operator-valued distribution and has the
following form

¢(g-1+z /(131, e Tulzy. . 2)g(z1) . . g(en) - (1V.40)
u—'()

The n-point operator-valued distributions 7;, are the basic objects of the theory. They
can be constructed inductively from 7 through a number of physical requirements, the most
essential one being causality. Let the operator-valned distributions T, be defined by

—1+§: /d’“ Ben Tl oen)glen) - glan) - (1V.41)
n*‘O

Then one defines, for arbitrary sets of points X, Y in the (2+1)-dimensional Minkowski space,
the following distributions

Al Zi’m (X)Tucny (Yoa) (1V.42)

Ri(ry...a 27,1 w Y, 2T (X)), (1V.43)

where the sums run over all partitions
Py: {ry,...,tan} = XUY, X£0
into disjoint subsets with |X| = ny, |Y] < n —2. We also introduce
Dp(zy...z0) = Rl ~ AL (1V.44)

If the sums are extended over all partitions P2, including the enipty set X = @), we obtain the
distributions

Aplar.o zn) = AL+ To(zy ..o 70) (1V.45)

Ro(ey...xn) =B+ Ta(ay .. x0) (1V.46)

These distributions are not known by the induction assumption because they contain the un-
known T,. Only the difference

Dy=R.,~ A, =Ry~ A, (I 47)

is known. We can determine R, or A, separately by investigating the support properties of
the various distributions. It turns out that R, is a retarded and A, an advanced distribution.
Hence by causal distribution splitting of (IV.47) one gets R, (and A4,), and T, then folows from
(IV.435) (or (1V.46)).
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In QED3, D, is of the form
Dulxy...20) = Z [T #(a;)di (= r,,)mv(r,) [ Az (1V.48)

7 m

where (1) are free fermion field operators and A the free radiation field operators. The double
dots denote the usual normal ordering. In the above expression, d* are tempered numerical
distributions, which have causal support. They must be split as follows:

df = r.(2) — ag(2) , (1V.49)

where r,, and a, have support in the forward and backward light-cone, respectively, The
simplest way of splitting wonld be
{2} = \nl2)dt | (1V.50)

with

@) = [l 06) ~1). (IvV.51)

i=1

This would lead to the usual UV divergent expression (IV.39). Since d* are distributions they
cannot, in general, be multiplied by discontinuous functions.

The causal splitting can directly he done in niorentum space hy means of the following
dispersion formula

e ditp) ‘
) =5 /_«. TR Ty (1v.52)
where w is the order of singularity of d. This last expression is called the symiunetric splitting
solution. We refer to [11] for further details on the splitting mechanism. In particular, the
theory of quasi-asymptotics [32] lias been used in [11] to simplify the analysis of distribution
splitting given in {10].
The singular order of a generic grapli in QEDj; is given by

. 11 .
w=3 - f - Eb— 51‘1 s (IV53)

where f (b) is the number of external fermious (bosons), and » the order of perturbation theory.
We see that the only singular graphs are the vacumn polarization (n = 2, w = 1), the electron
self-energy (n = 2, w = 0) and the vacunm polarization in fourth order (n = 4, w = 0).
Therefore, we conclude that QED in (2+1) dimensions is superrenormalizable. See [20] for
further details.

V. Results: Dynamical Photon Mass Generation, the
Self-energy of the Electron and the Vertex

The first order term T; of QED is given by
Ti(z) = ie: Pz )y*P(2) : Au(z) = ~Ti(x) (v.1)
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On going from n = 1 to n = 2 the inductive method proceeds by forming

AY(x1,72) = To(21)Ti(w2) = —Ti(x1)Ti(22) (V.2)
R’;(i"h-h) = 7‘1(‘r2)7.‘1(l'1) = “‘711(1'2)7‘1(3‘1) . (V-3)

and
Dy(xy,x2) = Ry — Ay = Ti(z)Ti(z2) — T\ (22)Th(70) (V.4)

By using Wick’s theorem, the term due to vacuum polarization is obtained by two fermionic
contractions

- l);‘”(.l'h.l‘z) = (’““(:l'l,.l‘z) : /1“(.1")/1,,(1'2) Ty (VS)

where
g ) = PPy = ) = P (g = ) (V.6)

with
Prfey — ) = ‘2717'{7“54(1'1 — 1)y’ STy~ )} (V.7)
It momentum space we find [20]

ARy = & (k) + A (k) (V.8)

where
: 4 (k) = (k"R — kg™ B(K?) , (V.9)
& (k) = im™ ko B(A?) (V.10)

In Eqs.(V.9) and (V.10), B(k?) and B(k2) are distributions such that d%"(k) and d%’(k) are of
order w = | and w = 0, respectively. i
From (1V.52) and the explicit form of B(k?) we obtain the antisymmetric splitting solution

(k) = ime"k JB(k?) | (V.11)

2 1 — \Jk2/am?
Ny = 1 f4m (V.12)

= — log .
22m)Vk? T L+ \Jk?/4m?

where

The vacuum polarization tensor can be written in the form
kuky oy gy o2}/ 1.2
(k) = (g — k—2)11 (k%) + ime ok IT(R2) . (V.13)

Fromn {1V.52) and the explicit form of B{k?) we also obtain the symmetric splitting solution
r%7(k). Then, in the limit k% = 0 it follows that

M) =0, (V.14)
and, from (V.12), \
) = 4:”1 . (V.15)
21

The photon propagator modified by the proper vacuum polarization insertions is given

-1 kuk, . k= [O®
Du.(k) = m[guv - —22— - zm(’“’"k—zl_Tl)/k? ) (v.
with NC
2 m .
(k%) = N(k?) + TomRe (V.

By (V.16) and (V.17), we see that the modified propagator have a pole dislocated from t
origin and, thus, we conclude that the photon acquires a “dinamically generated” mass
order €?, i agreement with the usual procedure from (IV.39), using a gauge invariant analy
regularization.

We now discuss in more detail other second order diagram of QED; with non-negative
the electron self-energy. The corresponding c-number distribution is

d(y) = —* 1S DE (—y) + SP ) DO ()]
= —e*ld_(y) + ds (V)] » (V.1

where

d_(y) = $7(y)D{M(~y)
di(y) = SP ()DL (y) . (V.1

The Fourier transform of d_ is

d-(p) = -0 [ @4D{(p - )+ m) D (q)

= (2m)(h+ 1), (V.2
where
1= [ 8¢ ~ )l(p - 9)Imb(~g")(g” — m?) (V-2
and A
L= [ #9016 - 5")61(p - 9/ O(-3")8(g" ~m?) - (V2

Taking time-like p in the form p = (po, 0) yields
1=m [ @q0(6° = 1")O(~¢")(F% = 2pogo + m)S(g” — m)
d’q
=m / 25,07 + 20 Fy + m"8(—E, - po) - (V.2

It follows from (V.23) that py < 0 and

2 2
E="0R i, (V-2

—2po
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so that
2 _ 2

m-—py 2 2
%0 em’—p;<0. (V.25)

la] =

Therefore,

2n ~ . )
L= 71110(17(2, - m?)()(‘llo)/(; d|q}M_l_(g (Eq _pptm )

Eq 2|pol 2|po|
= mmf(pg — m*)(~po) f ‘g jp ’ (F - pozl+ T )
m 0 I]D
m .
= Eﬂ(pg - 1))2)0(—-))0)_‘"1_ . (V26)

N

We may write the integral (V.22) in the form {; = I}7,. For v # 0, I vanishes by symmetry.
For 19 we have

i 2. 8(°+ E
L= / qq°0(¢" — p°)S(pk ~ 2poqo + mz)—(q—‘lﬁ_ql
T 2 2 0
= 200 — m)0(—po) 2 T (v.27)

293 \/p-g ’

. 1
in the same way above for /. For geueric p, we must replace p3 by p? in I, and I; and the
linear term p®yy in I97q, with IY given by (V.27), by p. We then obtain

dom) = (272007 — B0 —pa)— [+ 2 (1 4 ™
(m = (27) 2()[]» m*)0( po)\/]?. 1:1—{—2 l+p—27 , (V.28)
which coincides with the distribution #(p). The distribution d,(p), with support in the ad-
vanced light-cone, is obtained in an analogons manner {rom (V.19), or simply substituting 6(pg)
for ~8(—po) in (V.28).

It follows from (V.18), (V.28) that

dip) = —e*y*[d_(p) + di(p)].

= an) Zogt — ) B2 [3 . (1 " ;7)] | (v.29)

2 vp? 2

From (V.29) we conclude that the singular order of disw = 0. Therefore the symmetric solution
of the splitting problem is

#p) = eX(2 T dt 22 .2
(p) = e’(2m) 227r/.oo(t-i())(1—t+i0)a(tp )
sgntpo (. —m
il A
xlt' > [m 5 (1+t2p7)] . (V.30)
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Thus,

i sgnpo 15( m2)]log(l~W)

Fp) = '4._ n— = =
#(p) = €*(27) 5 m{[’hl 3 1+p2 gy Y

+ .’i (Gm -~ #Z;—:)} + 62(2”)'3%0(;{" — m2)s§;§0 [31n -~ g (1 + %;)] , (V.31)

m?

which, from the tensor structure of 7, is the general solution.
The electron self-energy is defined as

S(p) = —i@2n)[F(p) — ¥(p))

6—2—1—{[3171 - g (I + %2—)] log (ﬂ)

T 8rvp? 1+ /p?/m?

[ p? m? ie? 1 p m?
+ o (Gm — ;‘)p—z)} — ma(p? _ m2)7;7 [3111, -3 1+ F R (V.32)

when p is in the advanced light-cone. The logarithinic on shell singularity is more severe than
in four dimensions. Anyway, S(g) given by remains well defined in perturbation theory even in
three dimensions, although in this case the adiabatic limit g — 1 is more delicate.

The proper two-point insertions lead to the corrected second-order propagators. There
remaius another basic insertion in the theory, known as the vertex function, which, as the
electron self-energy, also exhibits a singular behaviour in the infrared region. We construct the
three-point function that corresponds to the vertex function from the retarded and advanced

distributions

Ri(x1,2,23) = Y. T(Y, 23)T(X)
Py

= Ty(z1, 23)Ti(22) + Ty(x2,23)T1(21) + Ta(za)Tolz1, 22)

Ry, % 53 (v.33)
and
Ay, 22, 75) = 2 TXOT(Y,73)

P
= T\(22)Ta(z1, 25) + Ta(@1) a3, 7a) + Ta(x, 2a)T(za) -

5 A, Az (V.34)
Eaclt term in (V.33) and (V.34) corresponds to a certain decornposition of the vertex diagram
in a vertex part (T} = —T1) and a second-order diagram (T3,T2). The last may be a two-point
function for Méller scattering,

T (@1, 22) = —ie s Plm)y* () P(@ahnadb(2) - D (T — =) (V.35)
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or that for Compton scattering,
7'2(2)(.1',,.1'3) = —ie? Pl Y Sp{ey — )y () A x) A (1)
= —ie? Y3}y Splies — o )y () = Au(wy) Aulra) © . (V.36)

The inverse two-point functions are given by

To(ay,x2) = =Taler, 22) + Tilay) Ti(x2) + Ti(x2)Ta(zr) . (V.37)
For the first term in {V.33) we get

Iy, = _sz(il'lv-l'a)Tl(J‘z)

=2 ﬁ(.lqh"ﬁ',v(r, - 41';;)7"5'”)(1‘3 - :r;)ie-y'\d:(,r-)) :
X G D(()H(Tl ~2a)A (1) , (V.38)

such that to x( is associated an outgoing electron, to r; an incoming electron and to z3 an
external photon. Analogously,

”, = ‘7‘2(2)(1'2»1‘:&)7'1(-"1)
'
] . _ s PN N

= e TSy = )y S = 2adier ) :

x DSy = 21)Aulirs) (v.39)
The last term in (V.33) can be written as

Ry = Ty(as) T (. )

= ~Ti(xa) T3 (21, 72) + Tilaa)Tolan) Tolz2) + Ti(2a)Ti(x2) Talz1)
lid iy, Ry, (V.40)

where
A N L Yot

Ry = @ T rn 25 e~ rahy =S s = 2 ablia)

)

x D (21 — 12) Aul(x3) (VA1)
Ity = ¢ Py )y Sy — 3)y SH s — 22)y \(22) :

B xgDEP (a1 — 22)Aulas) | (V.42)
Ry =€ P(a)y SNy = 23)7"SWas — 22)v*9(x2) :
x g DE (12 = 1) Au(zs) . (V.43)

The advanced distribution is obtained in a similar way,

Ay = =T T3 1, 03)

= & Pz )7 Sp(z1 — 23)7Y ST (23 — 22) 1 Y (22) :
x g D§P (22 ~ 21)Aulzs)

Ay = ~Ty(@)T;(x2,73)
= —e? 1 P(zi)y SN2y — 23)7 Sr(zs — z2)7*(22) :
xg/\uDl()H(Il - 352)Ay(233) .
The last term in (V.34) split into three pieces
Aga = TQ(I],.EQ)T](J‘;;)

= T2y, 22)Th(z3) + Ti(2:)Ta(22)Ti(2s) + Ta(z2)Ta(22)Ti(z3)
Ay Ay 2

with the following results:

Al —&: Pz )y S 2y — 2a)y" ST (s — o) Vublz2) :
XDOF(JL‘] —79)Au(73) ,

Ay = PSP 2y — 25)7" ST s — 22)7 () ¢
xgaDiP () - 22) Au(23)

Ay = € Py 52y — 23)7" S (@5 — 22)7 d(22) :

x g DEF (22 — 21) Au(z3) .

We may now write the diflerence

D= R’ - AI dg _63 . ;Z(TI)D“(Q:]’I?’I:))'IJ(I?) : AV(I3) ’

(v.4

(V.4

(V.4

(V.5

where all the 10 terms which contribute for D* have the same matrix structure. The followis
pairs of terms combine: Ry, with Rj,, Ry, with Ry,, —Aj; with —Aj; and — A3, with —A43,.
a consequence all the Feynman fermion propagators are converted into retarded and advance

propagators.
In momentum space we have

D"(p,q) = (2#)_3/ dyydya D* (21, T2, T3)eP T = R — A,

where
nw=r—I3 , Yy2=I3— 2.

(V.5

The resulting retarded and advanced distributions resultantes are given, respectively, by

Rip.g) = (20" [ & [y"5(p - k0§ g = Ky D (k)
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180 + k18 g + Ry DG )
—y*57 (p = k) g — )1 D5 (k)]
H(p.g) = ~(2n)™" [ @[30 - k1S g - k) D (k)

FSH (p = )y §7t (g — k)ru DEP (k)
—78(p + k)8 g + k) DE (k)]

-

After simplifying the matrix part, D" can be written as

D”(p,q) = =347" BT + 347" 7" L + 3Luy"y"h + 31" 7"
—6I" 7" +4Am(p” + ¢")T — 6mT" — m(py* + 74T — m*y'T ,

wher. Z, T and I* are the {ollowing scalar, vector and ‘cizor integrals

&k
T (p,q) ¥ (’")_m/mﬁ{hk“vk""}

L x[FOWk = p) DOk = D) + Dk = p)DO (k- ) D (k)
=Dk~ p) D!k~ q) D5 (k) + DNk — p) D (k ~ q) D57 ()
=Dk = p) D) (k = ) DG (k) + D (k — p) DM (k — q)D7(K)]

and

. 1

() 2 T L
DIEk) = Gk ), DF () =
I 1

T o f s [)rd =~ Ta 5 . 1 A"
k2 — m? — k0 k2 — m?2 + 1ky0

Dln.'(k) —

The quantities with index 0 correspond to m = 0.
We calculate the scalar integral

6
I(p.q) .), Z
with
I = /d% 0(° — K°)8[(k - p)? — m? !
= (k — q)2 — m2 — i0(k° — ¢°)
xO(k%)8(k*)
L= [& ! B(K® — ¢®)6(k — q)% ~ m?]
(k= p) —m2 + 300K %)

x O(~kL)6(k?)
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(V.52)

(V.53)

(V.54)

(V.55)

(V.56)

(V.57)

(V.58)

(V.59)

(V.60)

I = /(131:9(;)0—ku)é[(k—]))2—1712]0( ~ )bk - )2 — m?

1
k24740 (v-61)
I, = _/d% ! 8¢ ~ k2)5[(k — q)* — m?
= (k= p)? —m? — i0(k0 — po) 9 ?
xO(k%)8(k?) , (V.62)
. 1
L= — [ PEo(ke ~ p°)s[(k - p)? — m?
ez = [ RO~ )6k~ pf - m o e S e
xO(— k)8 (k?) | (V.63)
Tz — [ 000~ F)sl(k - p)* = m0(g° — K)6[(k ~ g)? — ]
1
Defiving
I(pq)=~(I3+ Ts) (V.65)
and performing the shift & = &k + p in the integration variables, we obtain
[=1+1, (V.66)
where
- &k IR TTE R 22
I, _/W+7)0(A,O)J(k — m¥)(=Po — ko)8[(P + k)2 —m? (V.67)
L=— / P g oSk — m)O(Py + ko)S[(P + k) — 7] (V.68)
(k +p)2 + ZO 0 0 0 L] .
with
P=p—yq. (V.69)

The product of the first § and & functions in the integrand of (V.67) gives §(ko— Ex)/(2Ex),
which implies
ky=Fy=vk?+m?, Ph< -ky<—-m. (V.70
For space-like P there exists a Lorentz frame with Py = 0, such that /, vanishes. Consequently
P must be lime-like. Then, there is a frame with P = 0 = p ~ q (center-of-mass system). The
last function & in {V.67) hmplies

F 1 1
Pf=~2Eh, Ex=~5=~5(po~ ), ko= —5h (V.71)
Analogously, in (V.68) we have
ko= ~Ex=~vVki*4+m?, Fo>-ky>m. (V.72)
and
2 P 1 1
Py =-2Eh, Ek:5‘=§(P0"QO), ko=—§Po~ (V.73)
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Thus,

_ ﬂ 1 M Ex + Po/2)
"= B Tt pol - (ks PR+ 2R

for ~F—Fx>0, (V.74)
e 1 8B~ Po/?)
. 20y (Fx — po)? — (k4 p)2 + 10 pATEY
for B~ Ex >0. (V.75)

If we use F = Ey as integration variable

. 2 b 2 peo
/(ﬂk :/ dtp/ Kdkl= [ [ EdE,
0 0 Jo  Jm
the integration in £ can be easily performed due to the é function in (V.74) and (V.75). So,

we obtain

. o2 - 4m?)
H ] = —spupP,—20 "7
! SgN iy 1| [)Ol

2 1
x/ do . V.76
0 Pogo — p2+ m? — \/I’(;" — Am?|p|eosyp + 10 ( )

We can rewrite the above integral in a covariant forin if we notice that

Pogo — 2= Po% — P.q = p.q

and

| Pollpl = \/(po - 90)?P? = \/P3a? + 43p* — 2poqop.q
= \,/(I’OQO - pa)?— (Bt - p)ed—q?) = \ﬁ-qﬁ —piq*.

In an arbitrary frame,

2r 1

P P —
o S0(t3+b3cosgo~|- 10

msgnbo, o 2 1
= -2 29(P? — 4m?)——ounuv-o, V.7
2 Vp? vad — b3 +ia;30 ( )
where
_ ) 4m?
az=pg+m’ |, by=-VN l——ﬁ (V.78)
and
N = (pq)*—p'¢*. (V.79)
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Following the same procedure that led to expression (V.77) for I, we can perform t.

calculation of the integrals
Jpa=Li+1s (V.8

and

Kp,q)=L:+L=-J(qp) . (V8

The evaluation of J can be done in a frame where p = 0, since in this case p must be time-li
in order that the integral not to vanish. Since

lollal = /rda? = /ri(&

in an arbitrary frame,

— @) = \/(Poa0)? — pg* = VN ,

2r 1
J(p, p -ty [
(p.a) /l\/_7 ) o (ya\ + bycosp — i(p? — m? — 2pq)0

L 0 PR, 8(p* — m® —2pq) _ 6(—p’ + m’ + 2pq) (V.8
2 Vp? Vai — b —ia)0 o B +ia0 |

2
alzqz——mi—pq(l—r:—z) , by

Using (V.81) and defining

m?
025]’2—1712—]7(](1—?) , b2

we find an expression for I and, consequently, the scalar integral can be written as

with

-VN (1 - ':—:> . (V.8

n

B T T

T sgnFo . o 2 1
I(p.q) = Py ) W S—
2(27)"? vPr vad — b + ia30

2,2 n? 2
L PR [o(p m? —2pg)  O(=p* + m? + 2pq)

VP Jai— B —ia0  \fal— b +ia0

B0y oy | 08 =T~ 2pa) =g +m’+2pq) [ (V.8
e r B2 —ia0  \Jad— b} +iax0

The algebraic calculation of the vector and tensor integrals is lenghty. Each one can |
decomposed in terms proportional, respectively, to sgnFq, sgnpo and sgngo, which in turn a
constructed from tensor products of the external momenta p and gq.

The vector integral is given by

I*(p,q) = % {r* [pal@® - m?) — *(p* — m)]

+4” [pa(p? -~ m?) - p*(g* — m?)



7" sgn Po 2 N 2 . 2
+4——(2ﬂ_)9/2N {———\/—ﬁ O(P* — 4m )[P‘ (Pa—q )+ q"(pg~p )]
SgNPo,. 5 o 2 g, 3 2 2
+ p* — m*) |¢"p" — p"( - 20  —m “gt — g"(p } . V.86
7 P [ 7 pq)] v )[P 9" —q m)] (V.86)

Finally, the tensor integral is given by

zv(p,q) = DD L grqr {21 = m? = (o) = )]
! 2 232 e 2
+p"—mT) }~(p‘q +q'p" )-{217 - m?)(q* - m?)

41 [(q ~m?)?p? — Aq? ~m*)(p* ~ m®)pq + (p* = m )‘qz]}

Ly ) 2 2y 2 2 N 242
= (=5 [0 =gt = o)l = )] 4 00 = 0P

1 ) )
+g‘“’a [[;2((12 - mz)2 - 2pq(q2 - mz)(pl —-m ) +g Hp? = m?)?]}
i b sgnfp
' P?— am®) {p*p” 13pq — 2¢* + m?
(2n)°”1v{2\/— i o' ea =24
2 _ a2y2
B (pqg + ]z[(l!q q%) ] e [3[}(] — 9% +

2 N Pe +°e") [pa—p? -t —m?

2 _ 2 2
_ylratm )(qu q*)(pq - p )] T m-z)}

_f,(pq+mz)(1’q—i°2)"} L i

SgNPo o, o P 2( 2 2
+—==0(p* - m {( — 7 —m?) — ptg* — m?)
7 ) ye'e Yy [pat® q ]

sy m*Y 1o 2, 2
PN {m (1 7 ) [3p%¢* ~ (ra)?]
2
P iy 1 r <
~(¢*~m*) [(pg)? + V'] } + (a4 ' ¢ i {2pa(q® ~ m?)

2 2 2
-0 =) [tpay +p2q2]} +g% [m (1 - ’;%) - (¢" - m?)]}

~E0hq* - m?) x {p q}} .

N
(V.87)

The distributions R’ (A’) for the scalar, vector and tensor integrals are obtained replacing
sgnpo by —0(—po) (~0(po)), sgnqo by 6(ge) (6(—~qo)) and sgnPo by —0(—Fo) (—0(Fo)) in (V.85),
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(V.86) and (V.87). The imaginary parts of the functions

S0, ) B(p* —m? —2pq)  8(—p* + m® + 2pq)

- (V.88)
N/ N
2 2 2
£ (p,q) = 24 =m* —209) _ 0(=¢" + m’ + 2pq) (V.89)
—B—ia0  \fa}— b} +iaz0
i
2O (. g) = e (V.90)
are given by
1 pP-m?, ¢ -m!
AmEW = = (e® — m*)0(2pq — ?
SmE b (g" ~m*)6(2pq g — m2? ~ »” - g iR
(V.91)
I pP—m? g —m
SmE® = - f(p? — - - ?
Sm B = b aga(l’ m?)0(2pq q? — 2 pt—m? )
(v.92)
SmEP =0. (V.93)

and, therefore, the distributions for the scalar, vector and tensor integrals are real. For the
scalar integral we have

SmIp(p,q) = ImZa(p,q)

b 1
- 2(2#)9/2 \/:qu(pz — m?)(g? — m?) — p?(g% — m?)? — g¥(p? — m?2)?

2 2 2 2
0% — mA0(o? — 2T M P
x0(p? — m?)0(¢* — m*)0(2pq — p* i — q’—mz)

PP —mPe(d —m?)
220 VPP -t Vg —m?
. 0Cpg — PeE —m?)/(p? — m?) — ¢(p? — mP)/(g" — m?)
V2pg — (g2 — m2)/(p? — m?) — ¢(p* — m?)/(* — m?)
If p and g are the 3-momenta of external electrons, the distribution D¥(p,q) in (V.54) can

be simplified by anticommuting p to the left and § to the right, taking into account that it
appears hetween the Dirac spinors (p) and u(q). Thus, we can write

(V.94)

D¥(p,q) = =2m{p* + ¢")I + 6pgy"I + 6(p" + ¢")¥* L,
—69"(p" + ¢")T, + 3y T, - 61" ,v" . (V.95)

The scalar integral T diverges on shell, where only the first divergent term survives for sgnpy =
sgngo, while the vector and tensor integrals remain finite in this limit. The first and third terms
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in (V.95) have order w = -2 and the remaining have w = —1, between the spinots #(p) and
u(q). However, the last two terms in this expression cancel among themselves.

The retarded distributions retardadas which correspond to each remaining term are obtained
through a non-subtracted dispersion relation. setting w = —1 in (lV.oZ). The splitting of
distribution D" must be done before taking the limit p?> - m?, g% — m? , in order to circumvent
the infrared divergences just mentioned. With those hipot heses only four terms contribute to
the retarded distribution R* associated to the vertex function:

. i sgnPy s o,
) W(p9) = 5o 2 ZR “(p.q), (V.96)

where
B M(p.g) =T +q / \\(1 _:[;2,0)711:"1)” (V.97)
@) = -2y [~ ey l_:i:;ﬁ?jl| (V.98)
ﬁ“mw=ﬁ%}%l[dm—muhwﬁ%?ﬁﬁﬁ. (v.99)
; RO, q) = -39 / A1 — sgn(t* — 1)]% (V.100)

T lu integrals {V.99) and (V.100) vanish for 1’2 < 4m?. The same is true for the distribution
I, proportional to #(°2 — 4m?). In this way the Fourier transform of the three- point function
that corresponds to the vertex function, or the second-order current operator, strictly speaking,
is given by

A'(p.q) = —i@2m) PR (pyq) = R” (p. )]

1 sgnPo (p¥ 4+ ¢%) [log (1 - \/%) 8m? P? ]
8 - -
, 1+

m /2 m 41‘;’[ P? —Am?Y 4m?
3 sgnFo pq -V 8gm? [Pz
_ o VIt v , 4m -
8t /P2 m2 ! |'%8 | + 4%77 * Pt —4m?y 4m? | ~ (V.101)
Ior ¢ = p it follows that
v 3 v
Apip) == —1". (V.102)

Therefore, in a two-dimensional space the vertex correction introduces only an electric form
factor =3/(4Amm).

VI. Conclusion and Open Problems

In section 11 we have seen that the asymptotic bahavior of QEDj; is singular in the infrared
region where an infrared phase factor modifies the evolution operator. This singular phase also
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appears in the vacuum-vacnum amplitude constructed in section IV, through the causal pha
in the S operator which describes the scattering of electrons by an external Coulomb potenti

Au(k) = (q/IK[*,0,0) .

For small k2 only the coefficient Hgl) of the symmetric part of the vacuum polarization tens
contributes:

2
(Q,80) = exp{~in‘2ﬁ ] d3k!;—211§”(k2)A0(k)2}

3 )
~ oxp{iq28%ﬁ/ dko/‘; %} .

The last expression exhibits a collinear logarithinic divergence in the case of forward scatterin
Thus, the asymptotic particle states in QEDj; are ill-defined in the usual S-matrix formalism.
is an open problem whether a construction such as the causal one in reference [33], which w
used to arrive at a regularized phase in second-order perturbation theory, yields an infrare
divergence free phase.

In section 111 we have shown that, when Pauli-Villars-Rayski regularization is carefully ir
plemented in the standard approach to quantum field theory, the photon mass is not zero b
depends on a parameter s, which may be identified with the winding number of homotopical
nontrivial gauge transformations. The ouly way to avoid dependence of the mass on regula
ization, and thus find a uniquely defined value for the mass, is to make a special choice of
which is related to restoration of parity as commented in the text.

Also in the Causal theory an indeterminacy arises: there, the assumption of minimal spl;
ting of the causal distribution related to the vacuum polarization tensor fixes the value of t]
mass, which is the same as in the standard approach for the particular value of s mentione
above. The assumption of minimal splitting in the causal theory has a stronger physical m
tivation than restoration of parity in the standard theory: it likewise fixes the value of t!
magnetic moment of the electron in QED,.

As remarked in section I, our proof in section V of dynamical mass generation in the caus
approach relies on (1.20), with II replaced by the one-loop polarization. In condensed matt
physics, this is the RPA (random phase approximation) [16]. At present the only justificatis
of this procedure is by taking the N — oo limit of QED3(N) [34]. Improvement of this result
possible by studying various Ansdtze which allow a solution of the Schwinger-Dyson equatio
(see [34] and references given there). The results of various Ansatze have been compared ai
numerically tested, and consistency was found, suggesting that dynamical mass generation da
occur [34], but no rigorous proof exists, such as the one which was given for the Gross-Nev
model in three space-time dimensions [35).

Perhaps the most challenging open problem is a conclusive treatment of the nonrelativist
limit of the theory ([3],[4]). One possible approach is through the non-perturbative Ansit
{34], but several conceptual problems remain to be solved.
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