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Abstract

It is discussed how the introduction of a nonlocal potential in the
relative coordinate of a nuclear collision described by a simple model
Hamiltonian can also account for an enhancement in the nuclear fu-
sion cross section. The interplay between this cffect and the channel
coupling interaction is studied in this simple model and their different
contributions to the fusion cross sections are analysed.

1 Introduction

In the past years many effort hias beeu devoted to the understanding
of the fusion cross section in heavy-ion nuclear collisions at energies around
and below the barrier [1]. One of the most interesting features that appeared
in connection with the measured cross sectious was that the prevailing the-
oretical model of one-dimensional barrier tunnelling failed to describe the
process [2]. This failure of that siinple model has motivated the study of

the introduction of the effects coming from the presence of other degrees of
freedom, besides that associated to the relative motion of the colliding nu-
clei, in the calculation of the nuclear fusion cross section. In this connection
it was soon recognized the importance of considering the colliding nuclei as
complex systems with intrinsic structures to which the relative motion must
be coupled; this will allow for the nuclear systems to vibrate and exchange
particles, for instance, before they fuse. Therefore, in this kind of approach
[3, 4, 5)the enhancement of the nuclear fusion cross section can be accounted
for by considering the change caused by that coupling of the relative motion
to the intrinsic structure in the total barrier transinission function.

In a recent paper [6] the authors have drawn attention to still another
quantum effect which can also account for an enhancement in the heavy-ion
nuclear fusion cross section. By considering the colliding nuclei as complex
fermionic structures it is possible to introduce, in a phenomenological way,
nonlocal terms of short range exchange nature which are essential in mnean
field descriptions of such kind of systems. Those noulocal effects are simu-
lated by a Perey and Buck-like nonlocal short range poteutial [7, 8] which,
together with the remaining terms of a nuclear Hamiltonian, describes the
colliding system. Furthermore, for simplicity, that nonlocal term is treated in
an adiabatic approximation and it is shown that, to this order, the effective
reduced mass which embodies all the exchange nonlocal effects can account
for an enhancement in the transmission factor through the barrier [9, 6]. Such
effect has been studied in some cases and the nonlocalily range parameter
was fixed by fitting the fusion cross section of a system for which the inclusion
of all known channels was not able to account for the experimental data [6}.
The fitted value, b = 0.94 fm, is in agreement with the expected range for the
exchange terms, as is well-known from mean field calculations [10, 11], e.g.,
the range of nuclear forces and it is also close to the result obtained by Perey
and Buck (b = 0.85 fm) in their analysis of nucleon-nucleus scattering [7]. It
was also stressed in that work the importance of considering this eflect in the
fusion calculations since nonlocal exchange terms will be always present in
the description of collision processes, thus giving a backgroung contribution
over which the other effects may also appear. In this sense, it was proposed
that the starting point for the description of fusion processes in this kind
of simple models is not just the one-dimensional barrier transmission as de-
scribed for instance by the Wong’s formula [12] , but that modified by the
inclusion of the exchange nonlocal effects.
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In the present paper we intend to discuss the interplay between the ex-
change nonlocal effects, introduced in the same phenomenological way as we
did before, without discussing the results of some other treatment of nonlocal
effects in heavy ions (13, 14], and channel couplings in order to study how
they compare in the fusion process. To this end we will adopt an schematic
model which is able to exhibit the main features of the problem we want to
describe, and that has been already discussed in its principal aspects in the
literature [4]. This model describes the coupling of the relative motion to
a selected intrinsic degree of freedomn through a [lamiltonian which allows
for a complete diagonalization of the coupling term in the channels space
and, thus, adapting it by introducing the nonlocal effects in thie equivalent
Schrédinger equation, we are in a position to discuss the interplay hetween
those effects.

In section 2 we present the coupled chaunel model Hamiltonian which
also embodies the nonlocal interaction term and we show that the nonlocal
contribution to the final Schrédinger equation is only present in the eflec-
tive reduced mass of the colliding system. This allows us to use the same
method and approximations described by Dasso [4] to decouple the equa-
tions. When one studies the solutions of the new equations one finds that
the main contribution of the nonlocal eflects to the transmission factor stems
from a modification of the barrier curvature, in contrast to the channel cou-
pling effects whose dominant result consists in altering the barrier height.
In section 3 we discuss the particular case of a two channel nmiodel in order
to explicitly and quantitatively compare the contributions of the two effects
to the transmission factor and to estimate their roles in nuclear fusion cross
sections. Finally in section 4 we present our conclusions.

2 Coupled Channels and Nonlocal Effects

Let us consider a model Hamiltonian, associated to a nuclear system
consisting of two colliding nuclei, which is expressed in terms of global col-
lective coordinates (g, p) referring to the relative motion and a coordinate
£ characterizing an intrinsic degree of freedom of the nuclei that is coupled
to the relative motion. In its general forni, such a Hainiltonian can he ob-
tained through the Weyl-Wigner transformation [15] of a nonlocal kernel and
is written as

H(q,p,8) = 5k,g/e*”"H(q,n,k)dv 1)

where

v - v
H(q9v1k)=<q_§vklli'(I+§»k) (2)

This approach of treating the proposed model Hamiltonian is particularly
convenient because we want to consider an schematic model for H(q,v,k)
which embodies, besides the terms taking into account the conpling of the
relative motion to the previously chosen intrinsic degree of freedom, the non-
local effects stemming from a Perey and Buck-like nucleus-nucleus interacting
potential [7]. This term is introduced so as to simulate the nonlocal eflects
originated from quantum correlations , e.g., mainly the nounlocality due to
exchange effects [8]. We then write H(q,v,k) in an explicit form as

h2
H(q,v,k) = —2—6"(17)+VNL(q,v)+Vl,(q,v)é(v)-}»\/q,l(q,v,l.‘}ﬁ(v)«i—}lu(k)é(v) .
14
(3)
Here u is the reduced mass of the relative motion, Vyy, is the nonlocal po-
tential written as a Perey and Buck-like interaction (7]
Vanl,0) = Vi) exp(- ) (1)
)= —=V(g)exp(—=) , :
NL{], U b\/; /| I 5
where b, measuring the nonlocal range, will be considered a free parameter,
VL is a local potential and Hy(k), the intrinsic [lamiltonian of the system,
is associated to the eigenvalue problem

flo | k) = e | k) (5)

with eigenvectors | k) characterizing the spectrum of the selected intrinsic
degree of freedom. The term V,,i(q, v, k) represents the interaction coupling
the relative motion and the intrinsic degree of freedom and will be treated
below in a similar fashion as that discussed by Dasso [4]. As has been already
shown [9], it is possible to write the Weyl-Wigner mapped expression for that
Hamiltonian as



2 00 —1)" ] ]
Hian8) =32+ 3 CL 00 4 Vi) + Vo0, 4 Hol€) )

where V(")(q) is the n-th moment. of the nonlocal potential with respect to
v.

In the power series term, only even values of n will be present in our
expression, otherwise the Hamiltonian would he dissipative, and furthermore
we will consider that the first two Lerins already give the dominant contribu-
tion to the model Hamiltonian; this assumption corresponds to an adiabatic
approximation and is valid for pb/h < 1. Thus, up to n = 2, we have

H(q,p,€) ~ + VOUQ) + Vilq) + Viula, &) + Ho(€) . (T)

2/L( i h)
where
n(g; b) = #
L)
- [
- pb? o (8)
1 — on? — V" (q)

is an effective reduced mass, similar to that of Irahn and Lemmer [16] which
dependes now on the nonlocality range. Hereafter V©(q) | the zero-th mo-
ment of the nonlocal potential, will be identificd as a standard nuclens-
nucleus attractive potential Vy(q) and V,(¢q) as the Coulomb interaction
Ve(g). It is worth noting that su(q;b) — e for V) (q) = 0 or b — 0, being
this the local limit [9, 6] which also defines the asymptotic behavior of the
mass (¢ — 00). From eq. (8) we sce also that this hehavior of the effec-
tive reduced mass indicates that the considered quantum exchange elfects
between the two colliding nuclei will be relevant only around the nonlocality
range.

The extraction of the operator H corresponding to H(q,p,€) , eq. (7),
follows the standard technique of the Weyl-Wigner quantum phase space
formalism [17], leading to

ot

NP 1 o, .1, R .
H(§,p,€) = Z{?;t(é; b)p2 +p“(é; b)I’+P22ﬂ(q‘b)}+v(0)+‘wl (G, )+ Ho(€) ,
9)

where
V(q) = Wn(4d) + Ve(q) - (10)

This Hamiltonian operator gives rise to an one-dimensional Schrodinger equa-
tion embodying now the nonlocal effects

—h*_ & ﬁ a_1 i_ﬁ S W(z) =
2u(z;b)de? 2 [dap(a;b)| de 8 [da? p(ash) o

= {E — V(@) + Van(z,€) + Hol£)]} () . (1)
Hereafter we will denote
h2 d d? 1
Hivu(=38) = [d:r/t (z; ) dz [(h 2 pu(zy b)] ' (12)

To solve eq. (11) one assumes the total wave functions to be expanded as

= Zua(:r.) |a), (13)

where a refers to the intrinsic states, so that one ends up with the set of
coupled equations

B &
2,u(a: b) dz? + Hyp(z:b) + V() - E| ua(x) =
- —Z[ea ap + (@ | Voal,€) | A al) - (1)

The r.h.s. of this equa.tlon contains the terns coupling the relative motion
and the selected intrinsic degree of freedom as usual, while the Lh.s., bearing
the information concerning the relative motion, will account for the trans-
mission factor through the barrier described by the total model potential
including the nonlocal and the coupling eflects coming from the diagonaliza-
tion. It is then clear that this transmission factor will be modified also by
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the presence of the effective reduced mass and Hyp(r;b) terms which take
into account the nonlocal effects, up to p? terms. Furtherinore it has heen
already verified that this inclusion can give rise to an enhancement of the
nuclear fusion cross section [6].

Now, we want to find the solutions of that sct of coupled equations so
that they have the asymptotic behavior (for short range nonlocal potentials)

Sope~*eT 4 opeter 1500

us(z) — { (15)

tne“'k"" T — —00

where £%k2/2u = E - €, and the colliding miclei are considered to be in their
ground states . Furthermore, we will also use the simplifying assumption
that Vo (z, €) factorizes into a product of two Lerms, one describing the cou-
pling potential for the rclative motion and the other for the intrinsic degree
of freedom respectively, and we will additionally cousider the potential as-
sociated to the relative motion to be represented by its value at the barrier
position, F, for all channels « [4]. Thus we see that, under these hypothe-
ses, the equations can be decoupled and that this can be accomplished by
diagonalizing the matrix

Mg = {a | Ho(&) + V(2,8 | B) = €abup + 'V (16)

which gives the eigenvalues Ag of Ho(€) + Vop(x,€). The new uncoupled
Schrodinger equations with nonlocal effects are
R &

__Q/T(x,—b);ll_’ + Unp(a;0) + V() + g — E o) =0, (17)
being the new solution v() related to the u,(x) by the matrix which diag-
onalizes the matrix M,g.

Since we are concerned with the asymplotic behavior of the solution of
eq. (17), we are allowed to also assume, for large incident energies compared
to the intrinsic energies and coupling strengtls, eq. (15) to be valid with
R*k?/2u = E. The transmission factor is then written as a sum of the
contributions coming from all channels 3, each with an weight associated
to the overlap of the initial state with the corresponding eigeustates of the
matrix M. The total transinission coefficient associated to eq. (17) is then
written in the form

-1

T=3 1018 Plts =31 (0] 8) [P T(E,V(x) + Az b) (18)
5 5

and from this expression it is worth noting that the nonlocal effects present
in the relative motion give a contribution to the transimission coeflicient of
a different character as that coming from Az , which is associated to the
coupled channel effects allowed by the model. The effect of the channels-
coupling corresponds, as usual [4], to replace the barrier V() by a family
of barriers V(z) + Ag, being the total transmission factor given by the suin
over the transmission coeflicients calculated for each barrier in the family
weighted by the overlap factors | (0 | ) |2. In the present simple model, the
nonlocality manifests itsell in the total transmission coefficient only through
the effective mass and Hyy(2;b) terms which will modify T'(E, V(z) + Ag; b)
for each channel because, due to our assumption on the z-independence of
M(z,€), ansatz (16), the overlap factor of the intrinsic states is not affected
by the nonlocality. Although in realislic situations we expect much more
envolved expressions mixing the channel coupling and the nonlocal effects, we
already expect the present approach to exhibit the essential features relevant
to the understanding of the competition between the two eflects for the fusion
processes.

In order to fully calculate the coeflicients T(E, V(x)+Ag; b) we would have
to solve eq. (14), being the general solution obtainable, in principle at least,
by numerical procedure. But, these coeflicients have already been obtained
through the use of the Weyl-Wigner quantum phase space formalismn in the
Feynman path integral approach [9], and are written for the casc described
by eq. (17) as

-1

T(E,V(z) + Ag; b) = {1 +exp [2 / \[%’Q (V(x) + \s - E) da,] }
(19)

Now, as is well known from nomentum dependent microscopic interaction
calculation (10, 11], the eflective mass depends on the density function of
the system. Here, for simplicity, we will assume a geometrical model for
the effective reduced mass in whicli it changes with the density distribution




profile of the colliding nuclei only at the radins of the barrier, Rp, defined
by the total potential, i.e.,

I , T > RB

u(z;b) :{ - 0<r< i (20)
It : T
1+ 7 | VO (Rp)|

Furthermore, if one works with a parabolic approximation for V(x) [18] and
with the assumption that pb?/2k% | VIO(Rg) | produces only a small change
in the reduced mass at the barrier, then we get

2n (Vg +A\sg— E -
T(E,V(I)H,,;b):{1+(-x,,[wi>(b,ny)]} .o@2n
B

where Vg , Rp and hwpg are Lhe hicight, position and curvature of the effective
barrier respectively and

D(b,Rp) =1 — b’@ (22)

with

J(RR) = 5o | Vilitn) | - (23)

It is important to notice that the factor D(b, g) in eq. (21), coming from the
effective reduced mass, renormalizes the cnrvature of the barrier hwg, keeping
unaltered the barrier height. It is interesting to observe that a similar result
was already obtained by Frahn and Lemmnier in their study of a particle hound
in a harmonic oscillator potential [16]. In this way, it is clearly scen in this
schematic model encomipassing nonlocal effects, besides channel conplings,
that the barrier is then modified in its curvature, in addition to the shift in
its height, for each channel. Both these effects are of short range character
and reveal the essential role of the fermionic structure of the colliding nuclei
in the description of the barrier dynamics during the fusion process.

3 The Two-Channel Model

A simplified version of the model discussed in the previous secton, i.e.,
the two-channel model, can be now studied which is still of interest because
not only it can simulate the coupling to an harmonic mode, representing a
nuclear collective excitation in its weak limit, but also because it could be
used for describing particle transfer channels [19]. In this connection, in the
standard treatment [4] the coupling matrix Af,; is written as

M= ( 0 _FQ) , (21)

where @ is the reaction Q-value so that it can be directly diagonalized thus
giving the eigenvalues

1 it 27
/\i=§[~Qi(tll +Q?) ] . (25)
The overlap probabilities corresponding to the cigenvalues are
F?
Py = [ 2
L =1014) = g (26)

and making use of egs. (18), (21) and (26), we can write the total transinis-
sion function, namely

9 _E -
T(E,V(z) + Au;b) = Py {1 +exp [Mg*ﬁmb. RB)]} ¥
B

7 T -1
+ P {1 + exp [MD(!}, RB)]} . (27)
hwpg

It is clear from this expression that the final contributions of the two basic
distinct effects present in the model Hamiltonian to the transmission factor
are of different character. While the channel-coupling, in this version of the
model, gives rise to two barrier heights (Vg + Ay) with their correspond-
ing weights, Py, the nonlocality renormalizes the curvature of the unshifted
barrier

10



. hwp Q

"ow = B R (28)

It is also remarkable that this renormalization factor bears the essential in-

formation related to the attractive nuclear potential at the barrier radius,
eq. (23), besides carrying the explicit nonlocality range dependence.

In order to show the interplay between nonlocal and channel coupling
effects, we have chosen some values for the coupling strenght. F' and the
Q-value and calculated the transmission function, eq. (27), being the pa-
rameters related to the barrier of a ¥Ni + ¥ Ni system. The parameters
used were @ = —1.454 MeV, I’ = —2.7 McV, so that we simulate at least
the coupling to the $*/V: first 2% state as discussed by Landowne and Pieper
[20], Vs = 100 MeV, hwp = 4 MeV and the results are shown in figure 1.
To calculate f(Rg) we assumed the Christensen and Winther potential [21]
to describe the tail of the nucleus-nucleus potential and we obtain the value
f(Rg) = 1.75 fm~? with Rg = 11.0 fin. The range of the nonlocality is
assumed to be b = 0.94 fin, that is associated to pure nonlocal eflects [6].
The results of this schematic model which embodies nonlocality hesides cou-
pling channels present a larger enhancement, in energies below the barrier
Vg, than that one obtained through the coupled channels calculation alone.
It is important to stress that in the local limit, b — 0, the expression above
give back the usual expressions for the two-channel problem .

If we want to use the expressious for the transmission function, adapted
to the case of | = 0 partial wave, in the standard definition of the fusion
cross section for all those cases for which the present model can be applied,
we need to extend that expression for I # 0. This can be accomplished by
the introduction of the simnple assumption that the main effect arises fromn
the standard centrifugal potential (22, 6]. Thus, we sec that, using the set of
approximations

R4 1)
Ve Vo + ——— 29
i ot 22 (29)
hwg ~ hwy (30)
Ry~ Iy (31)

11

[12] in eq. (27), the final result is

2 MI(E - (V,
af”‘C(E)zP+2 Rohwo )ln{l+exp [———J(E (o +44))

SED(b, Fig) l)(b,Ro)]}+

huy

+P

R2hw, wlite 2r (B - (Vo + A_))
_——QE'D(b,I?O) 1 xp | —————

—=D(b, ll’(,)] } , (32)
rl(.d()

where Vo, Rg and hwp are the height, position and curvature of the Coulom-
bian barrier respectively for { = 0.

In order to show the summed result of the nonlocal aud channel coupling
effects in the fusion cross section, we liave also calculated eq. (32) for the case
of a 8 N: + %8 Ni collision. Albeit the parameters I and @ previously chosen
may not give a complete description of the fusion process in that reaction,
the results already show some interesting features. It is worlth unoting that
U}VLC(E) is larger than the fusion cross section calculated with the channel
coupling effects only at energies below and around the barrier and that they
are identical at energies above the barrier (fig. 2) being this interesting
feature of the fusion cross section a",”c due to the presence ol the factor
D(b, Rp) in the exponentials argument as well as in the denominator of the
pre-logarythm terms of eq. (32). While this factor enhances the fusion cross
section for energies below or around the barrier by redefining its curvature,
it also has the correct behavior so as to give the expected trend for higher
energies.

4 Conclusions

We have discussed in this paper the interplay between nonlocal effects
and channel couplings in a model llamiltonian describing a nuclear collision
and we have shown how they produce enhancements in the nuclear fusion
cross section. To this end, and for the sake of sinplicity, we have started
from a model Hamiltonian which has the channel conpling termns as described
by Dasso [4] besides a nonlocal potential. This choice enabled us to discuss,
in its dominant aspects, the two contributions for the nuclear fusion cross

12



section, being therefore this approach at least a guide for the understanding
of main features present in realistic nuclear collision processes. T'he nonlocal
contribution manifests itself through the effective reduced mass, thus allow-
ing for the diagonalization of the channel coupling interaction in a standard
form. This leads to a new equation in which, besides the fanily of shifted
potentials generated by the channel coupling, the effective reduced mass will
also be responsible for a modificd transmission function, which has heen al-
ready calculated by the authors in another paper [6]. The final expression for
the transmission function exhibits two separated contributions, namely, the
channel coupling effects which modify the barrier height through the addi-
tion of the eigenvalues of the diagonalization procedure in the channel space
and the redefinition of the barrier curvature indnced by the nonlocal effects
embodied in the effective reduced mass. In fact we mmst expect a more en-
tangled expression in realistic situations in which both effects are mixed, but
here, due to the assumption of constant coupling strenght, there occurs a
complete separation between chaunel coupling and nonlocal effects. Never-
theless, the present approach is expected to describe the main contributions
coming from those two effects.

In order to show quantitatively how the nonlocal effects contribute to the
enhancement of the channel coupling calculated transmition (unction, we
have adopted the nuclear data from a **Ni + *®*N¢ collision and performed
the calculations with a fixed value ol the nonlocality range, as previously de-
termined by the authors [6], and a Christensen and Winther nucleus-nucleus
potential [21]for some especific cases ol chamnel coupling parameters.As an
illustration we have also used the same schematic model of channel coupling
interaction to study the nuclear fusion cross section in those cases, in order
to show their behavior when nounlocal effects are included. The results, al-
though not completely realistic because of the simple nmodelistic treatment
of the channel coupling interaction, already points to the importance of the
inclusion both of nonlocal as well as channel coupling terms.

Finally, we want to emplasize the importance ol a more realistic cal-
culation to study the role of nonlocal effects in fusion processes as well as
in elastic scaterring within this framework. To this end we have to solve
a general Schrédinger equation with a Perey and Buck-like nonlocal poten-
tial [7]and look for the nonlocal cffects in the relevant cross sections. This
analysis is in progress and will he reported in another paper.
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6 Figure Captions

Figure 1: The transmission function, eq. (27), calculated for a *®Ni + *3 N
system. Curve 1 describes the local no-coupling calculation; curve 2
corresponds to the coupled channel calculation for the first 2% state;
curve 3 depicts the pure nonlocal effects and curve 4 represents the
summed channel coupling and nonlocal effects.

Figure 2: The [usion cross section for a BN + N system. Curve |
describes the local no coupling calculation; curve 2 is the result for the
first 2% state coupled channel calcnlation; curve 3 represents the pure
nonlocal result and curve 4 gives the summed channel coupling and
nonlocal effects. Open circles are the experimental data.
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