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Abstract 

It is discussed how the introduction of a nonlocal potentia.l in the 
relative coordinate of a nuclear- collision described by a simple model 
Hamiltonian can also account for an enhann~lI\cnt in til(' nuclea.r- fu­
sion cross section. The interpla.y between tltis crfect and the channel 
coupling interaction is studied in this simple IIIodel and th('ir different 
contributions to the fllsion cross sections are analysed. 

Introduction 

In the past years many effort Itas bee" devoted to the understanding 
of the fusion cross section in heavy-ion nuclear collisions at energies around 
and below the barrier [I]. One of t.he most inlP.resting feat.ures that appearf'd 
in connection with the measured cross sect.ions was that the prevailing the­
oretical model of one-dimensional barrier t.nnnelling failed to describe the 
process [21. This failure of that silllple model has motivated the study of 

the introduction of the effects coming from the presence of other degrees of 
freedom, besides that associated to the relative motion of the colliding nu­
clei, in the calculation of the nuclear fusion cross section. In this connection 
it was soon recognized the importance of considering the colliding nuclei as 
complex systems with intrinsic structures to which the relative mot.ion must 
be coupled; this will allow for the nuclear systems to vibrate a.nd exchange 
particles, for instance, before they fusf'. Therefore, ill this kind of approach 
[3, 4, 51 the enhancement of t.he I\llclear fllSioll cross section call he accounted 
for by considering the change ca.used by that coupling of the relativf' 1II0tioll 
to the intrinsic structure in the total barrier transmission funct.ion. 

In a recent paper [6J the authors have drawn attention to still another 
quantum effect which can also account for an enhancement in the heavy-ion 
nuclear fusion cross section. By considering the colliding nuclei as complex 
fermionic structures it is possible to introduce, in a phenomenological way, 
nonlocal terms of short range exchange nature which are cssellt.ial in mean 
field descriptions of such kind of systems. Those nOli local effects arE' simu­
lated by a Perey and Buck-like nOJllocal short ra.nge potcllt.ial [7, 81 which, 
together with the remaining terms of a nuclear Hamiltonian, describes the 
colliding system. Furthermore, for simplicity, that. non local tertn is treated in 
an adiabatic approximation am} it is sllown that, to t.his order, the effective 
reduced mass which embodies all the f'xchange nonlocal effects can account 
for an enhancement in the transmission factor through the barrier [9, 6]. Such 
effect has been studied in some cases and the nonlocali\.y range parameter 
was fixed by fitting the fusion cross seet.ion of a. syst.em for which the inclusion 
of all known channels was not able to account for the experimental data [6]. 
The fitted value, b = 0.94 fm, is in agreement with the expected range for the 
exchange terms, as is well-known from mean field calculations !la, 11 J, e.g., 
the range of nuclear forces and it is also close to the result obtained by Perey 
and Buck (b = 0.85 fm) in their analysis of nucleon-nucleus scattering [7]. It 
was also stressed in that work the importance of considering this effect in the 
fusion calculations since nonlocal exchange terms will be always present in 
the description of collision processes, thus giving a hackgro"ng contribution 
over which the other effects may also appear. In this sense, it was proposed 
that the starting point for the description of fusion processes in this kind 
of simple models is not just. the one-dimensional barrier transmission as de­
scribed for instance by the Wong's forl1lula [12] , but that modified by the 
inclusion of the exchange non local effects. 
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In the present paper we intend to discuss the interplay between tlte ex­
change non10cal effects, introduced in the same phenomenological way as we 
did before, without discussing the results of some other treatment of nOli local 
effects in heavy ions (13, 14], and channel couplings in order t.o study how 
they compare in the fusion process. To this end we will a.dopt all schclllatic 
model which is able to exhibit the main features of the problem we want to 
describe, and that has been already discussed in its principal aspects in the 
literature [4). This model describes the coupling of the relative Illot.ion to 
a selected intrinsic degree of freedom throngh a lIall.ilt.ollian wl.ich allows 
for a complete diagonalization of the coupling term in thc channels space 
and, thus, adapting it by introducing the non local errects in tIre eqllivalent 
Schrodinger equation, we are ill a positioll to discuss the interpla.y between 
those effects. 

In section 2 we present the coupled challnel model lIamilt.onia,n which 
also embodies the nonlocal illteraetioll term and we show that the 1I0lllocal 
contribution to the final Schrodinger equation is only present. in the crrec­
tive reduced mass of the colliding system. This allows us to use the same 
method and approximations described by Dasso [4] to decouple the equa­

tions. When one studies the solutions of the new equations one fillds that 
the main contribution of the non local efrects to t.he transmission factor stems 
from a modification of the ba.rrier curvatl1l'e, ill contrast t.o the channel COII­

pling effects whose domina.nt result consists ill altering the ba.rrier height. 
In section 3 we discuss the particular case of a two cha1ll1cl model ill order 
to explicitly and quantitatively compare the contributions of t.he two effects 
to the transmission factor and to estimate their roles in lIuclear fusion cross 
sections. Finally in section 4 we prescltt. Ol1l" conclllsiolts. 

Coupled Channels and Nonlocal Effects 

Let us consider a model Ilamiltonian, associated to a nuclear system 
consisting of two colliding nuclei, which is expressed in terl1ls of global col­
lective coordinates (q, p) referring to tlte relat.ive motion and acoordinate 
{ characterizing an intrinsic degree of freedom of the nuclei that is coupled 
to the relative motion. In its general forlll, such a Hamiltonian can be ob­
tained through the Weyl-Wigncr transformat.ion [I!)] of a non local kernel and 
is written as 
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H(q,p,O = 8k,~f  ekpIJIJ(q,v,~~)dv (1 ) 

where 

v . v 
H(q,v,k)=(q-2,kIH/Q+2,k}. (2) 

This approach of treating the proposed model Hamiltonian is particula.r1y 
convenient because we want to considcr an schema.tic model for f/(q,l',k) 
which embodies, besides tlte terms taking into a.ccount t.he conpling of the 
relative motion to the previollsly chosen intrinsic degree of freedom, the nOIl­
local effects stemming from a Perey and Buck-like nuclcus-nuclclls interacting 
potential [7]. This term is introduced so as t.o simulatc t.he non local effects 
originated from quantum correlations, e.g., mainly the nonlocality due to 
exchange effects [8]. We then write H(q, tI, l~)  in an explicit form as 

H(q,v,k) = _1i. 
2 

8"(tI)+VNdq,v)+Vdq,u)8(v)+l~I"(Q,I',l·)Ii(u)+JIo(k)8(v). 

2Jl 
(3) 

Here jJ is the reduced mass of the relative motion, l'lV£, is the nOllloca.l po­
tential written as a Perey and Duck-like int.eraction til 

2
1, v )l ' (·1)INdq,v) = ;:;;l/(q)exp(-l'

bv 7r b 

where b, measuring tlte lJonlocal range, will be considered a free para.meter, 
VL is a local potential and lIo(l:), the intrinsic I1amilt.onian of the system, 
is associat.ed to the eigenvalue prohlem 

flo I k} = tk Il~}  (5) 

with eigenvectors I k} characterizing t.he speet\'lllll of the selected intrinsic 
degree of freedom. The term l/~pl(q,  tI, k) represents the interaction conpling 
the relative motion and the intrinsic degree of freedom and will be treated 
below in a similar fashion as that discllssed by Dasso [/1]. As has been already 
shown [9], it is possible to write the Weyl- \Vigner mapped expression for that 
Hamiltonian as 
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p2 00 ( l)n 
H(q,p,O = -2 + L:: -:.n ])nV1n)(q) + Vdq) + \~'I'I(q,O  + Ho(~),  (6) 

It n=O " 

where v(n)(q) is the n-th 1ll01lWld. of t.lle nonlocal pot.ential with respect t.o 
v. 

In the power series term, only even values of n will be present. ill our 
expression, otherwis(' t.he llcllllill.ollian would be dissipative, and furthermore 
we will consider that the first two terms a.lJ'(>ady give the dOll1inant contribu­
tion to the model Hamiltonian; this assumpt.ion corresponds t.o an adiabilt.ic 
approximation and is valid for ]Jh/fi < I. Thlls, lip t.o n = 2, W(' hav!' 

2 

H(q,p,O ~  -2I) + l/IO)(q) + Vdq) + \:-I'I(q,O + Un(E.) , (7)(p
It q; ) 

where 

It 
It(qj b) = 1 _� '~ V(2l(q) 

Ii 
It 

(8)
Itb2 

l--V(l))(q)
2,.,2 

is an effective reduced mass, similar to t.hat of Fraim ami Lelnllwr [16) which 
dependes now on the nonlocality rallge. Hereafter \/IO)(q) , t.he zero-th mo­
ment of the nonlocal potential, will 1)(' idclIl.ifif'd a.s a standard nuciclls­
nucleus attractive potent.ial VN(q) and \'~,(q)  as t.he Coulolllb int.eraction 
Vc(q). It is worth noting that It(q; b) -+ JL for \/(2)(q) -+ 0 or b -+ 0, bring 
this the local limit [9, 6] which also dc-fines t.1J(' aSylllptot.ic behavior of tile 
mass (q -+ 00). From eg. (8) we see also that. this behavior of t.1J(' effec­
tive reduced mass indicates that the rollsidered quant.ulll pxchange effects 
between the two colliding lIuclei will be rclf'villll. ollly arollnd t.he I\onlocalit.y 
range. 

The extraction of the operat.or ii corresponding t.o 1I(q,]),0 , eq. (7), 
follows the standard technique of the Weyl- Wigller quant.nlll J>has(~  space 
formalism [17), leading to 

;j 

I 

I 

I 

I 

if(q, p,~) = l {2/ (~j b)p2 + Ii It(;j b/ + fl 2/t(~j  b)}+ V( q)+ Vcp1(q, ()+Ho(i) !t 

(9) 
where 

V(q) = VN(q) +Vc(q) .� (10) 

This Hamiltonian operator gives rise to all oll('-dinll'nsional Schrodinger equa­
tion embodying now the nonloc<1.1 effects 

2� 2_;,,2 d r~2 [ d 1 ] d ;,,2 [ d 1 ]}----- --- --- --- \f1(:r)={ 2Jl(xj b) dx2 2 d:r It(:z:; b) d:r 8 (/;r2 It(:r; b) 

= {E - [VCr) + \/~Jll(X,~) + 1I0(~)]} $(:1') . (Jl ) 

Hereafter we will denote 

r~2[d 1� ] d t~2[d2 1 ]IlNL(x'b)=-- --- --- --- (I?) 
. , 2 dx It(X; b) dx 8 d:r2 It(.r; lJ)' ­

To solve eg. (11) one assumes tlw t.otal wa.ve functions 1.0 be expanded as 

\II (x) = L tL o (x) I 0') ,� (13) 
o 

where a refers to the intrinsic states, so that. one ends up with the set of 
coupled equations 

;,,2 d2 
[- 2/

t
(x; lJ) dx2 + HNdx; b) + V(.r) - E] ltc,(:r) = 

= - L:: [(obu/3 + (n I "~pl(:Z',O  I (3)11l/1(:Z~) . (H) 
{3 

The r.h.s. of this equa.tion contains the terms cOllplillg tlw rdative motion 
and the selected intrinsic degree of freedom as usual, while the I.h.8., bearing 
the information concemillg the relative mot.ion, will account for t.he trans­
mission factor through the barrier described by thl" tot.al model potential 
including the nonlocal and t.he coupling effects coming frol1l the dia.gonaliza.­
tion. It is then clear that this transmission factor will be modified also by 

6 



the presence of the effective reduced mass and /INd:r; (I) terllls which take 
into account the nonlocal erfects, lip to p2 terms. Furthermore it has been 
already verified that this illclusion can give rise to an en halll"C'llICllt of 1.11<' 
nuclear fusion cross section [6]. 

Now, we want to find tire solutions of that set of coupled eqllations so 
that they have the asymptotic behavior (for short rallge nonlocal potent.ials) 

tto(x) ~  {h,,"e-"o, + "/'0' ,. ~ 00 
( 15) 

t",e- aka1 :z: ~ -00 

where h2k;/2/-l = E - to and the col\idillg nuclei are considered to be in their 
ground states. Furthermore, we will also lise the simplifyillg assumption 
that Vc:1'/(X,~)  factorizes into a product of two terms, 01lC describing the cou­
pling potential for the relative Illation anel the other for the int.rinsic d<'gree 
of freedom respectively, and we will additioually consider l,he potential as­
sociated to the relative motion to be represented by it.s value at tile barrier 
position, F, for all channels Q [4). Thus we see that, under these hypothe­
ses, the equations can be decollpled and that this can be accomplished by 

diagonalizing the matrix 

Mo /3 == (0' I JIo(O + ~~",(.r,  0 I /3) = (../)(./3 + F\!~13  (16) 

which gives the eigenvalues .\(l of lIo(O + '<:",(:1', O. TIl<' II<'W III!Coupled 
Schrodinger equations with lion local effects arC' 

d2
h2 ] 

- 2I (Xj b) (lx2 + JINL(.r; b) + V(.r) +.\11 - E "/1(.1') = 0 , (17)[ L

being the new solution V/l(X) related to t.he 1I,,(.r) by the mat.rix wllich diag­
onalizes the matrix Mo {3. 

Since we are concerned with the asympt.otic behavior of the solution of 
eq. (17), we are allowed to also assume, for large incident energies compared 
to the intrinsic energies and coupling strengths, eq. (15) to be valid with 
1i, 2 p /2p = E. The transmission factor is then writ.t.en as a SUIll of the 
contributions coming from all channels {3, each with an weight associated 
to the overlap of the initial state with the corresponding eigellstates of the 
matrix M. The total transmission coefficient associated to eq. (17) is then 
written in the form 

7 

2T = L: I (0 I {3) 1 1 t131 2=L I (0 I fi) 1
2 T(I~, \1(.1") + .\;3; b) , (18) 

13 13 

and from this expression it is wort.h not.ing t.hat lhe non local effects present 
in the relative motion give a contribution t.o the transmission coefficient of 
a different chara.cter as that cOllling from .\(J , which is associat.ed to the 
coupled channel effects allowed by the model. The effect. of the chil,llnels­
coupling corresponds, as usual [4], to replace t.he barrier V (;1' ) by a. family 
of barriers V(x) + '\/3, being the total transmission factor given by tile sum 
over the transmission coefficients ca1clllil,t.ed for pach barrier in t.he family 

2weighted by the overlap factors I (0 I fi) 1 . In the present. simple model, the 
nonlocality manifests itself in the total trallRlllission co(~fficiellt  ollly through 
the effective mass and HNd:z:; b) t.erms wllich will modify 'I'( E, \/(:r) + .\(J; b) 
for each channel because, due to 0111" assumpt.ion on the .r-illdqwndcnce of 
M(x,~),  ansatz (16), the overla.p factor of the intrinsic st.ates is 1I0t affected 
by the nonlocality. Although ill realistic situatiollR we expect llIuch 1II0re 
envolved expressions mixing the channel coupling and t.he Honlocal effects, we 
already expect the present approach to exllibit the essential features relevant 
to the understanding of the competition hetween the t.wo effects for t.he fllsion 

processes. 
In order to fully calculate the coefTiciellts T(E, V('d+.\(j; b) we would have 

to solve eq. (14), being tlte general solut.ion obtainable, in principle at least, 
by numerica,1 procedure. But, these coclTicicnl.s hav(' already bC('1I obtained 
through the use of the Weyl-Wigner quantulIl phase space formalism ill the 
Feynman path integral approach [9), and are wriUell for the CaRl' described 

by eq. (17) as 

"2 ?It x· b)
T(E, V(x) + .\(J; b) = 1+ exp 21. :..J..r- (l/(.I') + '\/1 - E) ([;r

{ [ ] }• 1'1 It 
(19) 

Now, as is well known from momentlllll dependent microscopic interactioll 
calculation [10, 11], the effective mass depends 011 t.he density fUllction of 
the system. Here, for simplicit.y, we will assume il geometrical model for 
the effective reduced mass ill whiclt it cltanges with 1.I1f' d('nsity distril)llt.ioll 
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profile of the colliding nuclei only at the radins of the harrier, HR , defined 
by the total potential, i.e., 

It ,:1' > RB 

p(Xj b) = { It (20) 
2 ,O::;:r ::; HH 

1 + Itb I l"(O)( IlR) I 
2t/2 

Furthermore, if one works with a pil.raholic approximation for \/(:r) 118] itlld 
with the assumption that Itb2 j2/i2 I \I(U)( RB) I prodllces only a sl1lall change 
in the reduced mass at the haITi('r, t.!t('ll w(' gd. 

{ [ 
] }-I27r (lIB + '\(3 - E)

T(E, V(x) + A{3; b) = 1 + ('xp hWR D( h, Il R ) (21 ) 

where VB , RB and fiWB arc t.h(' he'ight., position ilml clIrvalllr<' of t.11(' effective' 

barrier respectively and 

D(b,RR) = 1 _ h2J(HB) (22)
II 

with 

J(RR) = 'fjt. 2 I FN(RR) I . (2:])
21 

It is important to notice that the rador D(h, HB ) in eq. (21), coming from the 
effective reduced mass, renonnalizes the clII'vCltnre of the barrier fiWR, k~eping  

unaltered the barrier height.. II. is int.eresl.ing t.o observe that a similar result 
was already obtained by FraIm awl LClllnwr in t.heir study of a particle hound 
in a harmonic oscillator potential [16]. In this way, it is clearly seen ill this 
schematic model encompassing 1l()\]loral dfeets, bcsidcs challnel cOllplings, 
that the barrier is t.hen modified in its ctlrvatnre, in a.ddit.ion to the shift in 
its height, for each channel. Both these effects are of short range character 
and reveal the essential role of the fermionic struet.ure of the colliding nnclei 
in the description of the harrier dynilmics during t.he fnsion process. 

9 

3 The Two-Channel Model 

A simplified version of the model discussed in the previons secton, i.e.,1 
the two-channel model, can be now studied which is still of interest because I 

not only it can simulate the coupling to an harmonic mode, represent.ing al 
nuclear collective excitation in its weak limit., bnt also because it could bel 
used for describing particle transfer channels [19]. In this connection, in the 
standard treatment [4] the conpling matrix Af"'tJ is written as 

( OF)M = F _Q ' (2/') 

where Q is the reaction Q-vallle so that. it can 1)(' dir('ctly diagonalized tlltls 
giving the eigenva.lues 

A± = ~  [_Q ± (4p2 +Q2) t] . (25) 

The overlap probabilities corresponding to the eigenva.1ues are 

F2 

P± =1 (0 1±) 12= F2 +Ai . (26) 

and making use of eqs. (18), (21) and (26), Wf' can writ.e t.he tot.al transmis­
sion function, namely 

?7r(lIB + A+ - E) ] }-I
T(E, V(x) + A±; b) = P+ 1 +exp - fiWB D(I>, RB ) +{ [ 

{ [ 
]}-I27r(lIB+A_ -E)+ P- 1 + exp tiwB D(h, HB) . (27) 

It is clear from this expression that the final conl.rihutions of tlle two basic 
distinct effects present in the model Ha.miltonian t.o the t.ransmissioll fa.dor 
are of different cha.racter. While the cha.lll1el-coupling, in this version of the 
model, gives rise to two barrier heights (VB + A±) with their correspond­
ing weights, P±, the nonlocality renormalizes the cUl'val.mc of tilt' lInshift.ed 
barrier 

10 
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fiWB 
(28)liWB = D(b,RB) 

It is also remarkable that this renormalization factor bears t.he essential in­
formation related to the attractive nllclear pote/ltial at thc harrier radills, 
eq. (23), besides carrying the explicit nonlocality range depcndcnc~.  

In order to show the illterplay between non local and channel coupling 
effects, we have chosen some valncs for tIle coupling st.rcnght. F fwd thc 
Q-value and calculated the transmissioll fUllction, eq. (27), \)('illg t.he pa­
rameters related to the barrier of a 58 Ni + S8 Ni systl'lll. The parallleters 
used were Q ::: -1.454 MeV, F = -2.7 !\1eV, so that we sinlldate at least 
the coupling to the 58 Ni first. 2+ state CIS di:;clls:wd by Landownc al\(I Pieper 

[20], VB ::: 100 MeV, 1iwB ::: 4 MeV alld the result.s are shown in figure 1. 
To calculate f(RB) we assumed the Christellsen and Winther potent.ial [21] 
to describe the tail of the nucleus-nnclcus potential and we ohti-lill tlte value 
f(RB) ::: 1.75 frn- 2 with RB ::: 11.0 fll1. The range of the llonlocality is 
assumed to be b ::: 0.94 fm, that is associated to pure non local efrccts [6]. 
The results of this schematic model which emhodies nonlocality besides cou­
pling channels present a larger enllilllcement, in energies below the barrier 
VB, than that one obtained through the coupled challllels caJculation alone. 
It is important to stress that in the local limit, b ---I 0, the expressioll i-lbove 
give back the usual expressions for the two-channel problem. 

If we want to use the expressions for the transmission fnnctioll, adapted 
to the case of 1 = 0 partial wave, in the stcllldard definitioll of tlte fusion 
cross section for all those cases for which t.lw present. modI'! can Iw applied, 
we need to extend that expression for 1f:. 0 . This can 1)(' accomplished by 
the introduction of the simple assumption t.hat. the main e/l·eel. arises from 
the standard centrifugal potent.iClI [22, G]. Thus, we se(' t.hat., using \.he set or 
approximations 

,,2/(1+ J) 
(29)\IB ~ Vo + 2/IR5 

1iwR ~1i""1l (:30) 

RH ~ No (:U) 

JJ 

[12] in eq. (27), the final result is 

NLC R~fiwo  { [27r(E- (\I. +,\ ») ]}
(71 (E)=P+2ED(b,Ro)ln l+exp Ii",,: + D(b,Ro) + 

) R~hwo  { [27r (E - (Vo +,\_)) ]}+ J 2ED(b, Ro) In 1 + exp liwo J)({" nd , (:12) 

where Vo, Ro a.nd hwo are the height, po:;ition ami Cll1'vature of the COli 10111­

bian barrier respectively for 1= O. 
In order 1.0 show the summed result of the non local and channel coupling 

effects in the fusion cross section, we have also calculated eq. (32) for the case 
of a 58Ni + 58Ni collision. Albeit the parameters F and Q previously chosen 
may not give a complete description of the fusion proces:; in thaI. reaction, 
the results already show some interesting feat.ures. It is worth noting tha.t 
(7fLC(E) is larger than the fusion cross section calculated with the channel 
coupling effects only at energies below and around the barrier and \.hat they 
are identical at energies above the harrier (fig. 2) being t.his interesting 
feature of the fusion cross section (77 LC due 1.0 the presence of the factor 
D( b, Ro) in the exponentials argument. as well as in t.he denominator of the 
pre-Iogarythm terms of eq. (:32). While thi:; factor enhances the fusion cross 
section for energies below or aronnd t.he barrier by redefining its curvat.ure, 
it also has the correct behavior so as to give the expected tl'l'nd for higher 

energies. 

4 Conclusions 

We have discLlssed in this paper \.he interplay between non local eRects 
and channel couplings in a model Ilamiltonian de:;cribing it nnclear collisioll 
and we have shown how they produce enhancelnents ill Ihe nuclear fLlSioll 
cross section. To this end, amI for thc sake of simplicity, we have started 
from a model Hamiltollian which has the chamw\ coupling terms as described 
by Dasso [4] besides a non local potential. This choice {'lIabled us \.0 di:;cuss, 
in its dominallt aspects, the two contrihutions for tlw 11lIc!cilr f,,:;ion cross 

12 



section, being therefore this approach at Icast a guide for the nnderst.allding 
of main features present in rea.listic nuclea.r collision processes. The nOli local 
contribution manifests itself t.hrough the effedive reduced mass, thus allow­
ing for the diagonali7.ation of the channel coupling int.f'raction in a standard 
form. This leads to a new equation in which, \)('sid(~s  the family of shifted 
potentials generated by the channel coupling, the effect.ive reduced mass will 
also be responsible for a modified transmission fllnct.ion, which has heen al­
ready ca.lculated by the authors in another paper [6]. Thl' final ('X pression for 
the transmission function exhihits t.wo s('parat('d contrihutions, nilillPly, the 
channel coupling effects which 1IJ0dify the harrier height. through the addi­
tion of the eigenvalues of the diagonalizat.ion pron'dllJ"(' in the channel space 
and the redefinition of tlw barrier curvat.ur<' indnced by t.he nonlo('(11 df(~cts 

embodied in the effective reduced mass. III fact. we IlIlIst expect a more en­
tangled expression in realistic sit.uatiolls in which both effect.s are mixed, but 
here, due to the assumpt.ion of const.ant coupling strenght, there occurs a 

complete separation between channel COli piing and nonlocal effects. Never­
theless, the present approach is ('xpected t.o descrihe t.he main cont.ribut.ions 
coming from those two effects. 

In order to show quantitat.ively how the non local effeds cont.ribute to the 
enhancement of t.he channel coupling ca.lculaJed tnUlslnitioll fundion, we 
have adopted the nuclear data froll1 a r,PoNi + r,t\ Ni collision and pnformcd 

the calculations wit.h a fixed value of the lIol\locality rallW" as previously de­
termined by the authors [6], alld a Christcllscn <lnd Winther nucleus-nuclcus 

potential [21]£01' some especifk C<lSe'S of channel coupling parallletns.As an 
illustration we have also used th(~  sallie schemat.ic model of channel coupling 
interaction to study the nuclear fusion cross section in t.hose cases, in order 
to show their behavior whell lion local effects are inclnded. The results, al­
though not complet.ely realistic because of the silllplf' 1I10delist.ic treatment 
of the channel coupling int.eractioll, already points to the importilnC(' of the 
inclusion both of non local as well as channel coupling terms. 

Finally, we want to emphasi7.e tlH' illlportance of a more realistic cal­
culation to study the role of lion local effects in fusion processes as well a.s 
in elastic scaterring within this franwwork. To t.his end we have In solve 
a general Schrodinger equat.ion with a Perey and Buck-like non local poten­
tial [7]and look for the non local effects in tlH' relevant cross sections. This 
analysis is in progress and will he report.ed in anot.her paper. 

\:J 
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6 Figure Captions 

Figure 1: The transmission funclion, eel. (27), ca.lculat.ed for a SBNi + s8Ni 
system. Curve 1 describes the local no-coupling calcula.tion; clIl've :2 
corresponds to the coupled chal1lwl calculation for tire first. 2+ state; 

curve 3 depicts the plll'e nonlocal effect.s and Clll'VC <1 represents t1w 
summed channel coupling awl nOli local crfects. 

Figure 2: The fusion cross section for a 58 Ni + .')8 N i syst<'nl. ClIl've I 

describes the local no coupling calculatioll; eliI've :2 is the resllit for the 
first 2+ state coupled channel ca.lcnla.tion; curve :1 represents tire pure 
non local result a.nd curve 4 gives t.he summed challuel conpliug and 
non local effects. Open circles an' t.he experinH~ntal dat.a. 

[6 



10 ~ E' , i , ...-,-,- iii iii' , , , ii' , iii i 2] 

10 2 

............. 10� 
~ 

S 
'--' .....� 
b 1� 

10-1 

Fig.2 

Ec.m.{MeV) 

E:' 1.0 
"-"'" ./ 

/ /;," 

o ~ / /" 
.P""4....., / ,/' 
C) / ;,1 
~ 

/ /:/ " ~ 

~ ~ 

.1' 

/',, ", 
~ 

o 0.5 
.P""4 2 I,',' 
rn I 

rn 1/ /1·s ,
rn I /

d 
a:s ,/1 3 / 
~ 

E-t ,/"/ / I 
4I c---;,:L.:/?"""~1 I Fig.1I 

o.OgO 95 100 105 

Ec.m.{MeV) 




