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Scaling in BCS to Bose Crossover Problem in Different Partial Waves·� 

Sadhan K. Adhikari t and Angsula Ghosh� 

l,utituto de F1Jica Te6rica, UnitJerJidade EJtadual Pau/iJta, 01..405.900 Sao Paulo, Sao Paulo, Brazil� 

(September 17, 1996)� 

The BCS superconductivity to Bose condensation crossover problem is studied in two dimensions 

in 8, P, and D waves with a finite-rAnge sepArable potential at zero temperature. The gap parameter 

and the chemical potential as a function of Cooper-pair binding Be exhibit universal scafing. In 

the BCS limit the results for coherence length { and the critical temperature Te are appropriate for 

high-7~ cuprate superconductors and also eKhibit universal scaling as a function of Be. 

PACS number(s): 74.20.Fg, 74.72.-h, 74.76.-w 

A collection of electrons (Fermions), interactillg via a weak residual interaction at very low temperature and high 

densit.y, exhibits pairing instability. Overlapping Cooper pairs [I) are formed spontaneously according to the Bardeen

Cooper-Schreiffer (BCS) theory ofsuperconductivity [2). For usual superconductors, the BCS theory yields {kF -- 1000 

and 21i./(kBT ) = 3.52 in agreement with experiments, where kF is the Fermi momentum, k8 the Boltzmann constant, e 

Ii. the gap parameter, 1~  the critical temperature and { the coherence length. 

In the opposite limit of strong residual interaction, nonoverlapping diatomic Bosonic molecules emerge as bound 

states of Fermion pairs [3,4]. At sufficiently low density and temperature, these composite objects act as an ideal gas 

of Bosons wit.h {kF -- 0, which may undergo phase transition. In three dimensions this phase transition is the usual 

Bose condensation [3,5]. In two dimensions one can have a superfluid transition under appropriate conditions [6,7). 

Hence the two extreme limits of the same system exhibit two interesting phenomena. 

Leggett [3] emphasized the importance of the abovementioned BeS superconductivity to Bose condensation 

crossover problem. This problem has gained new impetus after the discovery of high-Te cuprate superconductors 

with certain general properties [5,7-10]. These superconductors have a very small coherence length: {kF ......, 10 [8,9), 

and exhibit a linear scaling between T a.nd TF known as the Uemura scaling [II], where TF is the Fermi temperature. e 
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The small value of { suggests that its superconducting phase might be understood as one in Ilw <\hovPIIH'nt.iOl 

crossover regime [5,7,8,10). 

Many high-Te superconductors have a conducting structure similar to a two-dimensional layer of carriers [8, I0, 1 

which suggests the use of two-dimensional models. The mathematical complications of the crossover problem is a 

simpler in two dimensions than in one or three dimensions [5,7-9]. Hence in order to understand t.hp subtleties of t 

problem, the present study is limited to two dimensions. 

In the S wave crossover problem in three dimensions, Leggett considered N electrons, each of lIIa."S III and of spaci 

I, interacting via a weak short-range potential of range ro«< I). The scaltf'ring length a salislips 1111 » roo 

varying the ratio I/a, the BCS and the Bose limits could be attained. When suitahly scalP.d, most. of cht' prolll'rt 

of the system are insensitive to the details of the potential and are universal functions of the dirllPnsionlcss varial 

I/a. In three dimensions I......, k'F J and hence one could use the equivalent variahlp I/(kf,a). For 1.111' S wavp probl' 

in two dimensions with a very short-range attractive potential, the presence of a two-body bound state in vacuum 

the necessary and sufficient condition for pairing instability [4,8]. Hence the convenient dinwllsionlpss variahlc COIl 

be B2 /EF with B2 the two-body binding in vacuum, EF == kBTF == h2 k}/(2m) the Fermi energy. 

The usual treatment of BCS employs a potential in momentum space with a constant vallie for lJIomenturtl betwp 

2m(EF - ED)/h 2 and 2m(Ep + ED)/h 2 and zero elsewhere with ED the Debye energy. This implips a modera 

range of the interaction. This potential is a physically motivated phonon induced eleetron-elcdroll olle [2]. T 

objective of the present work is to find out to what extent the universal nature [4,7,8] of the solution of t.he crosso 

problem is modified after introducing a smooth potential of medium range in place of the abov!' potent.ial. For so 

of the high-Te materials, experiments suggest non-S wave Cooper pairing [8,9]. This is why WI' havp also extenl. 

t.he discussion of universality to the crossover problem in P and D waves. 

The energy B2 is not really the ideal variable for studying universality in the crossover probl!'1JI ill two dimensi 

for non-S partial waves, because in P and D waves one could have Cooper pairing, and hellce BeS supprroududiv 

in the absence of a two-body bound state in vacuum 18]. The appropria.te reference variablt' for studying t.he crossol 

problem in all cases, including the three-dimensional problem [12], is the Cooper pair binding Re. For tht' zero-ra 

S wave model of Ref. [8] B2 == Be. Previously, there have been studies of the crossover prollipm ill tnrns of pot,en 

strength or scattering length. 



We studied the crossover problem with a finite-range separable potential and specially, the dependence of the 

universal behavior of the crossover problem on the range of the interaction potential. We found that the universal 

behavior of the crossover problem does not significantly change with the change of the range of potential. We calculated 

the zero-temperature chemical potentiaI'I' and gap parameter ~ in the entire cr0880ver region, and eand Te in the 

BCS region for different values of the range parameter. We found robust universal scaling in each case valid over 

several decades of Cooper pair binding. We did not find similar scaling when 1', ~, Te , and ewere considered as a 

function of potential strength or of binding B2 [12]. The present model also produced an appropriate TelTF ratio 

and a small ein the BCS region in accord with experiments on high-Tc cuprate superconductors. 

The two-body problem, the Cooper and BCS models all exhibit ultraviolet divergences for zero range potential and 

require renormalization to produce finite results [8]. For non-S partial waves, the nature of these divergences is more 

complicated and there is no general prescription for renormalization. The present study with finite-range potential 

leads to a well-defined mathematical problem without the necessity for renormalization. 

We consider a two-body system, each of mass m, in the center of mass frame [8]. The single [two] particle energy is 

given by £q = h2 q2/(2m) [2£q], where q is the wave number. We consider the following attractive separable short-range 

potential v"pl = ->"/p/pl. The angular momentum (L) dependence of all the variables will not be explicitly shown. 

This potential leads to pairing instability for any>.., Land /p [12]. In even (odd) partial waves pairing occurs in 

singlet (triplet) state. The corresponding t matrix is 

Tpp,(2E) = /p/p,[->..-I - LJ;(2E - 2£q)-lt l 

q 

where 2E is the parametric relative energy. The condition for a bound state at energy 2E = -B2 is 

>..-1 == L/;(B2 + 2£q)-I. (0.1) 
q 

The Cooper pair problem for two electrons above the filled Fermi sea for this potential is given by [1,2] >..-1 

Lq>k,. /~(2£q  - 2E)-I, with Cooper binding Be == 2EF - 2E. Using Eq. (0.1), the Cooper problem is written as 

L/:(B2 +2fq)-1 - L /:(2fq - 2E)-1 =O. (0.2) 
q q>k,. 

Leggett [3] provided a generalization of the BCS model valid for a crossover from large to small coherence lengths at 

zero temperature. The finite temperature (T) version of this problem is given by the following BCS gap and number 

3 

equations [4] 

"" ~q  h~  (0.3)~p  = - LJ Vpq2Eq tan 2kBT' 
q 

q Eq
"" [ f - I' h ] (0.4)N = LJ 1 -~ tan 2kBT ' 

q 

with Eq = [((q - 1')2 + ~~P/2 and I' (I EF). At finite temperatures the coupled system of equations (0.3) and (0.4) 

is only valid in the weak coupling BCS region characterized by positive 1'1 EF. In the strong coupling Bose region, 

characterized by negative 1'1EF, due to the existence of preformed composite Bosons at finite temperatures above 

Te the number equation (0.4) breaks down [5,7]. Actually, the physical process changes as one moves from the BCS 

to Bose limit. In the BCS limit the formation of Cooper pairs at T = Te signals superconductivity, whereas in the 

Bose limit the preformed composite Bosons may undergo a superftuid phase transition at T = 1~  under appropriate 

conditions [6,7]. At zero temperature Eqs. (0.3) and (0.4) are valid in the whole crossover region [8]. 

With the present potential, ~q  of Eq. (0.3) behaves as ~q  == ~/q. Equation (0.3) then becoDles 

1 Eq
,-I - "" /?- tanh 2L T' (0.5)
A - LJ q 2E 

q 
~B  

q 

where Eq = [((q - 1')2 + ~2 /:P/2. Using Eqs. (0.1) and (0.2), Eq. (0.5) can be rewritten as 

/,2 /,2 E 
"" -q- - L ....!.. tanh -q- = O. (0.6)
LJ £ _ E Eq 2kBTq>1c,. q q 

Equation (0.6) is valid independent of the existence of a two-body bound state in vacuum. 

Equations (0.4) and (0.6) can be explicitly written as 

1
00 

/,2 /,2q E1""d£q-q-, - d£q E tanh 2L qT = 0, (0.7) 
E,. (q - E 0 q ~B  

[00 [ f q - I' Eq ] _10 d£q 1 - E;- tanh 2kBT - 2EF. (0.8) 

Equations (0.7) and (0.8) permit following analytic solutions for S wave (L = 0) zero-range potential given by 

/q = 1. At T = 0, ~ = (2BeEF)1/2 and I' = EF- Bel2 [8]. At T = Te (~=  0) in the BCS limit (I' Rj EF) we find the 

analytic solutions: I' +2kBTe In[2 cosh(I'I(2kBTe)] == 2EF and TelTF == y'2exp(-y)(Bel EF) 1/2 In where 'Y = 0.57722. 

In this case 2~/(kBTe) == 2",/ exp(-y) Rj 3.528. 

Next Eqs. (0.7) and (0.8) are solved numerically in S (L = 0), P (L = 1), and D (L == 2) waves with form 

factors /q == qL[Q/(q2 +Q)]<L+l)/2 where Q is the range parameter. We studied the crossover problem in the entire 
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domain at T :::: 0 and calculated the dimensionless order parameter D == III E~ -L/2) and the chemical potential 

IJI EF as functions of BelEF for different Land 0'. The order parameters are shown in Figs. 1 (a), 1 (b), and 1 (c) 

for 8, P, and D waves, respectively. In Fig. 2 we exhibit IJI EF in these cases. The coherence length defined by 

e = {tPqlr2ItPq}/{tPql,pq} with the pair wave function tPq :::: Ilql(2Eq) was numerically calculated using r 2 == - V:. The 

calculated (~kF)2  are shown in Fig. 3 as a function of BelEF. The S wave Pippard coherence length (:::: 1ikF/(lI'mll}) 

is also shown in Fig. 3 for comparison. We also calculated Te in the BCS domain by setting Ilq :::: 0 in Eqs. (0.7) and 

(0.8). The calculated TelTF is also plotted in Fig. 1 for different partial waves. 

Before presenting a discussion of the results we mention two limitations of the present model. First, for non-5 

waves the zero-range limit (0' -+ oo) cannot be taken because of the appearance ofstrong ultraviolet divergences. For 

S wave, this limiting solution is analytically known [8]. Secondly, the size of the two-body bound state in vacuum 

with this potential behaves as B21
/ 
2 (n- 1) when B2/2 < (» 0'2. Hence the size of this bound state as well as 

the Cooper pair becomes unrealistic for B2I2 > 0'2. Consequently, for very large BeIEF, the ideal Bose limit of 

nonoverlapping Bosons is not realized for small n. Hence the present study is limited to a potential of intermediate 

ranges: alEF ...., 1 - 10. 

From Fig. 1 we find that both D and TelTF exhibit universal behavior as functions of BelEF in different partial 

waves. In the BCS region they exhibit linear scaling valid over about four to five decades. The scaling exponents 

are roughly constant for all Land 0': D...., (BeIEp)I/2, TelTF ...., (BelEp)1/2. For an ideal Bose gas there is no 

condensation in two dimensions and hence one might think that 'Fe should reduce to zero as Bel EF increases in the 

Bose region. However, because of a weak residual interaction between Basons, this system may undergo superftuid 

transition with quasi long range order below a fixed small TelTF independent of BelEF [7]. The Te for this transition 

can only be found in numerical model studies. Hence all TelTp of Fig. 1 should reduce quickly and attain a small 

constant value as Be increases in the Bose region [7]. We find that both TelTF and D increase with decreasing 0' and 

L. The ratio 2D/(TeITF) == 2IlE~/2/(kBTe) increases as 0 decreases and/or L increases. For example, for 01EF:::: 1 

(2, 5) this ratio is 4.93 (4.31, 3.87) for L :::: 0, 7.07 (5.29, 4.2I) for L :::: I, and 10.0 (6.37, 4.39) for L :::: ~2. The 

corresponding universal gap-to-Te ratio 21l1cf'/(kB'Fe} for 01EF :;:: 1 (2,5) is 3.50 (3.62, 3.53) for L :::: 0, 3.54 (3.63, 

3.51) for L :::: I, and 3.53 (3.47, 3.35) for L = 2. 

i
~ 

From Fig. 2 we find that the zero-temperature IJ has a linear dependence on Be for all 0 and L almost over the 

5 

~ 

~ 

~<-;o  
entire crossover region. The minor deviation from linearity occurs for small IJ. We present this dependence 1 

BelEF :::: 40. For larger BelEF, IJ is essentially given by the zero-range analytic S wave solution: " ::::: EF - B2/ 

From Fig. 3, for all 0' and L, we have the universal scaling (~kp)2  ...., (Bel EF )-1 valid over thrl'f' decades of Be in 

BCS domain. The corresponding S wave Pippard coherence length satisfies the same scaling. The parameter (~  

decreases as L and/or 0 decreases. In the extreme Bose domain, this scaling should also hold in all cases. The anal 

zero-range S wave solution has this scaling [8,9]. However, because of the unphysical nature of the present potel1 

model in the extreme Bose limit, this scaling is not observed in our study. For a fixed Bel Ep, Fig. I leads to a sea 

of Te with TF for all Q and L. This scaling was observed by Uemura et al. [I I] for high-Te superconductors. F'I 

Fig. 1 we find for 5, P, and D waves, Uemura's experimental value TelTF ~ 0.05 leads to a lJclEF in the don 

0.01-0.001, which implies the weak coupling BCS limit. From Fig. I we find that, for 01 Ep =5, 7~/7p = 0.05 Ir 

to Bel EF = 0.0032 (0.0079, 0.OI35) for S (P, D) waves. From Fig. 3 the above Cooper pair bindings give {kp 

in all partial waves. This implies a universal correlation between TelTp and ~kp  in all partial waves, 

In conclusion, we studied the BCS superconductivity to Bose condensation crossover problem ill different par 

waves for a finite-range separable potentia.1. We found robust scaling relations involving the order parameter, chern 

potential, coherence length and critical temperature as a function of Cooper pair binding. In the BeS domain 

present results may simulate typical high-Te values for the coherence length~, and Te • They also exhibit the 1'. vel 

TF linear correlation (at a fixed Bel EF) as observed by Uemura (11]- The consequence of these findings in describ 

the high-Te superconductors in two dimensions in not all too obvious. Though we have exhibited the results 

a specific separable potential model, we verified that the general trend is maintained as form fadors are chanl 

Hence we do not believe our findings to be so peculiar as to have no general va.lidity, A prelilllillary study of 

three-dimensional crossover problem employing the same separable potential in different partial waves as a fum 

of BelEF also leads to similar universal scaling [J 2]. A detailed account of that will be reported elsewhere. 
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Figure Captions: 

1.� loglO(2D) and logJO(TeITF) versus logJO(Bel EF) plots for (a) S (L =0), (b) P (L = 1), and (c) D (L =2) 

waves, denoted by full and dashed-dotted lines, respectively, where D = .6.1E~ -L/2). Te is calculated in the weak 

coupling or the BCS regime as the finite temperature version of the Leggett equations are valid only in this regime. 

2. III EF versus BelEF plots for different partial waves and Q'. The curves are labelled by partial wave(s) and Q'. 

3. (~kF)2 versus BelEp plots for different partial waves and Q': dashed lines - S (L =0) wave results, dotted 

lines - P (L =1) wave results, dashed-dotted lines - D (L =2) wave results, and full lines - the S wave Pippard 

Icoherence lengths. The curves are labelled by partial wave(s) and Q'. 
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