LIBRARY
IFT Instituto de Fisica Tedrica
Universidade Estadual Paulista
April/97 IFT-P.032/97
| A
N Energy and momentum for the electromagnetic field
described by three outstanding electrodynamics *
y
O y g
(
N
M — Antonio Accioly
® §E Instituto de Fisica Tedrica . «
RL §% 3 Universidade Estadual Paulista =~
l 1= Rua Pamplona 145
‘§=3 01405-900 — Séo Paulo, S.P.
N Sy
— - Brazil
_ =

*To appear in American Journal Physics

(»



Instituto de Fisica Tedrica
Universidade Estadual Paulista
Rua Pamplona, 145
01405-900 — Sao Paulo, S.P.

Brazil

Telephone: 55 (11) 251.5155

Telefax: 55 (11) 288.8224

Telex: 55 (11) 31870 UIMFBR

Electronic Address: LIBRARY@AXP.IFT.UNESP.BR
Internet: HTTP://WWW.IFT.UNESP.BR

47553::LIBRARY



mailto:LIBRARY@AXP.IFT.UNESP.BR

Energy and momentum for the electromagnetic field described

by three outstanding electrodynamics

Antonio Accioly
Instituto de I'isica Tedriea, Universidade Estadual Paulisia,

Rua Pamplona 145, 01405-900 Sio Paulo, SP, Brazil

e-mail: accioly@azp.ift.unesp.br

Abstract. A prescription for computing the symmietric energy-momentumn tensor from
the figld equations is presented. The method is then used to obtain the total energy and
¢
1 . y . .
momentum for the electromagnetic field described by Maxwell electrodynamics, Born-Infeld

nonlinear electrodynamics and Podolsky generalized electrodynamics, respectively.

I. INTRODUCTION

There are two ways of obtaining the expression for the total energy and momentum related to
a given relativistic field such as the Maxwell field. The first, which incidentally is de;cribed in
most college or university textbooks on physics, is based on Mechanics and employs concepts
such as force, work, and so on. The second way is to make use of the so-called symmetric
cnergy-momentum tensor. Unfortunately, the usual prescription to calculate this tensor is
rather cumbersome for those who are not facile with field theory. As a consequence, the study
of this powerful and elegant method of easily calculating the total energy and momentum
for localized fields is, in general, relegated to graduate courses. Our aim here is to present an
elementary algorithm for computing the symmetric energy-momentum tensor from the field
equations and apply it to obtain the total energy and momentum for the electromagnetic
field related to the three most famous known electrodynamics, i. e., the electrodynamics
developed by Maxwell', Born-Infeld? and Podolsky®, respectively. By elementary we mean
that no effort will be expended on field theoretic technicalities and that correspondingly no
formal sophistication will be demanded of the reader.

In Sec. 1} we outline the algorithm in hand and then apply it to obtain the total energy
and momentum for the sourceless Maxwell field. Sec. 111 is devoted to the electrodynamics
of Born-Infeld and Podolsky, in this order. We present our conclusions in Sec. IV.

In what follows we will work in natural units where A = ¢ = 1 and use the Heaviside-
Lorentz units with ¢ replaced by unit for the electromagnetic theories. Our conventions for

relativity follow nearly all recent field theory texts. We use the metric tensor

1 ¢ 0 0
- 0 -1 0 ¢

Nuw =1 = 0 0 -1 0 )
0 0 0 -1

with Greek indices running over 0, 1, 2, 3. Roman indices - i, 7, etc.- denote only the three

spatial components. Repeated indices are summed in all cases.
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II. THE ALGORITHM

Suppose one wants to find the symimetric energy-momentum tensor for some free rela-
tivistic field. We take for granted that this tensor, which from now on will be denoted by

T# (T" = T"*), obeys the differential conservation law!

9,T" =0 . (1)
The continuity equation (1) yields the conservation of total energy and momentum upon
integration over all of three-space at fixed time. Indeed,

0=/£5mW"
:i/JWTW+/&faW‘
dt o

For localized fields, the second integral - a divergence - gives no contribution, and taking

into faccount that!
pr=[eiTon (22)
where

-

P = (e, P) | (2b)

is the four-momentum of the field , and ¢ and P are respectively the total energy and

three-momentum of the field, we find

i 0
d ~
or, equivalently,
de P

If we “switch on” a variable external “current” which acts a source for the field, the field
equation will be modified and the energy-momentum tensor will no longer satisfy (1), as in

the case of the free field. Instead, it will now obey the equation

3

(')V]uw — fu , (3)

where the contravariant vector f#, which has the dimension of density force, describes the

interaction of the field with the current. From (3) we promptly obtain

dP“_ 3= ru
el

This equation tells us that the rate of charge of the four-momentum of the field is equal to
the “total force” [ d37 f*, which is the very analogue of the Minkowski equation for a single
particle!. Introducing an energy-momentum tensor T§; for the current, i.e. for the matter,
by the definition

o1 =1,
we can rewrite (3) in the form of a continuity equation,

8, (T* +T) =0 .

Thus, the total energy and momentum of the field and the matter are conserved.
We return now to Eq. (3). Let us then postulate that f# is the simplest contravariant
vector constructed with a given current and a suitable derivative of the field. We qualify

this statement by means of some examples.

(i) the real Klein-Gordon field,

In a sense the simplest field theory is that of a real field ¢(z) that transforms as a
Lorentz scalar. This field, which corresponds to electrically neutral particles, is known

to satisfy the Klein-Gordon equation?
(D + m"’) H(z) =10,

where O = 9*8,0, = 8,0*. If we introduce a “source” j(z) for the field, the field

equation turns out to be

(O +m?) dlz) = (=) -



The simplest expression for the “density force” f# built with a given scalar current

j(x) and a derivative of the scalar field is of the form

[r=50"
= (0"¢) (D + m2) b .

Note that for some j there is one and only one derivative of the field that couples in

the simplest way to j so that the resulting expression is a contravariant vector.

(1) the Mazwell field,

In the absence of sources, Maxwell equations are®®

a,F* =0, 4)

; a«rlruu + aI/F(UL + ('}u[?ua = 0 y (5)
]

where [ denotes the antisymmetric electromagnetic field tensor (7 = —F*#). In-

troducing a source j* for the electromagpetic field, the field equations take on the

form

O = g% (6)
OnFy + 0 Fap + 0, Fe =0 . (7)
The force density is given in this case by
fa = 4:1;4]’“
= Fahau e, (8)

(iii) the compler Klein- Gordon ficld;

This field is known to obey the equations®

(o+m?)g@) =0,

(D + m?) $(x)=0,

where the ¢*-field is the complex conjugate of the ¢-field. The complex Klein-Gordon
field corresponds to electrically charged particles. Let us then introduce a “source”
7*(z) for the ¢*- field. As a consequence,

(@+m?)e =5,

(D+mMg=7j .
The “density force”, which of course is a real quantity, has the form

=50+ 0
=4 (0+m’) ¢+ 3¢ (O +m*) .

(iv) the Dirac field.
The corresponding field equations are?
' oup(z) —mi(z) =0 ,
B P(x)iv" + mp(z) =0 ,

where § = y'4° is the adjoint spinor to 1. The indices labelling spinor components and

matrix elements were suppressed for the sake of simplicity. We assume that j = j14°

is the “source” for the ¢ - field. As a result,
i7" +mp =73 ,
VoY -—mp=-j .
The “density force”, which incidentally is an Hermitian quantity, can be written as

Jor = 10uth + Babj
= (i10u97* + mP) utp — 0 (i7" Butp — m9p)



We hope the previous examples have clarified what “the simplest contravariant vector Thus,

constructed with a given current and a suitable derivative of the field” means. Note that 1
Fu,d, F* = 8, [FauF‘“’ + ZJ;F,,gF"”] . (1)

there is nothing ambigous in the prescription for building the force density out of the current

and the derivative of the field.
Froin (9) and (10} it follows that

Based on the previous considerations, we now find T for the free Maxwell field. We do

0T, =0, [n,uw" + i&; F.o F"”]

that in two steps:
i) we “turn on” a current j*; If we now multiply both sides of the above equation by #*#, we immediately obtain
From (3} and (8), we have 1
*T =8, [Ff’“w" + Zn"”F,m“] : (12)
' Top = fa
= Fauj* Note that
= F,.0,F* . 9 a
) u 9 n ﬂpau = Fﬂu ,
]
] ) ) ' Jvnaﬂ - nvﬂ .
The right-hand side of this equation can be expanded to «
FouO F*" = 8, (FauF™) — (8, Fou) I, Eq. (11) can be rewritten as
and, exchanging the dummy indices y and v on the second term, we get a,T% =9, [F‘"u F* + %q"" FoF*
1
Fon0. F* = 0, (Fo, F*) — 3 (0,Fa, + 8, F.0) ™ .
Using (7), we can replace the termn in parenthesis with ~3, F,,, leading to 2) we “turn off” the current.
As a result,

1
Fo,d F* =0, (F,F*) + -2-0017“,1'"‘"
1
B _ By _ ¢ 1 v v 6| _
= 0, (FuuF™) 4 30 (Fu ™) 17 =8 = 0. [ PP 4 3o B P | <0

So, the fully contravariant form of the symmetric energy-momentum tensor for the

But, Maxwell field is

On = Napd” 1
’ TP = PP + 10 FaF™ . (13)
= Nugn”* 8,

=489, . (10)



We may now present a simple algorithm for computing the symmetric energy-momentum
tensor from the field equation. Multiply the equation for the field in hand by a suitable
derivative of this field so that the resulting expression contains only one free spacetime
index and theu rewrite it as a four-derivative. Of course this algorithm is nothing but an
“operational” summary of the main points we have just discussed. As such, its main role is
to work as a muemonic device for the reader.

Note that, contrary to what happens in usual field theory, here we do not have to
postulate the equation of motion of the material bodies under the influence of the interaction,
i.c. we do not have to introduce a formula for the force density representing the action of the
ficld on each body. In fact, the siinplicity criterion we have previously introduced determines
automatically the force density. Consider, in this vein, the Maxwell theory. From (9), the
foree deusity is given by
7=

.
t
1

whercupon

i

i"=(p3)

where p is the charge density. On the other hand, the components E* (') of the electric
field (maguetic field) can be related to the components of the electromagnetic field tensor

as follows®¢

B o (14)
B = 56:11‘11 p’lm , (15)

where €™ is the Levi-Civita density which equals +1(—1) if ¢,{,m is an even(odd) permu-

tation from 1,2,3, and vanishes if two indices are equal. Therefore,

1= r%;

i

E-

.

and

So,
S =(E-7, pE+ixB) ,

which is nothing but the well-known Lorentz force density.
Let us then find the total energy and momentum for the Maxwell field with zero source.

Using (2a},(2b),(13),(14), and (15), yields
s+ |1 oo L
6ﬁe|d=/d z [afﬂF.‘o-i- ZF’F.’,']
_ 3 1 2 12
_/dz§[E'+B], (16)
Pi, = / PE Foj F
:/d3f (ExB) . (17)
Eq. (17) can be rewritten as
[-;ndd:/daf (EXE) s

from which we trivially obtain the vector § representing energy flow, i.e. the Poynting

vector,

18
i
t
X
s+ 18

(18)

Note that S* = T%,

III. THE NONLINEAR ELECTRODYNAMICS OF BORN:
INFIELD AND THE HIGHER ORDER ELECTRODYNAMICS
OF PODOLSKY

10



We shall now analyse two interesting attempts to modify Maxwell electrodynamics in
order to get rid of the infinities that usually plague that theory. The first was made by
Born” in the early thirties. He proposed that the field equations concerning Maxwell theory,

Egs. (4) and (5}, should be replaced by

N
3, | ——| =0, (19)
1+ Fla?
au[";w + i)l/F:I}A + all Fun =0 3 (20)
where F' = 1F,, F#* (F* is the antisymmetric electromagnetic field tensor) and a is a

constant with dimension of (length)?. Note that Eq. (19) is highly nonlinear. Let us then
find the symmetric energy-momentum tensor for this theory. For this purpose, multiply Eq.

(19) by I,

N i
ap Oy | ——=—= =0
i g 1+ F/a?

L
Using (20) we obtain

F..m»( = )za..[ o L 00 L

J1+ Fla? VI+Flar| 21+ Fa?

On the other hand,

F8.F, 1 3.(2F)
2/1+Fja? 4 V1 + Fla?

= (zza,\/l + F/a?
= a%, [J:\/I n F/a’] . @1)

Thus, the symmetric energy-momentum tensor is given by

Fesp v
T = ———2— 4+ p*a\/1 + F/a? . 2
e v / (22)
Substitution of (22) into (2a) leads to the expression for the total energy of the field

. E? 32 _ 2
6ﬁe|d=/d31 ——4—(12 ]+B_E
v+ __B’; £z a?

11

Developing egeid in powers of a,
1,2
_ [ p=zl 2. (g 2
Eﬁeld—/dt[a +2(E +B)+...] ,
we see that, as a first approxination, the new egeq differs from the old (16) by a con-

stant. Yet, this is an infinite constant! Fortunately, only energy differences are observable.

Hence, this embarrassing infinite constant is harmless and easily removed by redefining the

symmetric energy-momentum tensor to be

Fasp v
™ = Tpt‘/? + y*a? [\/l + Fla? - ]] .
a

The total energy of the field is now given by

[ B2 _ |2
€ﬁeld=/d35 E4+az( 1+———|)

1+ Ezu_zEz a?

Expanding the square root and keeping only terms of second order, we recover the expression

for the total energy of the Maxwell field, i.e.,
| ny =
_ [ p= 2 2
5ﬁeld—/d~ §(E +B)

The total momentum of the field and the Poynting vector, in turn, are given respectively by

Since Born’s equations can be derived via a variational principle from a Lagrangian deusity
L, in the limit of small field strengths, £ has to approach £ = %(EZ - 52), which is

exactly the Lagrangian density leading to Maxwell’s equations. The Lagrangian density

related to Born’s equations is”

L=—-d\/I +Fla® . (23)

Expanding the square root we obtain
, | /= _
2 (fp2_pe
L= a+2(E B)+....

12



This Lagrangian density, as was expected, differs from the Maxwell one by a constant term.
Now, the usual procedure for calculating the symmetric energy-momentum tensor, and con-
sequently the total energy of the field, is entirely based on the Lagrangian density, which
incidentally is not a physically measurable quantity in the usual sense but a convenient
mathematical tool. As a consequence, the symmetric energy-momentum tensor computed
via (23) leads to the same troublesome value for the energy as before. s it possible to avoid
this problem without further redefining the symmetric energy-momentum tensor? Yes, we

redefine the Lagrangian density as follows

c:ﬁp~ﬁ7ﬁ§], (24)

leading in first approximation to

1 e =

‘ L= (B~ B +..

i
']‘[,(f T computed using (24) gives a finite value for the energy. Note however that the
original Lagrangian density proposed by Born (23) as well as the Lagrangian density (24)
yield the same field equations (19). In a sense this way of sweeping delicate questions under
the carpet, despite being mathematically elegant, disguises the underlying physics of the
process.

The fact that Lagrangian deusity (23) does not reproduce Maxwell Lagrangian density
in the limit of small field strengths, aiong other things, led Born and Infeld to reformulate

Born's original theory. Since the Lagrangian density £ must be a Lorentz scalar and the

electromagnetic field has only two gauge invariant Lorentz scalars, namely,
n 1 ) v n2 2
I“zéﬁ,,,,lf" =B* - E* |
2 2
AL g i
<4luuru ) :( B) !

- 15 the dual field strength teusor, £ can be a function of F' and G*?

T

where *[" = ZehP7 [,

only. Born and Infield opted for the following function of the invariants, as their Lagrangian

13

density?

2
£=az[l— l+‘§~%} )
where a has the meaning of a maximum field strength. So, for fields much weaker than a we
recover Maxwell Lagrangian deusity by expanding the square root and keeping only terms of
second order. They chose this Lagrangian density in analogy to the relativistic Lagrangian
for a free particle, L = m [] -~ \/l——?], which in the nonrelativistic limit (v << 1) reduces
to the well-kuiown expression L = ™%~ Note that just as the limiting velocity v = 1 is of no

importance in classical mechauics, the maximum field strength a is irrelevant for classical

electrodynaniics. The field equatious for Born-Infeld theory are

uy __ = v 2
G[F_&] o

Vi+5-¢&

anF;w’l'au uu+auFua =0 .

Using our algorithm we find that the symmetric energy-momentum tensor for that theory

is given by
Fuva+G2 Hy 2 F
‘ﬂ/(l+”“uaz ]+_-g X

™ =
1+__.G_’ a? gt

In deriving this result, use has been made of the identity
FYE,, = -G,

Just as we have done before, we redefine the symmetric energy-momentum tensor to avoid

troublesome constants:

. F“"Fp”+G’r]“"/a2 L2 F Gz
T“=“,—_l+_’;~g‘ +7"a 1+(—J—-GT—1

The energy, the momentum, and the Poynting vector, are now given respectively by

2¢+@;@‘wjy4

E? 4+ (E . l—?'/a)2

Efield = /d“f +a ,
\/l + Ez_gz _ EE at
Pioa = [ &7 ExB =,
| 4 BB E:_Ez 153)
14



Q-"— Exg
§= _ .
Vigosm EE

An altractive feature of this theory is that it can account for a stable electron with a finite

size and finite self energy.

The second notable attemnpt to modify Maxwell electrodynamics was made by Podolsky®
in the early forties. In generalizing the equations of Maxwell electrodynamics, Podolsky
made every effort to leave the ordinary assumptions of Maxwell tlieory as nearly unaltered

as possible. His higher-order electrodynamics is described by the equations
(1+a’) 0, =0, (25)
Oa F;u/ + f)., Fau + an Fa=0 » (26)
where ¢ is a real parameter with dimension of length and O = 838°. It is worth mentioning
that the usual prescription for obtaining the symmetric energy-momentum tensor for higher-
]

order field theories is difficult to handle even for those that are familiar with field theory.

Fortunately our recipe allows us to carry out this computation in a simple way.
To find T* for Podolsky generalized electrodynamics we multiply (25) by F,,. Using

(11) we obtain:

3, [F‘uuF‘“’ + %&Fpm" + Fpa®0d, F™ = 0 .
The second term can be transformed as follows:
a*F,,00,F* = [0, (F,,0F*) - 8,F,,0F*]a® .
From (26) and the above equation we obtain
a?F,,00,F* = q? [a, (F\,OF™) + . (%F,,.,DF‘“’) - %F‘“’D&,F“"]
On the other hand,

1
SF*0 0,F,, = %F“"D (9 Fou + O Fra)
= _P™08,F,,

= -8, (F*OF,,) +0,F*0OF,, .

15

Similarly:
a,F*OF,, = 8,F*" 8 0sF,,
= -8,F*" 8% (0,F5, + 0uF,p)
= =8, (8,F* 8 Fsa) - 0. (%auF“" B”Fuﬁ)
Hence,

a*Fo,00,F = a0, [Fo,OF* + F*OF,, — 8 Fap ,F™

I .
+ 28 (FaBE? 4 0,17 #Fa) |
The symmetric energy-momentum tensor can then be expressed as
av ap v | av 00
T = F™F, +ZT’ FuF

2
+ %T]m' [FpgDFpg + 69F"" 36Fp;3]

— &® [F™OF%, + F#OF3 + 05F°°0,F™]

which agrees with the Podolsky result.

In electrostatics this gives for Lthe energy
3=l fm2 o 7\ 2 vl
s = [ 35 {2 - o |(V-E)' 426 V2E|} . (27)

Taking into account that V x E= 0, and assuming that EV . E vanishes at infinity faster

than 1/r?, one finds that Eq. (27) can easily be put in the form
Vfa[me, 2 )2
Sﬁeld:E/dII:E +a (VE)] y (28)

which is obviously positive. In the static case the scalar potential due to a point charge

turns out to be?

= (1-7)
== (1= r/a ,
¢ 4rr ¢
which approaches a finite value Q/4ma as r approaches zero. Making use of E=-V¢, we

easily obtain the expression for the electrostatic field due to a point charge

16



i = ¢ [i) e (1—’2- + i)] . (29)

An Ly ar/lr

Substituting (29) into (28) and performing the integration we find that the energy for the
fields of a point charge is given by J?/2a. Thus, unlike Maxwell electrodynamics, Podolsky
generalized eleetrodynamics leads to a finite value for the energy of a point charge in the
whole space. Of course, the momentum of the field in this case is equal to zero. The
expressions for the total energy and momentuin of the field in the general case are not very
lnminating, so they will not he displayed here.

It is worth mentioning that our method tells us that the force law for Podolsky generalized
electrodynamics is precisely the Lorentz force. If we consult Podolsky’s paper we find that

this is the very force law he assumed for his theory.

1V. CONCLUSION
t

We have devised an algorithm for computing the symmetric energy-momentum tensor from
the field equations. The prescription can be used for both ordinary and higher-order field
theory. It does not matter whether the field in hand is a tensor or a spinor field.

A Tast remark: the algorithm can be easily extended to curved space®®.
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