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Energy and momentum for the electromagnetic field described 

by three outstanding electrodynamics 

Antonio Accioly 

ITl8liluio de Fisica 1"orica, l/llivcr'sidade Esladual Palliisla, 

/lILa /'n7ll/J[m!l1. (.p, (J(.!O.'i-.'JOO Stio Palllo, SP, Brazil 

e-mail: accioly@axp.ifl.uncsp.br 

Abstract. A pn'scription ror computing the symmetric energy-momentum tensor from 

tlte li,;ld e'lilations is present.ed. TIIf' method is then IIsed to obtain the total energy and 
,I

lllOIU('ntulll for the electromagnetic fil'!d described by Maxwell electrodynamics, Born-lnfeld 

nonlinear electrodynamics and Podolsky generalized electrodynamics, respectively. 

I. INTRODUCTION 

There are two ways of obtaining the expression for the total energy and momentum related to 

a given relativistic field such as the Maxwell field. The first, which incidentally is described in 

most college or university textbooks 011 physics, is based on Mechanics and employs concepts 

such as force, work, and so on. The second way is to make use of the so-called symmetric 

energy-momentulll tensor. Unfortnllately, the usual prescription to calculate this tensor is 

rather cumbersome for those who are not facile with field theory. As a consequence, the study 

of t!Jis powerful and elegallt method of easily calculating the total energy and momentum 

for localized fields is, in gelleral, relegated to graduate courses. Our aim here is to present an 

elementary algorithm for computing the symmetric energy-momentum tensor from the field 

equations and apply it to obtain the total energy and momentum for the electromagnetic 

field related to the three most famous known electrodynamics, i. e., the electrodynamics 

developed by Maxwell" Born-Illfel(P and Podolsky3, respectively. By elementary we mean 

that 110 effort will be expended on field theoretic technicalities and that correspondingly no 

formal sophistication will be demanded of the reader. 

In Sec. II we outline the algorithm in hand and then apply it to obtain the total energy 

and momentulIl fOf the sourceless Maxwell field. Sec. III is devoted to the electrodynamics 

of Born-Infefd and Podolsky, in this order. We present our conclusions in Sec. IV. 

In what follows we will work in natural units where n= c = 1 and use the Heaviside-

Lorentz units with c replaced by unit for the electromagnetic theories. OUf conventions for 

relativity follow nearly all recent field theory texts. We use the metric tensor 

0 0 0 

0 
ltV I7I"v = 11 = 

-1 0 0 

0 0 -1 0 

0 0 0 -1 

with Greek indices running over 0, 1, 2, 3. Roman indices - i,j, etc.- denote only the thr, 

spatial components. Repeated indices are summed in all cases. 
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II. THE ALGORITHM 

Suppose one wants to find the symmetric energy-momentum tensor for some free rela­

tivistic field. We take for granted that this tensor, which from now on will be denoted by 

1''''' (T'''' = 1'''''), obeys the differential conservation law· 

8,,1"'" = 0 . (1 ) 

The continuity equation (1) yields the conservation of total energy and momentum upon 

integration over all of three-space at fixed time. Indeed, 

d30= / ; 0,,1''''' 

3= ~ / d ; 1',,0 +/ d3; iJiT"i 

For localized fields, the second integral - a divergence - gives no contribution, and taking 

into laccount that I 

p" = / d3 ;r; 1>0,· , (2a) 

where 

1'" = (e, p) , (2b) 

is the four-momentum of the field , and e and P are respectively the total energy and 

three-momentulll of the field, we find 

dp" 
= 0 ,

tit 

or, equivalently, 

de tiP
--0dt - , dt = 0 

If we "switch on" a variable extemal "current" which acts a source for the field, the field 

equation will bf' modified and the energy-momentum tensor will uo longer satisfy (1), as in 

tllP case of the free field. Instead, it will now ohey the equation 

iJ"T'''' = f" , (3) 

where the contravariant vector f", which has the dimension of density force, describes the 

interaction of the field with the current. From (3) we promptly obtain 

dP" = / dl ; I'" . 
dt 

This eqnation tells liS that the rate of charge of the four-momentum of the field is equal to 

the "total force" f d3:i f", which is the very analogue of the Minkowski equation for a single 

particle·. Introducing an energy-momentum tensor Tt:t for the current, i.e. for the matter, 

by the definition 

0,,1'/:;' = -I'" , 

we can rewrite (3) in the form of a continuity equation, 

iJ" (1''''' +Tt:tl = 0 . 

Thus, the total energy and momentum of the field and the matter are conserved. 

We return now to Eq. (3). Let us then postulate that fl' is the simplest contravariant 

vector constructed with a given current and a suitable derivative of the field. We qualify 

this statement hy means of some examples. 

(i) thf rcal Klein-Gordon fidti; 

In a sense the simplest field theory is that of a real field ¢(x) that transforms as a 

Lorentz scalar. This field, which corresponds to electrically neutral particles, is known 

to satisfy the Klein-Gordon equation4 

2(0 +711 ) ¢(x) = 0 , 

where 0 = T/""iJ,.iJ" = iJ"iJ". If we introduce a "source" j(x) for the field, the field 

equation turns out to be 

2(0 +711 ) ¢(x) = j(x) 
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TIIf' silllpiPst expressioll for the "density force" /" built with a given scalar current 

j(.r) ~1Hj  a derivative of the scalar field is of the form 

f"� = jil"</> 

= (0"</» (0 + m 2),p 

Note that for some j there is one and ollly olle derivative of the field that couples in 

til(' silllpl('st w~y  to j so that the resulting expression is a contravariant vector. 

(ii) Ilu MaJ"IIJr;/1 fi~ld; 

[11 the absence of sources, Maxwell equatiuus are5,6 

avF~v  = 0 ,� (4) 

a"l~," + fJ"F"" +a"Fva = 0 ,� (5) 

whn!' 1"'''' denotes tht> alltisYlllllletric electromagnetic field tensor (F~V  == _FV~). In­

troducing a sOl)fce j" for the ell'etromagnetic field, the field equations take on the 

for III 

ilvF'''' = j~  , (6) 

a"F~,.  + fJ"Fc>~ +a"Fva = 0 . (7) 

The force density is giveu ill this case oy 

f" = F.,~f 

== FO~Jj" FlU' (8) 

(iii) Ilu compleT Klein· G07'donficld; 

This field is known t.o obey t.he equatiolls4 

!i 

(0 + m2)</>(x) = 0 

2(0 +m ) ¢/(x) = 0 , 

where the ,po -field is the complex conjugate of the ¢>-field. The complex Klein-Gordon 

field mrresponds to electrically charged particles. Let us then introduce a "source" 

j*(x) for the </>-. field. As a consequence, 

(0 +m 2),p* = j* , 

(0+m
2
)</>=j. 

The "density force", which of course is a real quantity, has the form 

r� = j*8~,p + j81'</>­

=ai'¢! (0 + m2) ¢!- + 81'</>* (0 + m2)</> 

(iv)� the Dime field. 

The corresponding field equations are4 

il'I'81't/;(x) - mt/;(x) = 0 , 

a,,;}(;r )il'l' + m1&(x) = 0 , 

where!f; == t/;l.l is the adjoint spinoI' to t/;. The indices labellingspinor components andl 

matrix elements were suppressed for the sake of simplicity. We assume that] = jt-y 

is the "source" for the !f; - field. As a result, 

i81'!f;1''' +m1& =] , 

il'I'8"t/; - mt/; = -j 

The "density force", which incidentally is an Hermitian quantity, can be written as 

f" == joot/; + 80 1&j 

= (i8,,!f;1'1' + m1&) !Jot/; - 8,,1& (i'}'1'81't/; - mt/;) 
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We hope the previous examples have clarified what "the simplest contravariant vector Thus, 

constructed with a given current and a suitahle derivative of the field" means. Note that 
Fa"o"F"" = 0" [ Fa"F"" + ~15~Fp9FP9]  . (11 ) 

then' is nothing ambigous in the prescription for building the force density out of the current 

and the derivative or the field. 
From (9) and (10) it follows that 

Based on the previous considerations, we now find T"" for the free Maxwell field. We do 

that in two steps: o"T,w = 0" ( F'.,,, P" + ~15~  Fp9 F
p
9] 

i) we "turn on" a current j"; If we now multiply both sides of the above equation by T)a iJ , we immediately obtain 

From (3) and (8), we have 
ovriJ = 0 [FiJ F"" + !'7iJ"F FP9] (12)" "" 4 p9 . 

o"1~"  = fa 

Note that=Fo"j"� 

= Fa"o"F"" (9)� 
T)a iJ Fa" = FiJ" 

15:T)a iJ = T)"iJ
The right-hand side of this equation can he expanded to� 

F;,,,o,,F"" = 0" (Fo"F"") - (O"F",,) F"" , Eq. (11) can be rewritten as� 

and, exchanging the dumtlly indices J.I and v on the second tertii, we get 0" TiJ" = 0" [ FiJ" F"" + ~T)iJ" Fp9 F
p
9]� 

Fa"o" F"" = 0" ( F"" F"") - ~ (0" F"" +0" F",,) F""� 

Using (7), we can replace the term in parenthesis with -o"F"v, leading to 2) we "turn oj]" the current.� 

As a result,� F 0 F"" - " (F F"") + !a F r/I'"a~  v - U v l_1J 2 a 1J1I 1' 

fiJ = a"TiJ" = 0" ( FiJ" F"" + ~T)iJ" Fp9 F
p
9] = 0 . 

= o"(F",,F"") + ~o"(F,,.,F"") 

So, the fully contravariant form of the symmetric energy-momentum tensor ror the 

But, 
Maxwell field is 

Oa = T)"iJoiJ 
TiJ v = FiJ F"" + !T)iJ" F Fp9 (13)" 4 p9 

=T)"iJT)iJ"a" 

= 15~o" (10) 
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W.· ,nay now pres{·nt. it simpif' algorithm for cOllll'nting the sylllmdric f'nergy-momentull1 

t.,'nsOl frolll till' rid,1 equation, MIJltiply 1.111' f'quation for the field in hand by a suitable 

dnivalivl' of t.his field so that the rPsultillg expression contains only olle free spacetime 

incl,'x allli thpll rewrite it. as a four-derivative. Of course this algorithm is nothing but an 

"opl'l"a.tional" summary of the main points WP have just discllssed. As such, its main role is 

10 work il,S a mnelllonic dl'vicl' for the rr'adpr. 

No'" t.hat, cont.rary to what happens in usual field theory, here we do not have to 

pDslulat.e t.lu· equation of lIlotion of til<' Illatl'rial bodies under the influence of t.he interaction, 

i.,'. WI' do not have to introduce a formula for the force density representing the action of the 

li"I" on each hody. In fact, the simplicity criterion we have previously introduced determines 

aut.omat.ically 1.111' foro' density. Considl'r, in this vein, the Maxwell theory. From (9), the 

force deusity is gi ven by 

J" = F"/ij{l , 

wlu'l'l'lIl'on 

j" = (/,,]) , 

where /' is t.h,· charge density. 011 the othpr hand, the components E i (B i ) of the electric 

fi"ld (maglletic field) can he wlatl"d to til" components of the electromagnetic field tensor 

as follows"·'; 

c = F"i (14) 

Ii = ~Eil'" F (15) 2 1m, 

when' E,lm is the Levi-Civita density which equals +1(-1) if i,I,17l is an even(odd) permu­

tatiol) from 1,2.3, and vanishes if two indices are equal. Therefore, 

JO� = FOiji 

= E.] 

alld 

9 

Jk� = Fk(Jj{l 

- FkOjo + Fkiji 

= FkOjo +EkiljjB1 

( ~)k  (~ ~)k = pE + j x B 

So, 

r = (,,3. J, pE +] x B) , 

which is nothing but the well-known Lorentz force density. 

Let us t.heu find t.he tot.al energy and momentum for the Maxwell field with zero source. 

Using (2a),(2b),(13),(14), and (15), yields 

£field =Jd3 
X 
~ [ 2I r rlliF.

iO + 4'1 piiF.
ij 
J 

=Jd3i~[E2+iP]  , (16) 

Poi ~ r,' FiiJd3 
field = X ''OJ 

=Jd
3i (E x Bf� (17) 

Eq. (17) can be rewritten as 

i'r.eld=JefX(ExB) , 

from which we trivially obtain the vector § representing energy flow, i.e. the Poyntin 

vector, 

S=ExB� (18 

Note that Si = TOi. 

III. THE NONLINEAR ELECTRODYNAMICS OF BORN 

INFIELD AND THE HIGHER ORDER ELECTRODYNAMIC 

OF PODOLSKY 
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W(' shall lIOW allalyse two interesting attempts to modify Maxwell electrodynamics in 

order to gel rid of the infinities that IJsually plague that theory. The first was made by 

7
Bom ill the early thirties. lie proposed that the field equations concerning Maxwell theory, 

Eqs. (4) and (.'», should b(' replaced by 

F~v  ] 
(J" [VI + F/a 2 = 0 , (19) 

iJ"f;w +(J"fi:", +a"Fv" = 0 ,� (20) 

where f' == tF~v  F~v  (FIW is the antisymmetric electromagnetic field tensor) and a IS a 

constant with dimensioll of (length)2. Note that Eq. (19) is highly nonlilwar. Let us then 

find thf' sYlllmetric energy-momentum teusor for this theory. For this purpose, multiply Eq. 

(19)� by [':."� 

F~v  ] = 0 .�
f:,~  ov [Vi + F/a2 

I 

Using'(20) we obtain 

V 0 F~v) = 'J [F,,~ F"v] + F"va", F"v 
.•~ v ( VI +f'/(l2 (,. Vi +F/a2 2VI +F/a2 

On the other hand, 

pVo",F"v I a,,(2F) 

2VI +F/a2 = 4" Jl+Fia2 

= a2o"..[I+F;a2 

2
= a iJv [6:VI + F/a 2]� (21 ) 

Thus, the symmetric energy-momentum tensor is given by 

FO"F v 
l'''v = " +rl"va2VI + F/a 2 . (22)VI + F/a 2 

Substitution of (22) into (2a) leads to til<' expression for the total energy of the field 

Developing Cfield in powers of a, 

2 
Cfield = JdJi [ a

2 +~ (E 2 +8) +... ] , 
we see that, as a first approximation, the new Cfield differs from the old (16) by a con­

stant. Yet, this is an infinite constaut! Fortunately, only energy differences are observable. 

Hence, this embarrassing infinite constant is harmless and easily removed by redefinillg the 

symmetric energy-momentum tensor to be 

FO~F  v [ ]
1"'" = " + 71~va2  VI +F/a2 - I

VI + F/a2 

The total ellergy of the field is now givell by 

3 E2 (~)]
Clield= Jd i [VI+¥+a2 

~I+~-I  

Expanding the square root aud keeping only terms of second order, we recover the expression 

for the total energy of the Maxwell field, i.e., 

- I (-2 + 8-)2 
cfield = Jd;('3 2 E 

The total momentum of the field and the Poynting vector, in turn, are given respectively by 

, J (E X 8)'[3­Po, =� ,field (X -V-i===;i,,~;=
I + n'-E;'

a' 
- ExB 
S = ----,==~~ . VI + i1';}' 

Since Born's equations can be derived via a variational principle from a Lagrangian dellsity 

£, in the limit of small field strengths, £ has to approach £(0) = t (E2 - 8 2), which is 

exactly the Lagrangian density leading to Maxwell's equations. The Lagrangian density 

related to Born's equations is7 

£ = -a
2 VI + F/a 2� (23) 

Jd3 i� 

­ Expanding the square root we obtain
£2 82 _ £2 

Cfield = 
a2Vi +¥ +a

2 

I + ]� 2 I ( -2 -2)[ ~	 C = -a + 2 E - 8 +.... 
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,.� This Lagrangian dcnsity, as W~$ ('xppctl'd, differs from the Maxw"'l one by a constant term. 

Now, tI", ".,,,al procf'durl' for calculating the symmetric energy-momentnlll tensor, and con­

s('qll<'lIlly the tot.al ('n('I'gy of thp fidd, is entirply haqed on the Lagrangian density, which 

jll<'id(,lIto.lly is 1101. a physically I1lPas"rab)p quantity in the usual sense but a convenient 

"",UI('lIlo.lico.l 1.001. As a cOllscqun!cc, the symmetric energy-momentum tensor computed 

via U:l) I"ads t,o t,l", salt I<' troubl(,solllP val"e for til(' energy as before. Is it possible to avoid 

Ihis prol>I('m without fnrther red('lillillg the symmetric energy-momentum tensor? Yes, we 

r('d.. li",· Ih(' Lo.grangiall dpnsity as follows 

£ = (/.2 [I - Vi + 1"/0. 2] ,� (24) 

I('ading in first. approximation to 

1 (~2 ~2)£=2 F: -lJ +... 
I 
I 

TIll' '/"'" COJllp\ltl'd \Ising (2'1) gives a finite vo.lue for the energy. Note however that the 

original Lagrangian density propo~ed  hy Bom (23) as well as the Lagrangian density (24) 

yil'ld til(' same field equations (19). III a sense this way of sweeping delicate questions under 

till' ,-arppt., despit.e hl'ing matllPlTlatically elegant, disguises the underlying physics of the 

procPS'. 

Th.. fad that Lagrangian density (2:J) doe~ not reproduce Maxwell Lagrangian density 

ill tlw limit of small field strengths, among other things, led Born and Infeld to reformulate 

Bol'll's original theory. Since the Lagrangian density £ must be a Lorentz scalar and the 

el"d.roJllo.glwtic field Ilo.s only two gauge invariallt Lorentz scalars, namely, 

- ! r,' F'U' - B~2  _ E~2I" - 2 ('lUI - 1 

('2 = (~f."	 F",,)2 == (f;. 8)2
.J 4 JJ!/ -~  

wherp • F'''' == to"",n Fpn is the dual field strength tensor, £ can be a function of F and G2 

only- Born and Illfieid opted for th .. folIowing function of the invariants, as their Lagrangian 
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density2 

£ = a2[I -VI + !... _G2]
a2 a4� ' 

where a has the meaning of a maximum field strength. So, for fields much weaker than a we 

recover Maxwell Lagrangian density by expanding the square root and keeping only terms of 

second order. They chose this Lagrangian density in analogy to the relativistic Lagrangian 

for a frpc particIP, t = In [I - vJ='V2], which in the nonreJativistic limit (11 << 1) reduces 

to the well-known expression L = In;'. Note that just as the limiting velocity 11 == 1 is of no 

importancp ill classical mechanics, the maximum field strength a is irrelevant for classical 

electrodynalnics. The field equations for Born-Infeld theory are 

. [F"v - •F"vG/a2]_
0" V F G2 - 0 ,

1+;;;--..­

O"F,lV +ovF"" +8"Fva = 0� 

Using our algorithm we find that the symmetric energy-momentum tensor for that theory 

is given by 

F'" F v + G2T/"v/ a2 V F CP
T"" == ' +T/"v a2 1+-

2 
- -

4Vi + E. _� aG2� a
a2 (1,4 

In deriving this result, use has been made of the identity 

• 1""" Fv , == -G6", . 

Just as we have done hefore, we redefine the symmetric energy-momentum tensor to avoid 

troublesome constants: 

F"rF v + G2T/"v/ a2 I" G2 ][V
T"v = P +T/"v a2 1+- - - - 1 

2 4VI + E. _� aG2� a
0 2 a4 

The energy. the momentum, alld the Poynting vector, are now given respectively by 

d3 i 
f;2+(E.8/af +a2 ( 82- £2 

1+ 2 
Ofield 

-
- J (}I + B,;,g, _ (g~~) , a 

(iD)' -I)] 
ExB 

~  Jd3~ 	 , , fie1d
P =� x) B,-g, _ ~  

I + -.,' - .' 
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.~= ExB 
VI + B>-t> _ (Uf 

a2 a 4 

An att.ractive feature of this theory is that it can account for a stable electron with a finite 

size and finite self energy. 

The second notable attempt to modify Maxwell electrodynamics was made by Podolsky3 

in til(' parly forties. In generalizing the equations of Maxwell electrodynamics, Podolsky 

made every effort to leave the ordinary assumptions of Maxwell theory as nearly unaltered 

as possible. His higher-order electrodynamics is described by the equations 

(I +a2 D)oJ'w =0 , (25) 

8aF,w +oJc,,1' +8,J~" = 0 , (26) 

where a is a real parameter with dimension of length and 0 == 8{38{3. It is worth mentioning 

that the usual prescription for obtaining the symmetric energy-momentum tensor for higher­
I 

order' field theories is difficult to handle even for those that are familiar with field theory. 

Fortunately our recipe allows us to carry out this computation in a simple way. 

To find T'w for Pudolsky generalized electrodynamics we multiply (25) by Fa/'" Using 

(II) we obtain: 

8 [F' Fl'v + ~Jv.  F oWe] +F a2D8 Fl'v = 0
II all 4 pu Oil /.I(I' 

The secolld term call be transformed as follows: 

a2F'a,.Do"F"W = [8v(FnI'DPI'V) - 8vF.'I'DFI'V]a2 

From (26) and the above equatioll we obtain 

a2Fnl'D8vP V 
= a2 [8v (FaI'DPV) +80 GFl'vDPV) - ~FI'VD8aFI'V]  

On the other hand, 

~PVD OaFl'v = ~f'I'VD (8vFal' +8l'Fva ) 

= -F""'D8,.Fa,. 

=-fJv (FI'VDPal') +8vFI'VDF'al' 

15 

Similarly: 

fJvFI'VDFal' = 8vFl'vft8{3 Fal' 

=-8vFI'V 8{3 (8I'F{3v + 8aFI'(3) 

= -8,. (8vFI'V 8{3 F{3a) - 8a G8vFI'v ft FI'{3 ) 

Hence, 

a2Fal'D8vFI'V = a28v [FaI'DFI'V + FI'VDFal' - ft Fa{3 81'FvI' 

+ ~J:;(I'~oDWO+O{3FPOfjf3Fpo)] . 

The symmetric energy-momentum tensor can then be expressed as 

T av = Fa,. F v + ~ av F FPOI' 4'1 pO 

+ ~ 

2 

'I"" [FpoDPO+ 00 pO ft Fp{3] 

_ a2 [Fa"DFv
I' + FVI'DFa

I' +0(3 F
a{3oI'FVI'] , 

which agrees with the Podolsky result. 

In electrostatics this gives for the ellergy 

[field = f d3i~ {E2 - a2 [(V. Ef +2E· V 
2E]) (27) 

Taking into account that V x E= 0, and assuming that EV . Evanishes at infinity faster 

than l/r2 , one finds that Eq. (27) can easily be put in the form 

(28)[field = if d3i [E2 +a 
2 (v. Ef] , 

which is obviously positive. In the static case the scalar potential due to a point charge 

turns out to be3 

r a<P = ~ ( I - e- / ) , 
471'r 

which approaches a finite value Q/471'a as 7' approaches zero. Making use of E= - V <P, we 

easily obtain the expression for the electrostatic field due to a point charge 

16 



REFERENCESI~(,-") = Q [~ -- (-'/" (~ + ~)J ~ . (29)
1rr J'~ ,.l a1" 1" 

Subsl ilul,iu!!: (29) into (21\) and perforlllinp; the iutegration we find that the energy for the 

lipIds of a puillt charge is givPII by Ql/2a. Thus, unlike Maxwell electrodynamics, Podolsky 

W'n"r;di,wd l'lpdrorlyllamics I"ads to a finite valtw for the energy of a point charge in the 

whol,' span'. Of course, thl' IIIOlllI'III,UIII of till' field ill this case is equal to zero. The 

('XIHl's,siolls for tI", total f'lIprgy alld 1I1OIIIf'IItUIII of the field in the general case are not very 

ilhllllillalillg, so t.!H'y will not Ill' displayf'd Iwre. 

II is worth IlIputiolliug that our IIlPt!lod tells us that the force law for Podolsky generalized 

el"drodyllaillics is precisely the Lorelltz force. If we consult Podolsky's paper we find that 

this is III(' \'('\'.1' foret, law Ill' ass\llIwcl for !lis thmry. 

IV. CONCLUSION 
I� 
I� 

'vVe hav(' devised an algorithlll for computing the sYlllmetric energy-momentum tensor from 

till' !i,'Id "l)lIations. Th(' pn>scription can he used for both ordinary and higher-order field 

t!lpo,'y. 11 does Jlot matkr whether the field in hand is a tensor or a spinor field. 

1\ last, ('('mark: the algorit.hm can he easily extended to curved spaceS•9 • 
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