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Abstract 

We consider the Korteweg-de Vries equation with a perturbation arising nat­

urally in many physical situations. Although being asymptotically integrable, 

we show that the corresponding perturbed solitons do not have the usual scat­

tering properties. Specifically, we show that there is a solution~ correct up 

to O(€), where € is the perturbative parameter, consisting, at t ~ -00, of 

two superposed deformed solitons characterized by wave-numbers k1 and k2 , 

which give rise~ for t -+ +00 to the same but phase-shifted superposed soli­

tons, plus a coupling term depending on k1 and k2. We also find the condition 

on the original equation for which this coupling vanishes. 
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The importance of certain integrable partial differential equations for the description of 

physical systems comes from the fact that they may describe asymptotic limits of equations 

supposed to govern real systems. The property of integrability, although being rare in gen­

eral, in the realm of asymptotic equations is ubiquitous [1]. A most notorious example is that 

of the Korteweg-de Vries equation (KdV). This equation describes the long-wave limit of spa­

tially extended systems which are conservative and dispersive. The Nonlinear Schrodinger 

equation (NLS) also enjoys this universality character, describing the slow nonlinear modula­

tion of wave-amplitudes in dispersive systems. The physical systems concerned form a wide 

range of examples, including, to quote a few [2], water-waves, gas dynamics, plasma physics 

and waves in ferrites. The concept of soliton is directly associated to equations integrable by 

the inverse scattering method [3]. Indeed, such equations display l\-soliton solutions, and 

a general solution for sufficiently well-behaved initial conditions evolves asymptotically in 

time to a superposition of both solitons and radiative terms. 

Predictions derived from equations like KdV and NLS, which are obtained from pertur­

bation theory, must pass the test of being stable against higher-order perturbations. To 

this date~ a plethora of results exists concerning the behaviour of solutions of perturbed 

equations. most frequently obtained through the use of the perturbed inverse scattering 

transform method [4]. To come to our poinL let us first specialize the problem. \Ve will be 

considering perturbations to KdV equation, that is. equations reading 

Ut = 6uu x - U xxx + €P (u) (1) 

where u is a function of (x, t), P (u) is a function of u and its derivatives in x, € « 1 

is a perturbative parameter, and subscripts denote partial differentiation. \Ve will not be 

concerned with an arbitrary P (u). Rather, we will be concerned with what could be called 

natural perturbation, namely those arising in perturbative expansions from basic equations 

that are conservative and dispersive. with a dispersion relation admitting an expansion of 

the form :..J (k) = a1k + a3k3 + askS + '" . We further assume that no constants scale with E. 

Cnder such conditions~ a simple scaling analysis shows that the possible form of P (u) is : 



(2) 

where ai are arbitrary constants. Ifao = al = a2 = a3, then the above equation is integrable 

and displays N-soliton solutions. For instance, the I-soliton solution reads simply 

u = -2ksech2 {k [x - (4k2 
- I6aO€k4) t]} (3) 

Let us now put the central question: given Eq.(l), with the perturbation (2), can we still 

define the concept of soliton? Explicitly, do we still have a solution which, for t -t ±oo, 

is the superposition of functions ¢i (x, t, ki ), each of them depending only on one ki , and 

such that they scatter elastically, differing from t -t -00 to t -t +~ by a phase-shift only? 

It should be remarked that we are working with an equation coming from a perturbative 

expansion, truncated at O(€). Thus, we do not look for exact solutions, but for solutions 

correct up to O(€). Being so, we come to the formalism of asymptotic integrability, as 

introduced in refs. [5-7J. 

Suppose we make a t-dependent transformation u -t w of the form 

u = w + t¢ (w) (4) 

known under the name of near-identity transformation. \Vhat has been shown in refs. [5,7] 

is that Eq.(l), with P (u) given by Eq.(2), can always be transformed to 

which is just the sum of the KdV equation and the first higher-order equation in the KdV 

hierarchy [3], and its solutions are the solutions of the KdV equation with a renormalized 

velocity, just like in (3). Thus, in order to find solutions to the original problem, we have 

just to insert solutions of Eq.(5) into (4). Before giving the explicit form of the near-identity 

transformation we should stress that it not possible, in general. to extend this procedure 

to arbitrarily higher orders. This comes from the existence of obstacles to asymptotic in­

tegrability as discussed in ref. [6] for the NLS equation,-bu~ ~9~all~ ~EP!ic~ble_tQ J(gy. _ 



Furthermore, it is possible to find a transformation which maps our original equation (1) to 

KdV itself but which is x-dependent [7]. This is, however, not of practical use here. 

The correct form of </> (w) turns out to be 

(6) 

where a-1denotes integration with respect to x, and 0, f3 and 'Yare given in terms of 0i by: 

(7a) 

(7b) 

'Y = -
10 

(00 - ad (7c)
3 

We can now look for the u coming from the I-soliton and 2-soliton solutions, for example. 

This is instructive for the I-soliton case, but the expression for the 2-soliton case is not very 

illuminating. For this reason~ we are going to look at the asymptotics for t -+ ±oo. This is 

most easily accomplished by using well known techniques of soliton theory. First~ transform 

from w to F by 

/L' == -2 (log F) xx (8) 

getting a transformed dJ (F): 

, 4 [( 3(3) 2 (2 2qJ = F4 Q + 2 F Fxx - 2Q + 6/3 + 3,') F Fx Fxx 

+ (a + 33 + 2~!) F; + (23 + ,) F 2Fx Fxx - (~) F 3Fxxxx] (9) 

As is wpll known~ if we define TJk == k (x - (k2 
- EQok4

) tL then for a I-soliton solution we 

have 

F == I + exp (17k) (10) 

and for a 2-soliton solution. 



with expA12 = ((k1 - k2) / (k1 + k2))2. Inserting Eq. (10) into (9), and going through the 

algebra gives us the perturbation to the I-soliton solution: 

¢J (13 + "Y)� (a + 313 + 2,)k4� = - -2- sech2 (T]k/ 2) + 4 sech4 ("7k/ 2) 

- G) sech2 (TJk/ 2) tanh (TJk/ 2) (12) 

The first term represents a perturbation to the amplitude of the solitary wave. The second 

and the third represent deformations of the soliton form. However. in this case the term 

sech2 (T]k/2) tanh ("7k/2) can always be eliminated. Indeed, in Eq. (4).~ term Awx can always 

be added, A. being an arbitrary constant which can be adjusted as to eliminate the third term 

in Eq.(12). This is related to the fact that, if we had tried to solve Eq.(I) by a perturbative 

series, at O(€) we could always sum the solution of the linearized KdV equation. Without 

this third term, we have the result of ref. [8]. Lets us now go to the 2-soliton case, but let 

us take into account the existence of an additional term Awx from the beginning. Instead 

of writing out the solution explicitly, we give the asymptotic behaviour for t --t ±oo, taking 

the limits by using standard techniques [3]. \Ve obtain the following results. First. define 

(13) 

\Vith this definition, we have, for t --t +00 : 

(Akr, kt) 2 
(f) =w (T]k 1 , kd + ~' (TJk2 T --1 12 , k2) + -2- - 2"Y sech (T]kl/2) tanh (17kl/~) 

+� ('!"~kJ _ '!k1k~ +' ~~) sech2 [(TJk, + .412 ) /2J tanh [(TJk, + .412 ) /2] (14) 

and for t --t - CXJ 

(15) 



If we now impose that for t ~ -00 we have a sum of functions~ each one depending only on 

either k1 or k2 , we must choose A = 2k2 • But with this choice, for t ~ +00 we will get a 

coupling term involving k1 and k2 • Indeed, we can see that there is no constant A such that 

for both limits t ~ ±oo we can have a superposition of functions, none of which depending 

on the mixed (k1, k2)-coupling terms. We see thus that we do not have a process of scattering 

of two solitons that are uncorrelated asymptotically in time. Even for a solution consisting 

of the superposition of two I-solitons at t ~ -00, a linkage appears for t ~ +00 through a 

(kt, k2) coupling. This means that we cannot define two separate particle-like objects that 

scatter and emerge maintaining their identity. Note however that if, = 0 then this linkage 

disappears and the usual picture of elastic scattering of solitons, although deformed, shows 

up. 

Let us now summarize our results. We have a perturbed KdV equation, where the 

perturbation is, generically, non-integrable. Instead of looking for an exact solution, we 

search an expression valid up to O(f), as the original equation is supposed to be valid only 

to this same order. In this sense~ we have found the general effects of the perturbation 

given by Eq.(2). which are summarized in Eqs.(14) and (15). Qualitatively we can say the 

following: in the general case. the solitons are asymptotically deformed and do not preserye 

the usual particle-like properties because of the appearance of a linking term involving k1 

and k2 . However. an interesting case emerges when 0:0 = (Yl in Eq.(2). in which there are 

particle-like structures. deformed solitons~ that have asymptotically. up to O(f), the same 

collisional properties as solitons in integrable systems. 
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