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Abstract

The interplay between temperature and ¢-deformation in the phasc Lransilion
properties of many-body systems is studied in the particular framework of
the collective g-deformed fermionic Lipkin model. It is shown that in phase

transitions occuring in many-fermion systems described by su(2)4-like models
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I. INTRODUCTION

(Q-deformed algebras turned out to be a fertile area of research in the last few years.
Many applications of g-deformation ideas can be found in the literature, in areas as different
as optics or particle physics. A natural scenario for seeking a physical interpretation of the
g-deformation parameter is the many-body physics. The multiple correlations among the
constituents of the system may provide us with a framework where the physical effects of
auch a deformation may show up in an amplified way.

The many-budy problem in all its complexity calls for the use of approximate methods or
the development, of simple solvable models which shonld entail most of the relevant physics
combined with a technically simple treatment [1]. A long heritage of such models is available
in the nuclear physics literature, among which the Lipkin model [2] has been extensively
used as a laboratory to test approximate methods and to point out the main features of the
many-body systems.

From the point of view of g-deformed algebra applications to physical systems it is
important to understand how the basic characteristics and the general behavior of many-
body systems are modified when the underlying algebra is deformed. The use of g-deformed
algebra in the description of some many-body systems has lead to the appearance of new
features when compared to the non-deformed case. In this connection we mention some
examples: a) in the g-uscillator many-body problem [3] it was shown that, when promoting
the symmetries of the standard oscillator system to g-symmetries, the spectrum of the
system is found to exhibit interactions between the levels of the individual oscillators, b)
the revivals phenomenon present in the Jaynes-Cummings model [4] disappears when the
original su(2) symmetry is deformed, c) a good agreement with the experimental data was

obtained through a k-deformed Poincaré phenomenological fit to the rotational and radial
excitations of mesons [5], d) a purely su(2),-based mass formula for quarks and leptons was
developed using an inequivalent representation [6], ) phonouns in the superfluid ‘He were

shown to satisfy the Heisenberg g-deformed algebra [7], ) the chemical potential #(T') has

a linear dependence on I' in addition to the usnal behavior for a free g-deformed fermionic
system (8].

Recently, the quasi-spin version of the Lipkin model has been treated by g-deforming
the su(2) algebra and the ground state phase transition was discussed at 1" = 0 by di-
rectly diagonalizing the energy matrix constructed out. of the representation states | jm)
[9]. It was then found a suppression of that phase transition for ¢ > 1 {10]. Afterwards,
a different treatment of the Lipkin model has been developed in which the ¢g-deformation
was performed already at the fermionic level. In this approach a new g-deformed collective
Lipkin Hamiltonian was obtained which differs frum that of the previous one by the pres-
ence of a g-deformed mean field term. The reasun behind the care in treating the fermionic
mean field of the many-body Hamiltonian is the necessity of preserving the symmetry of the
original problem when the algebra is deformed. The 7' = 0 ground state phase transition
was studied again by using a variational energy expression constructed ont of g-deformed
coherent states. As an outcome of the careful treatment of the fermionic degrees of freedom
it emerged that for some values of g, the phase transition is not. suppressed anymore [11].
In the present paper and still in the same spirit of a variational approach, we have included
an explicit temperature dependence in the fermionic g-deformed Lipkin model, in order to
study the interplay between temperature and defurmation of the algebra. In this context,
Gilmore and Feng [12] have treated the same problem for the ¢ = 1 case.

The present paper is organized as follows. In section II we introduce the temperature
dependence in the g-deformed Lipkin many-fermion model. Through the analysis of the free
energy associated to this system, using ¢g-deformed coherent. states, we discuss the existence
of phase transitions at finite temperature and its dependence with the g-deformation of the

underlying algebra. In section 11T we present. our conclusions.
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II. Q-DEFORMED LIPKIN MODEL WITH TEMPERATURE

The Lipkin model is a valuable tool to test specific methods to treat fermionic many-
body systems. Besides, due to its su(2) structure, it has been widely used in attempts to
obtain a physical meaning to the g-deformation concept as applied to many particle systems
[10,11,13]. In Ref. [11] in contrast with [10,13] a careful treatment of the fermionic mean
field was performed, which embodies g-deformation effects. There it has been shown that

the g-deformed fermionic Lipkin Hamiltonian

H= sinh (2yS0) + =t Z[N] (st+s?). (2.1)

¢
4 sinh (%)

written in terms of su4(2) operators vbeying the commutation relations

[So, S1] = £S4 (2.2)
[S4,9-]= [2So]q (2.3)
where
B qz — q»—:r: N e — e 1
[i’f],l = -4 o el —e v’ (24)

undergoes a second order phase transition, characterizing the spherical symmetry breaking
in quasi-spin space. g-coherent states were used to define # and ¢ as collective variables in
terms of which the phase transition was analyzed through the behavior of the variationally
obtained ground state energy. As a result of that analysis the phase transitions depend not
only on the strength of the interaction, V, but also on the deformation of the algebra and
on the number of particles through the product (N — 1). The g-dependent critical value

of the strength parameter x characterizing the phase transition is
Xe = 1 + 2sinh? [% (N - 1)] , (2.5)

meaning that a universal character can no longer be assigned to x as a system-independent

indicator of the phase transition in a g-deformed system.

5

In many-body systems underguing phase transitions, temperature plays a role since it
can restore the symmetry. The g-deformation alsu acts as a symmetry restoring parameter
[11]. 1t is therefore important to investigate the interplay of both effects in the q-deformed
Lipkin model.

. Let us consider again the g-deformed Lipkin Hamiltonian in order to calculate the free
energy and study the phase transitions of the model. In this sense we must. also select some
test states su as to have a variational expression for the free energy which will Le determined
by a variational method. In this cunnection we will use the set. of g-deformed coherent. states

already discussed in the literature [14,15] and defined Ly

|joz) = e | j—j)

1

J 2 .
-2 (] + m) U, (2.6)
j

to write the free energy inequality
P<Tr (ped1) 4 8 T (B n ) (2.7)

where g, is the trial density vperator given by

52U, ~J

{}’r =) ’(Ar, ) Z . (28)
T e,
Y (N, j) is the multiplicity of the degenerate j-multiplet
) ) N'(27+1
VN N (2.9)

ERSER(ER T
which is the same as in the standard Lipkin model because the g-deformation procedure
does not change the number and labelling of the states [9]. The same reasun gnarantees
that the g-deformed Lipkin Hamiltonian is bluck diagonal. being each block associated witk
a given j. Using the variational principle we obtain

I < minjy, (LLQMEI’) ~ 3 'in Y(N.j)) (2.10
(o010, )
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which, by substituting the g-deformed Lipkin Hamiltonian, Eq. (2.1), gives rise to

F < mingey (ol (5.0,6) =8 'InY (N.3)) (2.11)
where
€
€= —— (2.12
201/, )

is a g-dependent single particle spacing, and

(2], ( s x(j) _n”_f’_o_w) . (2.13)

B.(i.0,¢) = —2| ——F—— + 5 -
a(1.0.9) == 1)(7,0,1')Jr 2 D(v.0,5)

In the abuve expression the g-dependent strength parameter now is

x() =~ 23 = 1], (2.14)

and
D(v,0.5)=1+ sinh? BI (25— 1)] sin® 0. (2.15)

Minimization on the parameters ¢ and ¢ gives rise to the extrema,

¢ = 1'2— or %’l
(2.16)
0 =0orm,

in the V > 0 case. New physics appears due to the interplay between the parameters
6,7, N and j; the remaining analysis of the behavior of 2, (7,0, ¢) around the extrema goes
similarly as in Ref. [11]. However, there we were restricted to the analysis of the ground
state behavior, in which case j is fixed to N /2. Due to the temperature dependence of the
second term of the free energy, j will not be fixed anymore to the ground state multiplet,
being therefore an additional parameter in the present extrema analysis. § = 7 is still a
maximum, but the condition at 0 = 0 is now j dependent

(cos 0 — LQZJ sin%0)

—1+ x(j) cos0 — 2C cus0 17 Cein0 =0 (2.17)

where

Yo 2 l 95
C = sinh [2 (2j l)] , (2.18)
being the solution a maximum or a minimum according to the inequality

maximum: 2C - x(j)+1 < 0
N (2.19)
minimim: 2C — x(j)+1 > 0.

The solutions to the equation 2.17 can be written as

cosf = X2(—(j,) (l +4/1 - (72(7)) , (2.20)

where
4C(C +1)
VZ( |
S0 = g5
x*(4) (221)
These solutions must still obey the following conditions
Gly) <1
(2.22)
0 < |cost] < 1.

The first condition is related to the determination of Y, given by the inequality
: A Y ’
¢sinh(yN )rush(E) - |Vi<o. (2.23)

whereas the second one leads to the determination of critical j,

ol L+ /1 - G2(v)
Jo=z+7 larceoth | —-— 1. 4
2 ( oM (2.24)

Once one is given j., une can readily obtain the corresponding x. by a direct substitution

in Eq. (2.14),

— ﬂh (2_]( — 1)]

Xe an (2.25)

To summarize, 7 < Ymax and j > j. are the necessary and sufficient conditions tu the

existence of the extremum 0,, given by,
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cosO,, = Ef——h(,’%(—(]ﬂ;—)-:jl (1 —y1- (;'2(7)) , (2.26)

leading to 2;%‘ omo,, > 0, indicating that 0,, is 8 minimum.

Table I below presents the behavior of the energy extrema with respect to j,.

Figure 1 shows the free energy F'(3) as a function of k7' = 1/4. As in the non-deformed
case, the free energy is given by the lower frontier of the family of straight lines, the main
difference lying on the crossing points between the curves, which in the present case are
shifted towards higher temperatures. The range of allowed values of j is given by VN/2
< j < N/2, as in the non-deformed case. .

When j, exists, the crossing of the above mentioned straight lines determines the phase

transition temperature given by

-1 _ mingg €gFy (Je, 0, ¢) — ming g €0 Fy (Jc — 1,8, 4)
ST MY (W)Y (Nje- 1) 221

Upon a substitution of the explicit expression of E,(j,6,¢) we get

L €gcosh (7 (27, — 1))
A= lnY(IqV,jc) ~InY(N,j.—1) 22)

Figure 2 shows the behavior of 3! as a function of ¢ = exp(7) in the same physical situation

as figure 1.

1I1. CONCLUSIONS

It has already seen previously [11], that the critical value of the coupling constant x. is
number and g—deformation dependent at 7" = 0. With the introdnction of the temperature,
as performed in the present work, we could think that no new effect would appear, since
the only temperature dependent contribution to the free energy, 8 'InY (N, ), does not
contain any ¢ dependence, being Y (N, j) just a level degeneracy counter. However, the
temperature dependent effects are embodied through j., the temperatire dependent critical

7 given by Eq.2.24. Similarly, the interplay between temperature and g—deformation has

ls() a ea G(l m a q— bosum( desulpi.lun ()f the IEUSP (L)]]dPHSl\ on, w hF‘lf‘ the 1]
a pp . B

temperatire increases with the defurmation parameter [16]

i B ¢ o
AS slmwn n 1 1g. 2, the C l“,l(‘al lempera,nre presents S‘l'UHg dependen(‘f’ o ”]6‘ del
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; e
tic m ()‘ lhe algebra. The Ccr1 ‘l('al ‘empera re de( reases i h in T nsing Uf ”l qhd f at.U
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T i iti i
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b Ju, -li e i i t
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if the g—deformed concept has indeed any physical meaning
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TABLES

FIGURE CAPTIONS J Minimmn Maximum

Figure 1. This figure shows the behavior of a family of straight lines for j values running )
3 < e 0=0 0= +r

from j=6toj=0asafunctionof 8 !, for N =12,V =2, ¢ =1 and g = 1.116. The free

e ———

M energy is the envelope formed by the lower frontier of these straight lines.
: J > e 0-=40 0
“ AV = ”, ’],Tl’

Figure 2. The critical temperature 3; ' is shown as a function of q, the deformation
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parameter of the algebra, for N =12, V=2e=1. TABIRT T
A2 1. "Fhe @ values at the extrema of the energy functional are shown W(lﬁrﬁim value

of j.
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