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Iterative numerical solution of scatterill~  problems 

Lauro Tomio and Sadhan K. Adhikari 

Instituto de Pisica Tedrit:a, Universidade Estadual Paulistfl, 

0140.5-900 Silo Paulo, Sao Paulo, Brasil 

An iterative Neumann serips method, employing a f('aJ ;wxiJiary scatt(~riIlg  inte

graJ equation, is used to talrula.tl~  srattl'rillg leJl~~ths  and phasl' shift.s for tIl(' atorni(: 

Yukawa and exponential potentials. For these potentials the original Neumann series 

diverges. The present iterative method yields results that are far better, in conver

gence, sta.bility and precision, tha.n other IIlomeIlttlm spare methods. AccuraU' result 

is obtained in both cases with an pstimalcd error of about. I in IO\{) aftf!r SOIlII' 8-10 

iteratiolls. 

PACS: 03.80.+r, 03.65.Nk, 34.40.+n 

To appea.r in Chemical Physics Ldters 
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Numerical solutions of t.he Lippmann-Schwinger-type scattering integral equation I 

are wmally performed by reducing this equation to a matrix equation of finite dimen-
I 

I 

sion (1]. Such a reduction is possible as the original integral equation has a compact I 

kernel. However, this procedure needs a delicate treatment of a principal-value in

tegral over a fixed point singularity in the kernel of this equation. Theil remains 

the task of solving tllf~  finite dimensional matrix equation. In realistic situation the 

dimension of the matrix could be quite large. A dired solution of this discret.e set of 

liIwar equation, for examplf'. by matrix inversion, could involve large numerical dfort 

for obtaining high precision result., due to the accumulation of numerical errors ill this 

approach. Altemative variational methods deal with a. small set of linear equat.ions 

and have the advantage of yielding good reslllts with relatively lit.t.le numerical effort 

[2 161. 1I0wf'ver, the appearance of spuriotls singularities [10,17--20], and nOJlJllono

lOllic and slow convergences of these methods have pill a limitation OIl t.heir liSP for 

ohtaining high precision results. 

Iterative solutioll of Fredholm intpgral equations aw known for leading to rapidly 

convergent result.s for weak kemels [1]. The Lippmann-Schwingf'r ('quation permit.s 

iterative solution which converges for a sufficiently weak potential or at sufficiently 

high energies. Moreover, for most scattering energies the iterative solution of a re

alistic scalterinr, equation is either diver,!!;cnt or very slowly convcrgent to bf' of allY 

practical use. 

The preselJt Letter considers an iterative numerical method for scattering prob

lems. The mdhod relies on solving an auxiliary nonsingular equation whose kernel 

is fwe of the pI incipal-value prescription needed in t.he H matrix equation, or the 

if ~  0 outgoing wave limit needed in the t matrix equation. The kemel of this auxil

iary equation, in contrast to that of the origillal t or the Ii matrix f'quations, is made 

of the difference hetween two terms which cancels the fixpd point singularity of the 

momentum space Green's function. Consequently, by adjusting a free parameter, this 

kernel can be made sufficiently weak in order to yield a rapidly convergent iterative 

Neumann serie;; for a wide class of scattf'ring problems. The J( or the t matrix e1

elllents are then ohtained by performing an integral over the known solution of the 

auxiliary ('f]llatiOlI. This nwtho<! was first Sllggf'sted for 111Ic!('ar scattering prohkms 

L 



[l,21-25j. However, the (j,ccurilCY of the method has really never lwen tested. III 

nuclear scattering problelJls, as t.he potential is not accuratdy known, "suall)', Ollt' is 

content with approximate solutIOns. 

The situation is entirely different in atomic and l1lolecular physics, where the 

basic interaction is known and this has led people to develop complicated models 

and perform high precision calculations. For this one needs intelligent and stahle 

numerical methods. The iterative lIlethod iuvolving Ilonsingular equation is here 

tested for two of the cornmunly IIscd model potentials - the atomic exponential and 

the Yukawa potentials. After some 8 iterations we obtaill results with estimated ('!Tor 

of about 1 in 1010 for both these t)Utentialso These results are more accmate than any 

currently available momentuill space numerical results by several orders of magnitude. 

It is unlikely that the direct matrix invNsioll or the use of variational principles will 

lead to results with same prc(:isioll. 

The present iLerativt" llldhud caii Lf itpiilieJ Lotl. tv siiigk-cham:d ti.:aJ m:;!ti 

channel scattering processes [22-24]. Fur real hermitian potentials, the met.hod is 

formulated in terms of a real 0p{cfator, called the r matrix, which satisfies a real 

nonsingular integral equation. No complex variables or principal-value prescriptions 

are needed for the numerical treatment of this equation. The I or the J< matrix 

elements are then found out by evaluating an illtegral involving t.he r matrix. Details 

of this method have appearf'd in the literature [21-23J and a. desnipt.ion is given 

below. 

In the single-channel case tlw partial wave t mat.rix (in units of lt 2 j2m) satisfies 

( k'k2) = V( k) ~1''''' 2d .!JE,q)t(q,k;k
2

) (1)t p, , ' p, + £I . q k2 2 +'0 ' 
11"0 '-q t 

where V is the potential (in units of 1i2 j2m), k the Oil-shell wave-nlllIlber and 1f! the 

reduced mass. The general scheme for the nOJlsingular reduction starts by introdllcing 

a real function ,(k, q), such that ,(k, k) =. 1. Then the Lippmalln-Schwinger equation 

(1) can be rewritten as 

2 lex) q2d91(k q)
t(p k· k2

\ = V(p k) + ~ V(p k) , I(q k· e)
", 1 11" ' 0 k2 - q2 + in. " 

21OC� 

+_. q2dqA(p, q; k2)t(q, k; k2 
) (2)�

7r 0 

'� 

wile!"" 

2 W(p,I/) - V(pJh(k,q)j
A(l',q; k ) =-------fi~-;/-~-----' Cll 

is il nOl1singular kt'rIll'1.� 

The l matrix can Iw expressed in tNIllS of tilt' r IJlatrix, which satisfies� 

I'(,J,k;l·2) = V(p,k) +~.  foo ldq!1(lJ,q;k)l'(q,k;k',l). (4) 
71 Jo 

TIIP r matrix is lI(Jt tillie-reversal SYIIIIlH'trir: £'(£1, £I'; k2
) f::- I'(q', £I; P). This is Jlot it 

prohlem in nUlIlCrical calculation. 

The formall1lanipulation needed to relate the I matrix with the r matrix becollles 

trallspa.rent in the operator form. [n operator form Egs. (2) alld (4) are written as 

t = V + At +V9n/, (!») 

r = V + AI', ((i) 

with V(p,q) := \/(p,k). and 9o(p,q) = 8(q - p)(k2 - q2 + iOt',(k,q). Then I is 

expressed ill tl~rms of r hy 

t = r + f9o/, (7) 

with f(p, q; P) l'(p, k; P). Equat.ion (7) lead~: to the followillg on-shell I lIlatrix 

e1cllwnt [1,21] 

tlk kol.2) = . r(k,k;p) (R) 
\ , 1 J __ (2j7r)foO<; q2dq(P - q2 +10)- Ly(k,q)r(q, k; P) 

Oncr' the real nOllsingular equatioll (4) is solved, "'W I matrix can he ralculalet! by 

pprforllling the complex integral of (8). The zeros of the denominator of Eq. (8) 

corrl'spolld to bound states il.nd this t-lI1atrix does not have spuriolls poles. This 

fad Las hf'cn IIsed to develop a related Illethod for the hinding energy and hOllnd 

stat(· wave functioll [26]. Tlw only principal-value prescription or the it ----l 0 limit 

appears ill Eq. (8), which can 1)(' handled easily. For IIll1lwriral purpose Eq. (8) Cd-II 

he rewrit.t.('11 as 

___1 __ = I _. ~  f00 dq!!1~,(k~_q)r(q,A:; P)jl'(k,k;k2 
) - k 2

j + ik. 
t(k,k;k1 ) I'(k,k;P) 7rJo (P- q2+iO) 

(9) 
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While arriving at. Eq. (9) tbe integral in t.he denominator of Eq, (R) has \wen brokert 

up into it.s principal-value and imaginary delta fundion parts and t.he prillcipal-value 

integral eliminated by t.he following identit.y: 

dpi oO 

P -k2" = 0, (10)
2.0 - p 

where k is any real positive number and P denotes the principal-value prf.'sc:ription. 

Tlw inverse of the oll-shdl 1\' llIatrix is also essent.ially .e;iVf'1l hy Eq. (9) hut. wit.h 

t.he ima.e;inary part ddf'ted. Explicit Iy, 

2
~ __I__ = ~~__ ~~  f'X'dq[ql!~:q)r(q,k;PUT(k,k;k2)_-k ], 
I\'(k, k~;  P) I'(k, I..'; k1 ) 7r ,,0 (1.: 2 - q1 + iO) 

( \I ) 

Wit.h tire present partial wav(' projl·ction Olll' Ila~" for ,c.,' wav(' al, ZI'I'O ('lll'r.e;y, th(' 

scattf'rin.e; lengt.h a givel! by 

(J =: 1\ (Il,O:ll) = ((0,0;0), ( 12) 

At ot.her (,\Il'rgies till' plrase slrifts ;, an' dl'filwd by 

1 (1 \ ( I:l)Idl.:,k):'l) = \R f.(k,k;P)) = --b·oth. 

The present. method relies on t.he solut.ion of the auxiliary nonsingtllar r matrix 

equation (4). The real nonsingular kerllf') of this ('quation, giwIJ by Eq, (:1). involves 

a differel1Cf' of two terms, At t.he on-sh('ll point, q = k, alld t.he expn'ssiotl in till' 

square hracket of this equa.tion va.nislws, which lIIakes til{' kf'rnel A bot.h lIonsinguJar 

at the on-shell point a.nd weak compa.red to that. uf the originalnonsingular l'qllatioll. 

This property of til(' kernel A will Iw used for tllP it.<-'rative solution of t.he s( aUNing 

r matrix <-,qllation (4), defined hy 

r" = \. -+- /1 r 11- I. 11:..:: I. 2, ,.. , ( \.1) 

where 1'0 = \. 

The range of nlOllll'nt.lllll int.egral jf)n ill Eq. (I) cowrs til(' w!lok pllil:'!' ~pa('e, I'.g" 

o to O(). SO OlW f'IICOlllltl'rs illl inlilIil.(' intl'grot!. TIl!' Frt'dhol!" 1I,1I1Ife of I!l!' proldelll 

gllilrallt.('('S t.hiJ!. the kI'lJ](,] dCCil\'S I'iIJ.idlv 10 Z('J'O CIS t.!w lllotll('ld.'l1ll \·;lri;,i,l ..s ti'lld t.o 

~l 

infinity. It is often usdul, from a practical point of view, to transform the infinite 

integral to a finit.e integral. Given the Gauss-Legendre points between -I < x < I, 

this is achieved by the transformation 

q=c(~), (I5)
I-x 

which maps 0 < q < 00 into -1 < x < 1 where the images of points x = -1,0, I are 

q == 0, c, 00, respectively. The differentia.! dq in Eq. (4) is directly obt.ained fwm the 

transformation. Obviously, oue can bave an infinit.e c1as~ of transformations, each one 

distribut.ing the integration points in a different fashion. In fact all of these mappings 

corresJlond to a maximum value of q in mO\llentum space wbich is efficiently controlled 

hy t.he parameter c, This corresponds to a nIt-off in the infinit.e integral. Ot.herwise, 

t.Iw choice of t.he parameter c is entirely arbitrary. Generally, tlw paramder c is 

dictated by special features of the kernel and should he chosen in order to get. t.lre 

most accura.te llumerical result with a given number of mesb points. 

III order to illustrate the methorl we consider t.he S wave scattering of an e1edron 

by t.he following exponential and Yukawa aUract.ivl' potentials 

ti 2 

\/(1') = ---2 exp( -r/ao), (16) 
nwo 

and 

2 
V(l') = __ h 2 exp( -r/au), ( 17) 

mao (1"/ao) 

whew aD is the Bohr radius of the h'ydrogl~n  a.tom. Both t.hese potentials have heen 

used in numerous tests of various computational methods in atomic physics [8, 10 12, 

16,27,28]. After factorization of ti 2 /2m, the S wave momentum space matrix elements 

of the above pot.f'ntials arp, resp<-,d.ively, given ill atomic lIIlits (a,II.) hy 

V(p, q) = -4[1 + (p +q)2t l ll +(p - q)2t l 
, (\ R) 

alld 

V(p,q) = -_I-In ~±JE  +q)'l ( 19)
'2pfJ I -+- (p-=qr' 

{j 



In atoillic units, tlw ietlgtb is lllt'itSllred ill Iltlit.~ of (Lo and the I1I01lWIlt. II III ~P(l,ct'  lIIat.rix 

elements t and V arc also giVf'1l ill tim; IIni/. Tlw wave number is in IIl1il~ of (la l . 

In order to perform a II II lIIf'rical cal<:lIlation onc has to decide on I.\IP l\1lrnber of 

integration mesh points, the constant c in transformation 1I5), and a choice for the 

function 1(k, q). It would bt~ better if the infinite integral in the r matrix equation 

can be truncated for iL relatively small valtll' of momentum. Mot.ivated by this WI' 

consider 

k'2 + 0'
"] 2 (20)l(k,q) = [~+~  

for the exponclltia} potential, alld 

2 2 
k +0 ] (21 ),(k,q) = [~+~ , 

for the Yuka.wa potential, where 0' is a collstant which should be varied to obtaill 

a rapid convergence of the il.f'rative solution of Eq. (4). With these choices of t.llP 

functioll " the leading asymptotic behavior, for p, q ~ 00, of the two terms in the 

kernel A, given by Eq. (:3), callcels. In additioll, we performed numerical calculat.ion 

for ,(k,q) = 1. With this latter choiC{' the integral equation (4) for the r matrix has 

convergent itera.tive solution for allY local potential [29]. 

To start with we perforlllPd calculations for the choices (20) and (21) for /,( k, q). 

In order to find a rpslJlt precise to four or five significant figures a small value of 

the constant. c (,..., 1) and a relatively small number of Gauss-Legendre mesh points 

N (rv 20 - :30) is needed. TIIP constant C oetermines how far the int.egral extends 

in momentum space. But for ohtaining accurate results, hoth r dl)(1 N art' to Ill' 

increased. It is well known that t.he Ylikawit potcntial is rapidly varying for small 7' 

compared to the smoothly varying exponent.iil.! pot.ential. In the rnonlentuln space 

the Yukawa potential extends far beyond the exponential potential as is clear 1'1'0111 

their a.symptotic behcwiors: 

J~~ V(p,q)""" [p-2]M, (22) 

where M = i for the Yukawa potential and M = 2 for the expOlwlltial pot.ential. 

Consequently, in order to achieve the same degree of precision one lIeeds a milch 

larger Nand c for the Yukawa potf'lItial COlli pared to the f'xponential potential. 

~1I\lI'Ti("id 'id",diltiow; Wln' perfolllll'd in dUlIl,!c pr('ci~;ioll  fllilintaillill,!!; 1(j siglJif

iCilllt di~its, \V., [otlnd tltat c = 20 and N ~.:I28 "i('lded rpsllits accurate to I ill 10 10 

for the exponelitial potl'lltial. In nrtkr t.o obt.ain til(' SiLlIlI' accumc)' for the Yilkawa 

potl'nt.ial OIW I\('(>ds r =: 100 and N =- ,100. TlIPSf' results were fOllnd t.o he st.i1ble 

wlten lite 1l1l111!wr of llIesh points N is increased. The use of almost allY 1I0llzero 0

;11 i(k,q) of Fqs. (20) and (21) for t1ll'se (' alld N leads to tilt' SiUDI' st.able collVl'rged 

result frOlIl t I!l' it iTa!ivc' series sol\ltion of till' I' matrix ('qllatioll. Ilowev('\', the initiid 

('UllV"I'i!;f~\ln'  lJt.pl'llds on till' vallie of 0'. After a sllIilll alllOllllt of eXlwrinwlltat.ioll WI' 

llsed n = :UJ for tl)(' exponential pO!.t·lltia} awl n = :L5 for t.h(~ Yukawa pot.ential; 

tlwse choices illlprove the lower order l.f'rlllS of till' itnative solution. 

TIll' iterativp serif'S converged rapidly at all enerp;ies for both potentiab. The 

iterat.iv(· Nelllllallll sf~ries  based on the orip;inal LippllliUln-Schwinp;er equat.ion diVl'rges 

ill both cases. III t.he present study we report r~stllts  for k = 0, 0.15 a.ll., and 0..5,5 

a.u. At zero energy the rt'SlIlts are for t.lre scattering lengtll in at.omic ullits and at 

other elwrgies tlley are for the tangl'llt.s of the phase shifts. Tlte results are exhibited 

in Tahle I. Tlte entries in the table are the rat.io of the result. for a specific iteration 

11 and t.he converged result. The call verged results have been obtained by performing 

calculations with 1000 integration mesh point.s. hI all rases the cOllvergence is rapid 

and smooth. Tllf're are no oscillations arollnd tlw rOllv('rged value as til<' 1IIIIlIIwr of 

iterat.ions is illCff~ased. 

III t.lre present method tlrere is some arhitrarilwss ill choosing thl' most dl'sirahk 

,(k,q). This arbitrariness is turned to good advant.age -- the fUlldion ;(k,q) has 

bp('n dlosell to obtaill a rapid convergence of tilt' iterative solutioll. However, t.lre 

final cOllverg(~d result is independent of the slwcific choicf' of ,(~',  q). For the simplest 

elwin" ,'(k,q) = 1, the convt~rged  result is ohtained after sOllie 2 t.o;~ more iterat.ions 

t.han ill Tahle I. This has beell illustra.ted for the scatLf'ring Iengt.h in Table 2 for 

t.hl' two potentials. In Table 2 W(~  again show the rat io of t.he Gllculat(~d result.s alld 

tht' convprged n'strlts. TIl<' 11 = I resllit in this case yielded accidentally very slllall 

(large) Illlllllwrs for the Yukawa (f'X(H)Ilf'lltia.l) potential This lIIeallS that ill r~q. (8) 

tlw Ilumerator or the denominator almost vanishes, respf'dively, for Yukawa or the 

exponential potentials. This is not of C011Cern for results ohtailleo with larg(~  71. The 
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vanishing of the denominator of Eq. (8) corrpsponds t.o trill-' hound states [1], and 

this does not happen in the scattering region for a converged r. Also, for Cl converged 

r the numerator of Eq. (8) can not have spurious zero. 

The entries 1.0 in Tables 1 and 2 denot.es that t.he result has converged to the 

desired precision. The small deviation from 1.0 in some of the converged results in 

Tables 1 and 2 does not indicate a defect. of the iterative scheme but simply means 

that t.he number and/or distribution of lIIesh points employed is not enollgh to obtain 

the desired accuracy. Also. compared to the IIlllIlerical solut.ioT!s oht.ailll'o by the 

variCltioual 1I)('t.hods for tlj(' Silllll' pot.c'lItials [I (J 12. J:t. 27, 2H], till' I)('(·sc'lIt. ull't.hod 

yidds vastly slIfwrior results. 

Though we have illustrat.ed the pn'sellt IIIdllOd Ilt'rc for t.wo simpl!' potcntia.ls, 

it is applicable in more complex sit.uat.iolls, for exaJllplc\ ill solving ulldt.i-challlll'1 

prolJlems. Also, it can be lIsrd for t.he· utlculat.ion of the o{f-slwll 1\' (or t.!)(' f) lIlatrix 

elemeut.s f{(p, q; k 2
) when> p f l: 1= q. Wr haW' inded calt-ulated these ('I('n)('ul,s aud 

found thaI. they convergr rqually rapidly. Esscntially, the sallie method Crill be used 

for t.Iw cakulation of tlw binding cnf'rgy and t.11l' bound st.at.e wavr function [20]. TIll' 

present. iterative' Ilwthod, wllich iflvolv('s only sC'v('ral mat.rix vedor lIIult.iplications, 

is also nlll1H:'rical!y IlIlIch more' economic thCln it direct solution by mat.rix iuVt'rt.ion, 

specially when the dimellsioll of the Illat.rix is large. The r mat,rix is rcal for l'ach 

order of itrration and tlw solution for each iteratiou obeys thl' (Ollstrainl,s of ullitarit.y. 

The nlUlti-c.hannd vf'rsioJl of t.11t' pr('scnt IIlf'tllOd[22 24] has I)(,('u lI.'·wd ill solving 

electH" J-hydrogf'II[30] illld positronitlkali-a,torn/:t II sl'atterinf!: lISille; till' do.';(' nlllplillP; 

approach. However, in t.h('~;c' ;Tpl:(";lticJ!ls til!' r !!12! t r!'-': ('(l";l!inll Wil<; "nll"'d h.,' midI"': 

inversion and 1I0t by it.eration. Prelilllinary l\lodrl falculitt,ions ill nuclear physics 

produced good convergence for the iterat.ive sollltion of tlw 1II111t.i-chaIlIH·1 Ill'utroIl

deuteron scatt.ering r ma.trix equations [2:3]. III view of the rapid conv('rg('nn~  olltaillt'd 

in the present iterative study, it will 1)(' inten'sting 1.0 t.ry iln iterativc' solution of the 

r matrix equation in llIult.i-challlll'l problems. 

The work has heen support.nl in pitrt by till' ('ollselho Nacional d(' \)c's/'nvo!vi

mento Cicntlfico c' Tc'cnolc)gico, Fllllelil<;c)O eI(' All1paro it P('Sqllisil e10 !·>:t;lllo ele- Sao 

Palllo, and Financiadora de ESl.lldos e Projl'f.os of Hra7,il. 
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TA BLE i. S(aUering lengths and phase shifts obtained from the iterative ~;olllti()n  

of the r matrix equation for the exponential and the Yukawa potentials for A~=O, 

0.15 a.u., and 0 ..')0 a.n., with -y(~:,q}  given by Eqs. (20) and (21). The ratios of the 

calculated result for a particlliar iteration n to the converged exact res"lt are shown in 
each case. At k =:: 0 the exact scattering lengths are 8.69:32.54332 a.ll. (exponential) 
and 7.911:l80206 <t.1I. (Yukawa). The (:xacl result.s at k= 0.15 a.u. arf' tan fJ = 
-1.744939321 (expunential), -1.:386:339t21 (Yukawa); and at k=O.S,t) o..ll. are tan~  

= 2.:WO:382707 (I'xpont'lltial), ;).79721 un (Yllkawa). 

n I Yukawa tialExpoIlf'n Yukawa. Exponential Yllkawa. Exponentiall 

o 
(k = 0) 

0.4550407017 

)(k = 0 

0.58896~ 

(k =0.15)
1---

2.4070888958 

~~  0..5,5) 
0.5fS 1089599 

(k =: 0.15) 
1--

1.95:17093230 -
~ =: 0..55L. 

0.6875213:n2 

J 1.062883,5422 1.109496 0.9.508377182 0.8898028226 8,5054455.550 0.9543748521 

2 1.0009906100 1.00 Ll27 0.9991722408 0.9972672993 99.534291560 1.0035508106 

3 1.0000400237 

4 1.0000019050 

5 1.0000000823 

6~'0000000013 
7 0.9999999996 

0.999963 

0.9999946 

0.999999 

O.V!:l!H:l9!:1~  

1.0000000 

0.9999916475 

1.0000023971 

1. 0000004774IL 0000000) 09 
1.0000000098 

1.0000133976 

1.0000067319 

1.0000004479 

i .uOOOOOO 150 
1.0000000000 

9994524687 

9999328458 

9999916278 
nn"' .... "''' .... ..... 0) 

~~~~~t)~Li  f t.> 

9999998667 

0 

0 

0 

0 
0 

1.0001518592 

1.0000019555 

0.9999997597 
n 1\(\{\nn{\{\-""'1(' 
U.~~~jJ;)J;' t I U 

0'9999999989~  

8 1.0000000000 1.00000or 1.0000000014 1.0000000001 99999998260 0.9999999999 

9 1.0000000000 1.0000000 1.0000000003 1.0000000002 99999999730 0.9999999999 

>10 -_ 
1.00000001.0000000000 L' _ 

1.0000000001 1.0000000002 99999999940 ~999999999~  

TABLE 2. Scat.tering lengths obtain(·d from t.he iterative solution of tilt' r matrix 
equation for tb(~ expollellt.ial and the Yllkawa potentials for 1(k,q) = I; For other 

ddai Is see Table I. 

r----;-;-, Y llkawa Expollr'ntW 
,==. 0) (k = 0)-( 

o 0.2., ~8003898  0.460126H808 

I 0.00 )0000000 99999999.002 

'2 0.7 11651786 0.9:l94257325 

3 1.05 }.5716354 1.0051581219 

4 0.99 l796R559 0.9997:J6131.5 

5 1.0! J24:l.14:J:J 1.0000 I00.1 10 

6 0.99 }!J89 I830 O.99999970fj5 

7 1.00 )0003827 I .0000000068 

8 0.99 )9999890 O. 9~)9!H}99999 

9 1.00 )0000003 1.0000000000 

?-IO 1.00 )0000000 1.0000000000 

Il 


