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Iterative numerical solution of scattering problems

Lauro Tomio and Sadhan K. Adhikari
Instituto de Fisica Tedrica, Universidade Estadual Paulista,

01405-900 Sao Paulo, Sdo Paulo, Brasil

An iterative Neumann series method, employing a real auxiliary scattering inte-

gral equation, is used to calculate scattering lengths and phase shifts for the atomic

Yukawa and exponential potentials. For these potentials the original Neumann series
diverges. The present iterative method yields results that are far better, in conver-
gence, stability and precision, than other momentum space methods. Accurate result

is obtained in both cases with an estimated error of about 1 in 10" after some 8~ 10

iterations.

PACS: 03.80.4-r, 03.65.Nk, 34.40.4n
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Numerical solutions of the Lippmann-Schwinger-type scattering integral equation
are usually performed by reducing this equation to a matrix equation of finite dimen-
sion {1]. Such a reduction is possible as the original integral equation has a compact
kernel. However, this procedure needs a delicate treatment of a principal-value in-
tegral over a fixed point singularity in the kernel of this equation. Then remains
the task of solviug the finite dimensional matrix equation. Iu realistic situation the
diimension of the matrix could be quite large. A direct solution of this discrete set of
linear equation, for example. by matrix inversion, could involve large numerical effort
for obtaining high precision result, due to the accumulation of numerical errors in this
approach. Alternative variational methods deal with a sinall set of linear equations
and have the advantage of yielding good results with relatively little numerical effort
[2 16]. However, the appearance of spurious singularities [10, 17--20]), and nonmono-
tonic and slow convergences of these methods have put a limitation on their use for
obtaining high precision results.

Iterative solution of Fredholin integral equations are known for leading to rapidly
convergent results for weak kernels [1]. The Lippmann-Schiwinger equation permits
iterative solution which converges for a sufficiently weak potential or at sufficiently
high energies. Moreover, for most scattering energies the iterative solution of a re-
alistic scattering equation is either divergent or very slowly convergent to be of any
practical use.

The present Letter considers an iterative numerical method for scattering prob-
letns. The method relies on solving an auxiliary nonsingular equation whose kernel
is free of the principal-value prescription needed in the K inatrix equation, or the
ie — 0 outgoing wave limit needed in the ¢t matrix equation. The keruel of this auxil-
iary equation, in contrast to that of the original ¢ or the K matrix equations, is made
of the difference between two terms which cancels the fixed point singularity of the
momentum space Green’s function. Consequently, by aljusting a free parameter, this
kernel can be made sufficiently weak in order to yield a rapidly couvergent iterative
Neumaun series for a wide class of scaltering problems. The K or the t matrix el-
cments are then obtained by performing an integral over the known solution of the

auxiliary equation. This method was first suggested for unclear scattering problems



[1,21-25]. However, the accuracy of the method has really never been tested. In
nuclear scattering problemns, as the potential is not accurately known, nsually, one is
content with approximate solutions.

The situation is entirely different in atomic and molecular physics, where the
basic interaction is known and this has led people to develop complicated models
and perform high precision calculations. For this one needs intelligent and stable
numerical methods. The iterative wethod iuvolving nonsingular equation is here
tested for two of the commonly nsed model potentials — the atomic exponential and
the Yukawa potentials. After some 8 iterations we obtain results with estimated error
of about 1 in 10! for both these ;‘wtentials. These results are more accurate than any
currently available mementum space numerical results by several orders of magnitude.
It is unlikely that the direct matrix inversion or the use of variational principles will
lead to results with same precision.

The present iterative mcthiod can be applicd both to single-chiannc

1 and molt
channel scattering processes [22-24]. For real hermitian potentials, the method is
formulated in terms of a real operator, called the I' matrix, which satisfies a real
nonsingular integral equation. No complex variables or principal-value prescriptions
are needed for the numerical treatment of this equation. The ¢ or the K matrix
elements are then found out by evaluating an integral involving the I matrix. Details
of this method have appeared in the literature [21-23] and a description is given
below.

In the single-channel case the partial wave ¢ natrix (in units of %i*/2m) satisfies

Hp, ks K2) = V(p k) + ;/0 q”dqz%@%%ﬂ, (1)
where V is the potential (in units of A2/2m), k the on-shell wave-nmnber and 12 the
reduced mass. The general scheme for the nonsingular reduction starts by introducing
a real function 7(k, ¢), such that y(k, k) = 1. Then the Lippmann-Schwinger equation
(1) can be rewritten as
= g'dqy(k,q) Uaok: k)
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where
2 V(pog) = Vip, k)y(k, q)) 9
Alp, i k%) = g =, (3)
is a nonsingular kernel.
The ¢ matrix can be expressed in terms of the I' inatrix, which satisfies
‘ 2 [ 2
Fip ki k) = V(p k) + = / PdgA(p, q; K)1(q, k; k). (1)
7 Jo

The I' matrix is not time-reversal symmetric: 1'(q, ¢'; k%) # 1'(¢', ¢; k*). This is not a
problem in numerical calculation.
The formal manipulation needed to relate the ¢ inatrix with the I' matrix becomes

transparent in the operator form. In operator form Eqgs. (2) and (4) are written as

t=V 4+ At + VGt ()

I=V+Al, (6)

with V(p,q) = V(p, k). and Go(p,q) = 8(q — p)(k* — ¢* + i0)"'y(k,q). Then I is

expressed in terms of I by

t =T+ TGot, (7)

with T(p,q; k*) = U'(p, k; k*). Equation (7) leads to the following on-shell ¢ matrix
clement [1, 21]
. F(k, k; k)
ke b 12) = Lok 8
) = T I e - g o kT R

Onee the real nensingular equation (4) is solved, the ¢ matrix can be calculated by
g ‘l Y }

performing the complex integral of (8). The zeros of the denominator of Eq. (8)
correspond to bound states and this t-matrix does not have spurious poles. This
fact has been nsed to develop a related method for the binding energy and bound
state wave function [26]. The only principal-value prescription or the ie — 0 limit
appears in Eq. (8), which can be handled easily. For numerical purpose Eq. (8) can
be rewritten as

~ 2 B2/ - k2) — k2
! 2 ek R T )
(i}

Hk ki k) 1k, k k2) 7 (k% = ¢ + i0)

(9)




While arriving at Eq. (9) the integral in the denominator of Eq. (8) has been broken
up into its principal-vaiue and immaginary delta function parts and the principal-value

integral eliminated by the following identity:

) dp
— 10
b B (1)

where k is any real positive numnber and P denotes the principal-value prescription.
The inverse of the on-shell ' matrix is also essentially given by Eq. (9) but with
the imaginary part deleted. Explicitly,
l L 2 [ [9*v (k. @) (a, k; K*)/T(k, k; k?) ~ K?]
= - - s -—
o (K2 — % } 10)

K(k ki k)  T(k ki k%)
(1)

With the present partial wave projection one has, for S wave at zero energy, the

scattering length a given by
a = IC(0,0;0) = £(1),0;0). (12)

At other energies the phase shifts & are defined by

\

L ) = —kcolé. (13)

=R
IK(k, k; k?) 1k, k; k?)

The present method relies on the solution of the auxiliary nonsingular I' matrix
equation (4). The real nonsingular kernel of this equation, given by Eq. (3). involves
a difference of two terms. At the on-shell point, ¢ = k, and the expression in the
square bracket of this equation vanishes, which inakes the kernel A both nonsingular
at the on-shell point and weak compared to that of the original nonsingular equation.
This property of the kernel A will be used for the iterative solution of the scatiering

I' matrix equation (4), defined by

D= Vo Al 0= 1,2, (14)

where Py = V.
The range of momentinn integration in Eq. (1) covers the whole phase space, e.g.,
0 to c0. So one encounters an infinite integral. The Fredholm nature of the problem

guarantees that the kernel decays vapidly (o zero as the momentium variables tend to

infinity. It is often useful, from a practical point of view, to transforin the infinite
integral to a finite integral. Given the Gauss-Legendre points between —1 < z < 1,
this is achieved by the transformation

q=c(l+r), (15)

|-z

which maps 0 < ¢ < co into —1 < z < | where the images of points z = —1,0,1 are
q = 0, ¢, 00, respectively. The differential dg in Eq. (4) is directly obtained from the
transformation. Qbviously, oue can have an infinite class of transforinations, each one
distributing the integration points in a different fashion. In fact all of these mappings
correspond to a maximnm value of ¢ in momentum space which is efliciently controlled
by the parameter c. This corresponds to a cut-off in the infinite integral. Otherwise,
the choice of the parameter c is entirely arbitrary. Generally, the paramecter ¢ is
dictated by special features of the kernel and should he cliosen in order to get the
most accurate numerical result with a given number of mesh points.
In order to illustrate the method we consider the S wave scattering of an electron
by the following exponential and Yukawa attractive potentials
2
V(r) = —-n—l;l—g exp(-r/ao), (16)

and

Vi = - 2 oolrie), an

ma}  (r/ao)
where ag is the Bohr radius of the hydrogen atoni. Both these potentials have been
used in numerous tests of various computational methods in atomic physics [8, 10- 12,
16,27,28]. After factorization of h?/2m, the S wave momentim space matrix elements

of the above potentials are, respectively, given in atomic units (a.u.) by
Vip,q) = —4ll+(p+ V17 1+ (0~ )7, (18)

and

2
L, Ltlptae)” (19)

Vipyg) = — — .
(p-4) 2pg 14 (p-q)?



In atomic units, the ieugth is measured in units of ag and the momentum space matrix
elements ¢ and V are also given in this unit. The wave number is in units of agt

In order to perfortn a numerical calculation one has to decide on the number of
integration mesh points, the constant c in transformation (15), and a choice for the
function y(k,q). It would be better if the infinite integral in the I' matrix equation

can be truncated for a relatively small value of momentum. Motivated by this we

consider

2(kyq) = :*2‘1"] (20)
for the exponential potential, and

1kg) = [H:—z] : (21)

for the Yukawa potential, where a is a constant which should be varied to obtain
a rapid convergence of the iterative solution of Eq. (4). With these choices of the
function v, the leading asymptotic behavior, for p,q — 00, of the two terms in the
kernel A, given by Eq. (3), cancels. In addition, we performed numerical calculation
for y(k,q) = 1. With this latter choice the integral equation {4) for the I' inatrix has
convergent iterative solution for any local potential [29].
To start with we performed calculations for the choices (20) and (21) for y(k, g).
In order to find a result precise to four or five significant figures a small value of
the constant ¢ (~ 1) and a relatively small number of Gauss-Legendre mesh points
N (~ 20 — 30) is needed. The constant ¢ determines how far the integral extends
in momentum space. But for obtaining accurate results, both ¢ and N are to he
increased. 1t is well known that the Yukawa potential is rapidly varying for small »
compared to the smoothly varying exponential potential. In the momentum space
the Yukawa potential extends far beyond the exponential potential as is clear from
their asymptotic behaviors:
lim V(p,q) ~ [p7]",
where M = | for the Yukawa potential and M = 2 for the exponential potential.
Consequently, in order to achieve the same degree of precision one needs a much

larger N and c for the Yukawa potential compared to the exponential potential.

Numerical calenlations were performed in donble precision maintaining 16 signif-
icant digits. We found that ¢ = 20 and ¥V =128 yielded results accurate to | in 10"
for the exponential potential. In order 1o obtain the same accuracy for the Ynkawa
potential one needs ¢ = 100 and N = 400. These results were found to be stable
when the nuniber of mesh points N is increased. The use of almost any nonzero a
in y(k, q) of Eqgs. (20) and (21) for these ¢ and N leads to the same stable converged
result from the iterative series solution of the I' matrix equation. However, the initial
convergence depends on the value of a. After a small amount of experimentation we
used o = 3.0 for the exponential potential and o = 3.5 for the Yukawa potential;
these choices improve the lower order terms of the iterative solution.

The iterative series converged rapidly at all energies for both potentials. The
iterative Neumann series based on the original Lippmann-Schwinger equation diverges
in both cases. In the present study we report results for k = 0, 0.15 a.u., and 0.55
a.u. At zero energy the results are for the scattering length in atomic units and at
other energies they are for the tangents of the phase shifts. The results are exhibited
in Table 1. The entries in the table are the ratio of the result for a specific iteration
n and the converged result. The converged results have been obtained by performing
calculations with 1000 integration mesh points. In all cases the convergence is rapid
and smooth. There are no oscillations around the converged value as the number of
iterations is increased.

In the present method there is some arbitrariness in choosing the most desirable
7(k,q). This arbitrariness is turned to good advantage -- the function y(k,q) has
been chosen to obtain a rapid convergence of the iterative solution. However, the
final converged result is independent of the specific choice of (&, ¢). For the simplest
choice, y(k,q) = 1, the converged result is obtained after some 2 to 3 more iterations
than in Table 1. This has been illustrated for the scattering length in Table 2 for
the two potentials. In Table 2 we again show the ratio of the calculated results and
the converged results. The n = 1 result in this case yielded accidentally very small
(large) numbers for the Yukawa (exponential) potential. This inecans that in Eq. (8)
the numerator or the denominator almost vanishes, respectively, for Yukawa or the

exponential potentials. This is not of concern for results obtained with large n. The




vanishing of the denominator of Eq. (8) corresponds to true bound states [1], and
this does not happen in the scattering region for a converged I'. Also, for a converged
I' the numerator of Eq. (8) can not have spurious zero.

The entries 1.0 in Tables 1 and 2 denotes that the result has converged to the
desired precision. The small deviatior from 1.0 in some of the converged results in
Tables 1 and 2 does not indicate a defect of the iterative scheme but simply means
that the number and/or distribution of mesh points employed is not enough to obtain
the desired accuracy. Also, compared to the numnerical solutions obtained by the
variational methods for the same potentials {10 12, 15,27, 28], the present method
yields vastly superior results.

Thougli we have illustrated the present method here for two simiple potentials,
it is applicable in more complex situations, for example, in solving multi-channel
problems. Also, it can be used for the calculation of the off-shell A (or the 1) matrix
elements K (p, q; k2) where p # k # q. We have indeed caleulated these clements and
found that they converge equally rapidly. Essentially, the saine method can be used
for the calculation of the binding energy and the bound state wave function [26]. The
present iterative method, which involves only several matrix vector multiplications,
is also numerically much more economic than a direct solution by matrix invertion,
specially when the dimension of the matrix is large. The I' matrix is rcal for each
order of iteration and the solution for ecach iteration obeys the constraints of unitarity.
The multi-channel version of the present method[22-24] has been used in solving
electron-hydrogen[30] and positron-alkali-atom|31] scattering using the close coupling
approach. Howevei, in these applications the I matrix equation was colved by matrix
inversion and not by iteration. Preliminary model calculations in nuclear physics
produced good convergence for the iterative solution of the inulti-channel neutron-
deuteron scattering I' matrix equations [23]. ln view of the rapid convergence obtained
in the present iterative study, it will be interesting to try an iterative solution of the
I' matrix equation in multi-channel problems.

The work has been supported in part by the (‘onselho Nacional de Desenvolvi-
mento Cientifico ¢ Tecunologico, Fandagao de Amparo a Pesquisa do Estado de Sao

Paulo, and Financiadora de Estudos e Projetos of Brazil.
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TABLE i. Scaitering lengths and phase shifts obtained from the iterative solution
of the I' matrix equation for the exponential and the Yukawa potentials for k=0,
0.15 a.u., and 0.35 a.u., with y(k,q) given by Egs. (20) and (21). The ratios of the
calcnlated result for a particuiar iteration n to the converged exact result are shown in
each case. At k = 0 the exact scattering lenglhs are 8.693254332 a.u. (exponential)
and 7.911380206 a.u. (Yukawa). The exact results at k= 0.15 a.u. are tanéd =
—1.744939321 (exponential), —1.386339121 (Yukawa); and at k=0.55 a.u. are tané
= 2.200382707 (exponential), 5.797211392 (Yukawa).

Yukawa Exponential Yukawa Exponential Yukawa Exponential‘«
(k=0) (k=0) (k=0.15) (k =0.15) (k = 0.55) (k = 0.55)

=

-

0.4550407017 | 0.5889624075 | 2.4070888958 | 1.9537093230 | --0.551089599 [ 0.6875213332
1.0628835422 | 1.1094969597 | 0.9508377182 | 0.8898028226 | 0.8505445555 | 0.9543748521
1.0009906100 | 1.0013279806 | 0.9991722408 | 0.9972672993 | 0.9953429156 | 1.0035508106
1.0000400237 | 6.9999635234 [ 0.9999916475 | 1.0000133976 | 0.9994524687 | 1.0001518592
1.0000019050 | 0.9999946001 | 1.0000023971 | 1.0000067319 | 0.9999328458 | 1.0000019555
1.0000000823 | 0.9999997030 | 1.0000004774 | 1.0000004479 | 0.9999916278 | 0.9999997597
1.0000000013 | 0.9999999926 | i.0000600709 | 1.0000000150 | 6.5555985473 | 6.5555853677C
0.9999999996 | 1.0000000002 { 1.0000000098 | 1.0000000000 | 0.9999998667 ; 0.9999999989
1.00000G0000 | 1.0000060000 | 1.0000000014 | 1.0000000001 | 0.9999999826 | 0.9999999399
1.0000000000 | 1.0000000000 | 1.0000000003 | 1.0000000002 | 0.9999999973 | 0.9999999999
1.0000000000 b.OOOOOOOOOOJ 1.0600000001 | 1.0000000002 [ 0.9999999994 | 0.9999999999
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TABLE 2. Scattering lengths obtained from the iterative solution of the I' matrix
equation for the exponential and the Yukawa potentials for v{k,¢) =-1." For other
details see Table 1.

=

Yukawa Exponential
(k=0) (k = 0)
0.25280G03898 | 0.4601268808
0.0000000000 | 99999999.002
0.7111651786 | 0.9394257325
1.0595716354 | 1.0051581219
0.9957968559 | 0.9997361315
1.0002435433 | 1.0000100510
0.9999891830 | 0.9999997065
1.0000003827 | 1.0000000068
0.9999999890 | 0.9999999999
1.0000000003 | 1.0000000000
>10 | 1.0600000000 | 1.0000000000
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