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Rho-omega mixing and the Nolen-Schiffer anomaly

in relativistic nuclear models

L. A. Barreiro, A. P. Galedo and G. Krein

Instituto de Fisica Teérica - Universidade Estadual Paulista

Rua Pamplona 145, 01405-900 Sao Paulo, SP, Brazil

Abstract

We calculate within the framework of relativistic nuclear models the contribu-
tion of the p” —w mixing interaction to the binding energy differences of the mirror
nuclei in the neighborhood of A=16 and A=40. We use two relativistic models for
the nuclear structure, one with scalar and vector Woods-Saxon potentials, and the
Walecka model. The p” —w interaction is treated in first order perturbation theory.
When using the Walecka model the p- and w-nucleon conpling constants are the
same for calenlating bound state wave functions and the perturbation due to the
mixing. We find that the relativistic results on the average are of the same order

as the ones obtained with nonrelativistic calculations.

1 Introduction

The Nolen-Schiffer anomaly (NSA) is the persistent. discrepancy helween experiment. and
conventional nuclear theory for the binding energy diflerences of mirror nnclei [1] [2].
From the studics along the last 25 vears on the subject, there emerged a widespread
consensus that the anomaly can eventually be explained by the charge symmetry violation
in the nucleon-nucleon force [3]. In particular, class I (pp-nn) and class 1V (pn) [1]
charge symmetry breaking (CSB) forces can affect the binding energy differences of mirror
nuclei [5]. In this context, Blanden and lqbal [6] (B1) performed a systematic and detailed
calenlation of binding energy differences of mivror nuclei in the range of A=11to A=11.
In their calculation, BI employed CSB nucleon-nucleon potentials derived from p" - w

and 7% — 5 mixings and included the effects of the neutron-proton mass difference in the

one- and two-pion exchange potentials. Within the framework of a Schrodinger equation
calculation, using harmonic oscillator bound-state wave functions, Bl concluded that CSB
effects can resolve a large fraction of the anomaly. Moreover, their calculation showed
that the p%-w mixing effect gives by far the most important contribution. In a subsequent
calculation, Miller [7] obtained a larger effect than BI by using a new experimental value
for the mixing parameter, which is larger than the one used by BI.

In this letter we calculate within the framework of two relativistic nuclear models
the contribution of the p® — w mixing interaction to the binding energy differences of the
mirror nuclei in the neighborhood of A=16 and A=40. Both the nuclear structure and the
mixing amplitude are treated relativistically. Relativistic models based on the original
Walecka model [8] have been very successful in describing several nuclear properties and
the study of CSB effects in the context of such models is an interesting new application.
The only published calculation of binding energy dilferences of mirror nuclei using a
refativistic nuclear model is the one by Nedjadi and Rook (NR) [9]. Tu their caleulation
the nuclear structure is described in a single-particle approximation in terms of the Dirac
equation with scalar and vector Woods-Saxon potentials. The only CSB eflects taken
into account were the ones of the electromagnetic force. Here we calculate the binding
energy differences employing the NR and Walecka models, both supplemented with the
p’ —w mixing interaction. In the Walecka model we include the 7, 7, w, p, and the photon
ficlds. In both models p” — w mixing is treated in first order perturbation theory. In an
earlier publication [10], the Walecka model was employed to calculate the contribution of
the p° — w rnixing interaction to the neutron-proton self-energies in nuclear matter. The
CSB effect found there is of the right sign and about the right magnitude of the anomaly
in a large nucleus. The use of the Walecka model with the p® — w mixing is particularly
interesting because of the coupling coherence, i.e., the g, and g, coupling constants
appearing in the fundamental Lagrangian are the same for the nuclear structnre and the
CSB interaction. This is not the case for the NR nodel, where the nnclear stractire has
no direct connection with the CSB interaction.

We start with the NR model. In this model, the nuclear structure is described by the



single-particle Dirac equation with spherical mean fields:
{~id- V+W(r) + B[M = U,(r) —id - VV(1)]}Ua(Z) = Ela(Z) , (1)
where U,(r) is a scalar potential, and the potentials W(r) and V(r) are given by:
W) = Ur) + 31+ V) (2

_N_’;(I + T.'!) Kn £l - T3) ‘/((') , (,;)

“leM 2 Tam 2
U,(r) is a vector potential and V,(r) is the Coulomb potential. The term & - VV(r),

V(r)

which is due to the anomalous magnetic inoments of the proton and the neutron, was not
included in the Dirac equation of Ref. [9]. The index a = {a,m} = {n, x,m,t} indicates
the usual quantum numbers of energy (n), Dirac (), total angular momentum projection
(m) and isospin projection (t). In the NR model, the scalar and vector potentials {/, and
U, are parametrized in terms of Woods-Saxon forms:

Vi

- | = . 4
1 + er—R)a PEUS )

Ui(r)

The parameters Vi, R;, and q, are adjusted to give the best fit to the single-particles
levels of the nuclei of interest.

The single-particle spinors U, (Z) are written as usually:

l i(‘YlK (bﬁm

U@y =~ ™ G (5)
_Fmel¢—nm

where & is the Dirac quantum number given in terms of the total angular momentum as
j=lnl-3. (6
2

and
1 1.
P = Z (lmlims | Ii]m) ,‘mt(gd’)fms ’ (7)
mym,

with

and &, and (, are respectively Pauli spin and isospin spinors.
The components G and F are solutions of the following set of coupled first order

equations:

(i _Ey ‘iv(")) Fant(r) + [Enst = W(r) = M + Uy(r)] Grone(r) = 0, 8)

dr r dr
d dy
A5 VO ) = (B~ Wt M = Uy(0)] Fa(?) =0 (9)
dr r dr

We solved these coupled Dirac equations in two ways: (1) directly, using the method
of Ref. {11}, and (2) by transforming the two first order equations into a second order
Schrodinger equivalent equation as in Ref. [9]. Both methods gave the same results. We
fixed the parameters of the Woods-Saxon potentials to get the best fit to the single-

particle energies and r.m.s. charge radii; these are:

V, = —-473.5 MeV, R,=39fm, a,=0.61m,
VP =398.5 MeV, R,=391m, a,=0.6fm.

(10)

for 180, and
V, = —-457.2 MeV, R, =3.95fm, a,=0.81m,

V0 =1378.5MeV, R,=395fm, a, =038 m.

(11)

for °Ca. For V,(r) we used the same of Nedjadi and Rook, namely the Coulomb potential
corresponding to a uniformly charged sphere of radius R, = 1.25A'/3 fm. The results for
the single-particle energies, ¢, = E, — M, and r.m.s. charge radii are shown in Table 1
below. The corresponding experimental values shown in column Exp for '®Q are taken
from Ref. [12] and the ones for *°Ca are taken from Ref. [13].

The other model we use for the nuclear structure is the one originally introduced by
Walecka [8], supplemented by the 7#— and p—meson and photon fields. We also include
the tensor couplings of the photon and vector mesons. The Lagrangian density of the

model is given by:



L =49 {‘m [ia“ — guw* — ;{livsr-c’?“w —g,Tp" — e%(l + ra)A"] -(M - 9a¢)} ¥

! 242 1 n 2 1 v
+t 3 (au¢3"¢ —-mé ) + 3 (3,,71'-6‘ T —min. 1r) — XF‘"'F“
1/1
-3 ( G,G" — mz,w,,w") - % (%B,,,, -B* — m:p“-p“)
‘l 1
e 2M Pt (1 )y i zng Fuut (1 — Iy
1 1
- i q“'2M('l“'1’/7 7 l"_fz(]l'z\l Buudyr'i‘) Y 1/'
- (’[pvl\B"“+1r/\(()“11'+_q,,'rr/\p")]1 A+ Lo, (12)

where, b, A%, @, m, w*, and p" are respectively the nucleon, photon, scalar-isoscalar,
pseudoscalar-isovector, vector-isoscalar and vector-isovector meson fields, and F#, G#*,
and B* are the vector field tensors defined in the usual way, '™ = o*AY — g A",
G = 9“V¥ - §“V* B* = d"p” — J"p*. The p” —w mixing Lagrangian density £
can be written as:

Lyo_, = /\w"p?L , (13)

where A = —2m, <w|H|p°>, is the p°-w mixing parameter.

We solve the model in the Hartree-Fock approximation [14]. However, below we
present the Hartree formulae only because the complete expressions with the Fock terins
are too lengthy to be presented in this letter; the complete expressions will be presented
elsewhere. The coupled first order equations for the upper and lower components ' and

G are the same ‘as in Eqs. (8,9), and the potentials W and V are now given by:

1
W(r) = guwolr)+ g,,‘r,;pg(r) + 6—2'(] + 73) Ao(r) , (14)
_ Ky (14 13) Kn (1 ~13) . Ko _ 0.
V(r) = e —ZA/ D) + W 5 Aol )+!]w2M o(r) + !Jp?MTRPr)“) .
(15)

The potentials @o(r), wo(r), pd(r), and Ag(r) are not given external functions, but are
determined self-consistently. They are given by integrals over the nucleon sonrce terins,

which depend on the I and 7 functions. Because of the tensor couplings, the source

)

terms for the vector fields are modified as compared to the usual ones [8]; they are given

by:

wo(r)= — gu /oo dr’ r”A(r, s mu)gc; (21’;:71){ [I Gt (') P + | Fone(r') |2]
e (=2) o G+ )]} (16)
w0 = — o [ artmaeam) S (BN ol [| Gur) P 4 1 P F]
g | 3 ()
and

Ao(r) = — e/oﬂO dr’ v A(r, r';O)g (21‘ ::21){ [l Gt (') P 4 | Fane (') | ] ( )
Rl s odeene)

where A(r,1’,m) is the Green's function

sinh(m;re) exp(—m;rs), (19)

1
A(r,r',m;) = — ,
mrr

with ry (r<) being the greatest (smallest) between r and r'.

The parameters of the model are the masses and the coupling constants. For the
pion parameters we take the ones used in the Bonn potential [15]. The parameters of the
other mesons are usually chosen to adjust the saturation properties of nuclear matter [16].
Although the single-particle levels and r.m.s. charge radii for both **O and *°Ca nuclei
with such a set of parameters come out in reasonable accord with the experimental
values [16], we preferred to readjust the parameters to get the best fit of the spectra
and radii. We used the following set of parameters: g2 = 113.6, g> = 195.2 for '®O and

2 = 115.8, g2 = 201.1 for *°Ca and g? = 16.3 for both nuclei. The final results for the
binding energy differences arc not affected by this readjustment in a significant way. For
the anomalous couplings we used &, = 1.79, k, = —1.91, k, = —0.12, and x, = 3.7.

The results are shown in Table 2. Columns H and HF are respectively the Hartree and

Hartree-Fock results. In both columns the tensor couplings have been neglected. Column
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T presents the Hartree result including the tensor couplings. From this column one sees
that the effect of the tensor couplings on the binding energies is not significant. One
ﬁlsb notices that there is no significant difference between the Hartree and Hartree-Fock
results.

The next step is to evaluate *;. first order perturbation theory the effect of the p° — w
mixing interaction on the binding energy differences. The binding energy difference

between two mirror nuclei can be written as:
AE = Eo(A+p) — Eo(A+n), (20)

where Eg(A £ p) and Ey(A £ n) are respectively the ground-state energies of nuclei with
A nucleons plus (minus) one proton and A nucleons plus (minus) one neutron. We are
interested in the contribution from the p° — w mixing interaction to AE. In first order

this is:

AE,, = <AxplH |ALtp> - <ALn|H |ALtn>

A
+ Y (<ap|H,ulap> — <an|H,,|lan>) | (2n

a=1

where the perturbation H,, is, from Eq. (13), given by
- /d% M, = —A/d-"z L wh(2)pl(z) ¢, (22)

and |A + p> and |A £ n > are the ground state nuclei.
AE,, requires evaluation of two-nucleon matrix elements of the type < én|H,,|én >
where ¢,n=p,n. First, we write the solutions for the w, and p) fields in terms of the

nucleon densities as
W(@)= [y Dotz - ) [0dr o) + g ddwe )] . (23)

8e) = [ Do —9) 50 ko) + 5 b )| (2

where the D%, and D%, are the Green’s functions of respectively the w and p° field

equations.

Neglecting antiparticles, the nucleon field operator can be expanded as:

Y(z) = Y Ua(x)eFo" A, (25)

where A, (Aj.) is the nucleon annihilation (creation) operator, and U,(x) are given in
Eq. (5). Then, substituting Eqs. (23,24) in Eq. (22) and using for the nucleon field

operator the expansion above, we obtain for H,, the following expression:

= 7 / (k) = D7 (k)] e 9
H,.. m2 —mz./d vy (27) “" ) . )]

< Z eilr =t [UG(X) (9..:7 + zmkxg"\u) L(/;(X)]

afvyb

[U.,(y) (_m“ Figtkyo! ) - Ha(y)] AL A (26)

One can perform the integral over over yo and ko to obtain:

Ilt)u = - /\gﬂgw / d’ ./ (2 [[)Aw((ﬁ ((nk) - DIW((” - (""k)]

m2 —-m?

x ek S ()7 Uy (%)] [ty ()7 Usly )]
afvb

+ ;Tt/[}%[(‘" [L( (%)% Up(x HLI (y)o® r,ué(y)]
_ ;1:: 2’7419 % [ua(x g-uu,,(x)] [, (y)0 Tauh(y)]

_ i—"k' [u A ,,(x)] [L?,(y)o""rsué()’)]

ik ) Ua(x)] [y r;,uﬁ(y)]} ALA As A, (27)

The integrations over d*k and the angles of x and y can be done analytically. The
resulting expressions, with all the tensor couplings included, are very lenghty and not
very instructive. For illustrative purposes we present the results with the tensor couplings
dropped ( the numerical results of Table 2 do include their effects). These can be written
in terms of two functions Iagqs(r, ) and Jagqs(r, '), which result from integrals of terms

respectively proportional to [@L@g] [@L(P,;] and [(Df,a"bﬁ] . [‘DLU‘I&;]. They are given by:

Laps(r,1') = 2122(2t+1)( e matie ittt 1 p1) — (.1



((2la + 1)(2s + 1)(20y + 125 + 1]} (1,010 | La1150) (1,010 | L, 1150)

X
% (Ima —mgjoms | Ljpiamo) (Irna — majsms | 153

TS 0 I M ‘a} 29)
g jo o 1 g s 1

and . |
Yy = :—;’2(21 + )= J+‘+‘+m"‘m”+""—]‘9+” is [l(gl(r ) — [OZ,(r,r )]
Ja;316(7',r) - x? il e | |l ) 0)([ o0 l IWHAO)
x [(2la + (21, + 1)(235 + 1)(275 + D} (1,010 | LatigU) ity
. . . -
x (27 + H{jma — mgiaMme | jj[,]{,ma)(] — M + Ml | 7783 )
I, g ! L 6! o
1
«< Y3 3! 3 oz !
Ja s J I js )
where " @) ;000 )! (30)
Tph (A" phr)ht Gpeir’) + EROR AR v U] I
’am(r ') = i
with "

1 .
p(;);-' lm(,')'z—— o -f,;)]’ i=w,p-

= =7 ich has to be done
What remains is a double int.egral over ‘x] = r and |y} = ' whic S
ha p
numerically: -
H = Agoder / dr dr’ E [(’.‘n(r)(,",;(r)I,,,g,,,;(r. )G (r )Gs(r')
w = T3 5

affvé

b G(P)G(P) Lap sl AT NG()
o Fa(r) Far) ] acpslr, )G )G ()
o Ga(r)Fa(rapanslr NG Fol)
G Fa(r) e enslr TV ER (T )Gsl)
 Rr)Ga(r) = s T )G )
b EAP)Ga(r)aposlr TV E () Gs)
b Eur) Pl —aogens(ror VBTV FC )

(32)
AL A As

X Ty 61,.,19 Ty TE

where —a = {n,—«,m,t}.

Table 3 summarizes the results. Columns DME and Skil are the calculations of
the NSA of Sato [17). Column BI are the results of Blunden and Igbal, as rescaled by
Miller [7] to take into account the present value of the mixing. Column NR presents the
results obtained with the Nedjadi-Rook wave functions, and columns H, HF, and T are
the results obtained using the different approximations to the Walecka model (see Table
2). In the Table, only those levels which are bound are presented. We used for the mixing
parameter the value A = —4500 MeV?. The masses and coupling constants of the p and
the w mesons used in calculating A, are the ones of the Bonn potential [15] in the case
of the NR model, whereas for the Walecka model we have used the same values used in
the calculation of the bound-state functions.

Both the Nedjadi-Rook and Walecka models give similar results. One netices two
main features of the relativistic results: (1) they are of the same order, with a tendency
of being on the average larger, than the nonrelativistic results of Blunden and Igbal, and
(2) the p3j, value is larger than the py;; one for A = 15 nucleus, contrary to the Bl result
and to what is required to eliminate the anomaly. This last effect can be due to the
core polarization; the missing nucleon can induce a large deformation of the strong scalar
and vector fields. This is being investigated in the framework of a deformed mean field
approximation in the Walecka model [18].

An important issue that is being discussed in the literature lately is the ofl-shell
variation of the p° — w mixing amplitude [19]. In the calculations in this paper, and in
others involving CSB NN processes [3], one assumes that < p°[1{]w > is weakly momentum
dependent and uses the value extracted at the w pole fram data on ete™ — p,w — 7t~
However, while in the NN processes the exchanged mesons have spacelike momentum,
in the e*e™ processes they have timelike momenturn. All of the studies in Ref. [19]
predicted a significant momentum dependence for < p°|H|w> and a node near or at the
origin (¢> = 0). The implications of this is that the contribution of the mixing for the
CSB component of NN force is very small and its importance to the NSA is significantly

diminished. Although this is still controversial, as discussed by Miller and van Oers in

10



. TN 0 .. . . . } .
3 lecent review {20], th( d"“"“sh"lg 0[ t:he P w mixXing LO!ltHbutlon mig 1t leqllll'(’

CSB effects for explaining the NSA. One class of effects that has received some
1ew effec

y - - k ndensat S 1N
tt tion late\ 1S the one lelated to possﬂ)le changes Of the Uu—, d quar CO €
atten

medium [21].

. . . .
e 1nve: { atio involve 1‘ e |\](] ()' core la ization ef ecls [ 8]‘ Wthh migi
i i i l > the s y ore p() rz l C l l t
Fut“r 1 >S lg 1ons 1n 1

l H t (d f d tro scalar an(l vector mea € d and i ﬁ
€ mlportall m plesenCe o eforined str ng ‘ C n ﬁ l S, he effects

i [ i j i it > - mixing.
Of th hang fquark C “d nsates ill m .(lll"n 21] mn ,(mjun(, L1on Wlth the P w
e C e O (o) ensales e C t h

l P - R 4‘ >
h f d f()rrﬂ d mean ﬁ l V A ple y 1 r nu 1
e use ol a de e (2 (4 d approac ll Wl" a."()W a com l?‘t‘ st ll(l (l' a,“ Inirro cle

and other analog states.

NP
This work was partially supported by CNPq.

References

[1] J.A. Nolen and J.P. Schiffer, Annu. Rev. Nucl. Sci. 19 (1969) 414.

[2] K. Okamoto, Phys. Lett. 11 (1964) 150.

[3] G.A. Miller B.M.K. Nefkens and I. Slaus, Phys. Rep. 194 (1990) 1.

1 i D.H.
4] E M. Henley and G.A. Miller, in: Mesons in nuclei, Vol. 1, eds. M. Rho and

Wilkinson (North»llolland, Amsterdam, 1977).

X 7 59; Phys. Rev. C
5] P Langacker and D.A. Sparrow, Phys. Rev. Lett. 43 (1979) 1559; Phys

4: S.A. Coon and M.D. Scadron, Phys. Rev. € 26 (1982) 562; P.C.
+d §.A. Coon, Nucl. Phys. A 249 (1975) 483.

25 (1982) 119
McNamee, M.D. Scadron -

16} P.G. Blunden and M.J. Igbal, Phys. Lett. B 198 (1987) 4.
7] G.A. Miller, Nucl. Phys. A 518 (1989) 345.
(8] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 (1983) 1.

[9] Y. Nedjadi and J.R. Rook, Nucl. Phys. A 484 (1985) 525.

11

[10] G. Krein, D.P. Menezes and M. Nielsen, Phys. Lett. B 294 (1992) 7.

[11] C.J. Horowitz, D.P. Murdoch, and B.D. Serot, Computational Nuclear Physics 1,
ed. K. Langanke, J.A. Maruhn, S.E. Koonin (Springer Verlag, 1993).

[12] D. Vautherin e D.M. Brink, Phys. Rev. C (1972) 626.

[13] L. Ray e P.E. Hodgson, Phys. Rev. C 20 (1979) 2403.

[14] IL.F. Boersma e R. Malfliet, Phys. Rev. C 49, 1495 (1994).
[15] R. Machleidt, Adv. Nucl. Phys. 19, (1989) 189.

[16] C.J. Horowitz and B.D. Serot, Nucl.Phys. A 368 (1981) 503.
(17] 1. Sato, Nucl.Phys. A 269 (1976) 378.

[18] L.A. Barreiro, W. Kéepf and G. Krein, work in progress.

[19] T. Goldman, J.A. Hendersen and A.W. Thomas, Few Body Systems 12 (1992)
123; G. Krein, A.W. Thomas and A.G. Williams, Phys. Lett. B 317 (1993) 293,
J. Piekarewicz and A.G. Williams, Phys. Rev. C 47 (1993) R2461; T. Hatsuda, E.M.
Henley, Th. Meissner and G. Krein, Phys. Rev. C 49 (1994) 452; K.L. Mitchell, P.C.
Tandy, C.D. Roberts and R.T. Cahill, Phys. Lett. B 335 (1994) 282.

[20] G.A. Miller and W.T.H van Oers, “Charge Independence and Charge Symmetry,”
nucl-th/9409013.

[21] EM. Hlenley and G. Krein, Phys. Rev. Lett. 62 (1989) 2586; K. Saito and A.W.
Thomas, Phys. Lett. B 335 (1994) 17.



Table 1: Single-particle energies (in MeV) and r.m s. charge radii (in fin) for the Nedjadi-

Rook model. The upper (lower) part is for °0 (*Ca).

NR Exp
p n p n B
Isyz |-38.241 -42515| -40.% 8
Ipsa | -18.293 -22211 [ -184  -21.8
Ipiz |-11.408 -15.263 [ -12.1  -15.7
Idajy | -1.030  -4.414 -0.6 417
2512 | 0.000  -3.531 -0.1 -3.27
()Y 2.65 2.60 2.73
151/2 46402 5AAT3 | 48.545.0
1psj2 | -30.655 -38.322 | -36.0+3.0
ipya | -26.501 -34.192 | -31.543.5
Idgy | -iD-81 -22.709 | 160120
28172 |-10.224 -17.268 | -12.0£1.0 -18.1
Ids; | -9.347  -16.505 | -8.5+2.0 -15.6
1f2, | -1.661  -8.279 -14 -8.36
(r9y4? | 3.46 3.39 3.49 —

Table 2: Single-particle energies (in MeV) and rau.s. charge radii (in fm) for the Walecka

model. The upper (lower) part is for '°0 ("°Ca).

B H HF Exp

P n p n p n p n
Isye | -39.251 -43.493 [-39.187 -43.429 [-39.132 -43.553 | -40.48 -
Ipa; |-18.464 -22.379 | -18.433 -22.349 [-18.271 -22.409 | -184  -21.8
Ipiz | 9792 -13.586 | -9.786  -13.570 | -9.543 -13.557 | -12.1  -15.7
Ids;; | -1.127  -4.651 | -1.121  -4.643 | -0.869 -4.621 0.6 41T
(P2 | 2,687  2.658 | 2.691  2.659 | 2.692  2.659 2.73 —
Isij2 | -51.160 -59.535 | -51.076 -59.447 | -50.904 -59.644 | -48.5+5.0
Ipyz | -34.787 -42.791 | -34.637 -42.639 | -34.429 -42.886 | -36.0+3.0
Iprj2 | -28.735 -36.763 | -28.606 -36.738 | -28.309 -36.801 | -31.5+3.5 -
Idgjy | -18.497 -26.125 | -18.366 -26.084 | -18.001 -26.181 [ -16.0£2.0 —
25172 | -9.045 -16.478 | -9.008 -16.344 | -8.760 -16.421 | -12.0+£1.0 -18.1
Idy; | -8.836 -15.957 | -8.705 -15.828 | -8.105 -15.930 | -8.5£2.0 -15.6
1fz2 | -3.169 -10.350 | -3.003 -10.362 | -2.441 -10.374 — -8.36
(P2 345 3.39 3.47 340 | 343 339 3.49 -




Table 3: AE,., (keV)

Required CSB ~w
A State[DME Skl | Bl NR H HF T
15 1p3h | 25C 190 [182 191 208 209 209
lpy;, | 380 290 |227 188 203 204 204
17 1dsj; | 300 190 | 131 168 166 166 166
39 257, | 370 270 |290 220 232 232 232
1d;}, | 540 430 |281 336 335 336 337
41 1fy, | 440 350 | 175 268 260 261 262




