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The superconducting phase is widely believed to be a kind of Bose con-

. o &W and BEC b(‘ SyIlth()SIZed? * densate. Transition temperatnres that are substantially higher than BCS

T, values for a many-fermion system interacting pairwise via the famil-
iar BCS interaction model indeed follow from Bose-Finstein condensation
1 iar
V C. Aglulera-Navarro M. Casas N. J. Davidson® (BEC)) in either a pure gas of “bosonic” Cooper pairs or in a mixture of

S. Fu_]lt8.4, M. G. LOpeZ , M. de Llanos, R. M. (.2111(‘1{3 the latter plus backgronnd fermions when pair-breaking cffects are explic-

A. RngZ 0. R0j06, M. A. SOHS7 and A. A. Valladares® itly allowex. Sll(‘l{ 9[1(‘('!? can arise when th('. pairs either move too [ast or
are thermally excited. Cooper pairs of definite center-of-mass momentum

(CMM) but not definite relative momentnm are “bosonic” even though
they do not obey the usual Bose comnntation relations, since they exhibit
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1. Introduction

The phenomenon of superconductivity has now been observed in all four broad
classes of materials: metals (in 1911. by Onnes), semiconductors (in 1964 [1]),

04510 México, DF - México polymers (in 1975 [2]) and ceramics {in 1986 [3]). A recent, review [4] of some
6 't adémi Russian experinental work in certain polviners even suggests the possibility of
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P . room-temperature supercondnetivity.
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? ’ It seems to be universally believed that, though not. vet proved, supercondite-
"Instituto de Fisica - UNAM tivity is just another example of Bose-EFinstein condensation, as is superfluidity in

liquid helium-4 [5] or less directly in liquid helium-3 {6]. The notion of siupercon-
ductivity as a Bose-Finstein (BE)-like transition of an assembly of bosonic objects
is not new, going bhack at least to Ogg [7] in the forties and to Ginzburg [8] and
to Schafroth [9] in the fifties. The idea has resurfaced [10] more recently with the
discovery (3] of short-coherence-length cuprate superconductors. Auderson |11|
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envisages crystalline electrons (or holes) as pair-clusters of excitations that are
fermionic, chargeless “spinons”and bosonic, charged “holons”-—the latter suscep-
tible [12] to a kind of Bose-Einstein condensation (BEC). Schrieffer and co-workers
[13] deal with a bosonic “spin-bag” which is shared by two holes. Friedberg, Lee
and Ren [14] achieve fits to the cuprate data of Uemura ct al. [15] with a BE-
like condensation in 2 + ¢ dimensions [16] by assuming an effective bosonic pair
mass in the direction perpendicular to the copper-oxide planes approaching the
pronounced uniaxial anisotropy of 10° reported experimentally [17]. e.g.. in T1Ba-
CaCuO. Indeed, the value of ¢ itself can be determined analytically in idecalized
situations [12], and is estimated [18] to be about, 0.03 in cuprate superconductors-—
its small but nonzero value heing a measure of the coupling between copper-oxide
planes. Alexandrov and Mott [19], as well as Ranninger and co-workers [20],
concentrate on a bipolaronic picture and note an amazing similarity bhetween at
least two cuprate superconductors (with T, ~ 92K and 107K) and liquid *He
(Te ~ 2.2K) as regards their empirical specific heat singularities across T,. Fujita
and co-workers [21-24] have generalized the Bardeen-Cooper-Schriefler (BCS) for-
malism to include hole-hole (as well as particle-particle) Cooper pairs, stressing in
addition that either type of pair (called “pairons”) propagate not with a quadratic
but with a linear dispersion relation, and are bosons which may BE-condense in
2D as well as in 3D according to very specific, unique T, formulae which differ
markedly from the familiar BEC T, formula associated with quadratic-dispersion-
relation bosons. The linear dispersion behavior of Cooper pairs was noted at least
as early as 1964 in Schrieffer’s monograph [25] on superconductivity.

Indeed, a BE paradigm in superconductivity is suggested by the recent T, vs
TF or Tgg data extended beyond the cuprates by Uemura et al. [26] to virtnally all
exotic superconductors, whether 1D-like, 2D-like or 3D-like, where T is the Fermi
temperature and the 3D BEC temperature Tgg == 0.2187F if all fermions in the
original fermion gas are imagined paired. The exotic superconducting samples
studied by Uemura et al. [26] have T, values spanning almost three orders of
magnitude and reveal an intriguing universal behavior roughly parallel to but
shifted down from the straight line designating Tgg in the “Uemura plot” of T vs
Tr or T, thus suggesting a BE mechanism somehow implicit in an appropriately
generalized BCS formalism.

Based on earlier work by Eagles [27] and by Leggett [28], Miyake [29] and later
Randeria, Duan and Shieh [30] formulated the 2D many-fermion problem at zero
absolute temperature (T = 0) within a BCS formalism whereby both the gap equa-
tion and the number equation are solved self-consistently [31] but without explicit

reference to the underlying (possibly singular) two-fermion interaction potential
which is replaced by a scattering t-matrix. The latter in turn is then related,
at low-scattering energies, to the s-wave “scattering length”. This self-consistent
formulation leads to the usual BCS theory in the limit of weak coupling, and to an
ideal gas of tightly-bound, well-separated bosons in the opposite, strong-coupling,
limit. The so-called “BCS-Bose crossover” [32] formulation in 2D has been ex-
tended to finite T by van der Marel [33]. as well as by Drechsler and Zwerger
[34] who used an elegant functional integral approach which in lowest-order gives
a Ginzburg-Landau theory. Following Ref. [30}, a generalized coherence length
(or, more precisely, a root-mean-square pair radins) was formulated within the
BCS-Bose crossover picture in 1D, 2D and 3D by Clasas et al. |35], and the 2D
case compared with cuprate superconductor data. ‘Their results suggested that
thesc latter materials, among other 3D-like superconductors, might be moderately
well described, at least in lowest order, as weakly-coupled within the BC'S-Bose
crossover formalism.

The 3D BCS-Bose crossover problem was incisively analyzed by Nozieres and
Schmitt-Rink |36] - -in fact shortly before the 1986 discovery [3| of high-T, cuprate
superconductivity. Its definitive formulation in two transparent papers [37,38| by
Haussmann stressed the vital importance of triple self-consistency (viz., in the
gap, number and single-particle-cnergy equations; cf. also Ref. |39]). Haussmann
employs the Thouless criterion [40] whereby the divergence of the real part of
the temperature-dependent f-matrix evaluated at zero momentum and zero fre-
quency leads to a (mean-field) superfluid transition temperature T, that increases
monotonically and smoothly from the weak-coupling (BCS) to the strong-coupling
{Bose) extrenie, the resulting T, exactly reproducing. at the two limits, respec-
tively, the BCS 1, formula (given in terms of the s-wave scattering length) as
well as the familiar Bose-Einstein condensation temperature formula. Coherence
lengths in 31) at T = 0 have also been calculated [41] over the entire range of
coupling/density within the B('S-Bose picture.

In this paper we derive explicit Ti-formulae for BEC in d (> 0) dimensions
for an ideal gas of identical bosons having a quadratic (Section 2) or a linear
dispersion relation (Section 4); Cooper-pair dispersion relations, wz., binding-
energy vs. center-of-mass-momenta curves are obtained numerically in 2D and in
3D in Section 3 by assuming C'oulomb plus electron-phonon interactions mimicked
via the familiar BCS interaction model; in Section 5 Cooper pairs are clearly
distinguished from familiar elementary excitations such as zero-sound phonons or
plasmons; Section 6 elaborates on the Davydov interpretation of the BCS ground



_ state as an ideal mixture of fermion and boson ideal gases; Section 7 sketches

& four-fluid statistical model of such a mixture that again leads to substantially

higher critical transition temperatures than the BCS theory; and Section 8 gives

conclusions.

2. BEC of quadratic-dispersion-relation bosons in any di-
mension

According to Ref. [16] on an ideal quantum gas of permanent (i.e., number-
conserving) bosons in d dimensions, there exists a non-zero absolute temperature
T, below which a macroscopic occupation emerges for a single (of an infinitely
many) quantum state only if d > 2. (The d = 2 case, in fact, displays the same
[42] smooth, singularity-free temperature-dependent specific heat for either bosons
or fermions.) The Bose-Einstein distribution summed over all states yields the
total number of bosons N g, each of mass m, of which, say N, are in the lowest
state e = hi’k?/2m (= 0 in the thermodynamic limit). Explicitly,

1
N = Npo+ 3 <5 W
k>0

where § = 1/kpT and p < 0 is the chemical potential. For T > T., Npp is
negligible compared with Np; while for T < Ti, Npg is a sizeable fraction of
Np. At precisely T =T, Ngg ~ 0 and p ~ 0, while at T = 0, Ng = Ngg (viz.,
absence of any exclusion principle). To find T,, the sum in (1) can be converted to
an integral over positive k = |k|, wi:cre k is a d-dimensional vector. The volume
Va (R) of a hypersphere of radius R in d > 0 dimensions is given [43] by

792 Re

Va () = T(1+4d/2)

(2)

For d=J, this is just 47 R%/3; for d=2 it is the area 7 R2 of a circle of radius
R; for d=1 it is just the “diameter” 2R of a line of “radius” R; and for d=0 it is
unity. Using (2) for d > 0, the summation in (1) over our d-dimensional vector k
becomes, in the thermodynamic limit,

7 ] () o

k

with the prefactor in square brackets reducing as it should to 2, 27 and 47 for d
= 1, 2 and 3, respectively. Defining the number densily in d dimensions through
ng = NB/Ld, (1) with T = T., Npo =~ 0 and s ~ 0 becomes an elementary
integral easily evaluated in terms of the so-called Bose integrals [43] (with = =
e*/*8T the so-called fugacity)

1 oq .ra—l o . .
9a(2) l,((})[) dlﬁ ZI_" ”z—ﬂ (o), (4

where ((7) is the Riemann zeta function of order a. Solving (1) for 7, then gives

2k n ]Z/d

.. , (5)

mkpy [J(d/2)

This result is formally valid for all d > (). Note, however, that for 0 < d < 2,

T, = 0since (o) = oo for o < 1, the case d - 2 dimensions giving the celebrated

harmonic series (1) = 14 % | 1 | ... which diverges. Clearly, for d 1, the series

C(1/2) = 14 12 I- ]3 I ... diverges even more severely, ete. All this is cousis-

tent with the well-known fact that BEC does not occur for quadratic-dispersion-
relation bosons for d < 2 dimensions. I'or d 3 dimensions (5) becomes

2 h(‘)n'g;‘ 3.31h2n?,/3

o~ 6
771]\’,;'((3/2)'2/;" mkpg )

since ((3/2) ~ 2.612. This is the familiar T.-formula for BEC in 3D, a phe-
nomenon finally observed experimentally [44] in nltra-cold alkali-atom gas clouds
only recently,

3. Cooper-pair dispersion relations

. . . . . 24,9 - 2000 .
Let ferinions with kinetic energics = = I=k%/2m* and =)0 = h7k'=/2m* interact
pairwise via the BOS model intevaction

(7)

. -V if l‘,"'n - TL('” < Fp. AT I’:’.' | fI\L'])
Vi i
0 otherwise

with " > 0 and hwp the maximum energy of a vibrating-ionic-lattice phonon,
where Vi is the double Fourier transforis of the interaction, and m”* the fermion
effective mass.



The total energy (besides the rest masses of the constituents) ET eigenvalue
equation for a (Cooper) pair of fermions interacting via the BCS interaction model
and immersed in a background of N — 2 inert spectator fermions in a spherical
Fermi surface (in k-space) of radius kp is given [45] by

Lo VY26 — (B — R2K24m0)]™! ()
k

where ARK = Fhi(k; + ko) is the center-of-inass momentum of the pair, while
hk =h(k; — ko) is its relative momentum. The prime on the summation sign
denotes the conditions

)

1 ' l 9 9 )
kp<k =kt 5K[ < (kB2 LDV kp<ko= |k - 51{] < (KB 1 ED)E (9)

where thQD/Zm‘ = hwp the Debye energy. Setting Er = 2K, — A, the pair is
bound if Ag > 0 and (8) becomes an eigenvalue equation for the pair (positive)
binding energy Ag. For K = 0 (8) is just

Ep+hwp g(é)d(

Erp 2(.—2Ep { Ao“ (10)

1=V 266 - 2Bp 4 Ag]™' =V
k

from which one iminediately obtains for the K = 0 pair binding energy, ezact
in 2D [as well as in 1D or 3D provided that hwp < Ef so that the density of
(fermionic) states per spin g(¢) ~ g(Er), a constant that can be taken outside
the integral], the familiar result

2hwp .
. b L2/
A() —(’Q/A 1 _/\—-—'l ZIMJ[)L (] l)

where A = g(EF)V is a dimensionless coupling constant. Finite-temperature BC'S
theory, on the other hand, gives the 7. formula

T. - 1.13Qpe™ '/ (12)

where A < 1/2. Since ©p ~ 300K, the critical temperature (12) is at most
about 46K. This has been dubbed the “phonon barrier”. Since actual supercon-
ductors are now known to have T, < 164K, the BCS “phonon barrier” of 46K
has prompted many workers to search for non-phonon mechanisms such as exci-
tons, plasmons, magnons, etc., that can substitute sizably larger values for the

temperature scale ©p in (12), and thus lead to higher T.'s. Note that since (11)

7

yields only Ag < 11K (for A < 1/2 and ©p =~ 300K) compared with the total
rest mass of two electrons which is ~ 10'°K, a Cooper pair is very weakly bound
indeed when compared, say, with the deuteron for which these two energies are,
respectively, about 2 MeV and 2,000 MeV, or with the pi-meson as made up of a
down and an up quark (each assumed to have a mass ~ 350 Mev/c®) where the
two encrgies are respectively 560 McV and 700 MeV..

For K >0 and d - 2, eq. (8) reduces to

AN (/2 11 tr—k2(111)sin2e] /2 —n(1 t 1) 2cosd - " -1

| —/ d«b/ dec)An 1 2(1 1 v)a — 2 1 264"
nJo [1=K2(1 t v)sin2e|' /2y k(11 1)/ 2cosd

(13)

where g(Ep) = L*m* /200 is the 2D density of states; € = k/kp; & = K/2(k} +
Ir?))‘/z; A= Ag/Ep: v =hwp/kp Irf’)/k% “or small K, one obtains from
(13)
200 1 w)2 4 ¥ . .
_ _——— X )
AK Ko A() 7 2] huy K| ((]\ ) (14)

which for weak coupling A — 0 reduces to

2 . y
A —— Ay — ~hopk | O(K?). (15)
K——0 a
A -0

Figure 1 compares the linear approximation (14) to the exact dispersion relation
obtained numerically from (13), for the specified values of A and v. Indeed, the
linear approximation is very good for moderately small A and v over the entire
range of K values for which Ag > 0.

Ford - 3, assuming v < 1 and the 3D density of states g(Kp) (L7 /n "’h“)\/m"’E‘p/Z

eq. (8) becomes

w2
1 2/\/ dosing
0

(1 b=k 2(11 v)sin2a| /2 —k(11 v) Y/ 2cosd

11=#2(1 tv)ain20] /2 0 () 1) 2cosp

. (16)
which for small K, using the weak-coupling expression Ay =~ 2ve™% gives
A A " V1= ve 224> | ve=?* 1 1)
. — e
ko 70 cy(InA + mB) t vin(AB) + 222V 1 = ve—2/>
1 . 0
hupK + O(K* 17
@1 1-Virw F (K5 (7
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where A= AR = Y1ive ™ o ip=1tVlve? pory <1, A —0and
o VIFv + V1 - ve-22 1=y 1-ve-2/2
- K — 0 eq. (17) reduces to the result cited without proof in [25], namely

1 - -2
AK @' Ao - Eh‘UFK + O(IX ) (18)

Results in 3D are qualitatively similar to those in 2D illustrated in Fig. 1.
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Figure 1: Exact 2D Cooper-pair dispersion relation calculated numerically from (13)
for A = 0.5 and 1 = 10~2, compared with its linear approximation (14).

4. BEC of linear-dispersion-relation bosons in any dimen-
sion

Fujita and co-workers [24] (cf. Ref. [43], p. 211) have shown that BEC is possible
in 2D for bosons with a linear, instead of the usual quadratic, dispersion relation.
Photons and phonons are examples of such bosons but, however, are non-number-
conserving. Cooper pairs do not obey the standard Bose commutation relations
and being characterized by definite kjand k; have occupation number 0 or 1,
which is the same occupation number for fermions. Following Ref. [21], we shall
refer to a pairon as a Cooper pair of definite CMM K only, but we distinguish

it from an ordinary Cooper pair of definite K and k. Pairons do not obey BE
commutation relations either, but do obey the BI; distribution and are hence
considered as “quasi-bosons”. A detailed proof of this is found in |21], chapter
9, but is also clear from the following. If ng is the occupation number, 0 or 1,
of a fermion in state k;, the occupation number for a singlet C'ooper pair will
be ny, 1Nk, and continues to be 0 or 1. Alternately. a given singlet pair can be
characterized by k and K.defined below (8). instead of by k; and ko, in which
case the occupation number is say. Mg 0 or 1. Finally. the occupation mmmber
of a pairon with specific CMA K is then Ngg =Y, Ny - 0.1.2, ., QLD.

A Cooper pair is thus a pair of fermions bound just outside the momentum-
space Fermi surface enclosing N — 2 background, inert, spectator fermions of the
N-fermion system. It has partuer wave vectors k; and kg which may or may not
add up to a zero center-of-mass wave number K = k; { ko. From (15) and (18),
a pairon has an cxcitation energy which is lnear [25] in K for small K (long
wavelength limit), namely,

en = Ay - Ay R %l)phl\, (19)
which is valid provided the coupling is small. where Ay is the (positive) binding
energy of a Cooper pair with net center-of-mass momentum hiv, and vp is the
Fermi velocity defined by Fp = h"‘k';i-/‘Zm‘ - ém‘v,z,,

Although it has been traditionally argued. correct ly, in the literature sinee 1957
that I{' = 0 Cooper pairs arc overwhelmingly more tightly bound that A > 0 pairs
which are ignored in the BCS theory. Fujita and co-workers (24| conjecture that
it is precisely the latter pairs that pre-exist at T > T, aud that drive BEC at
T Te. Indeed, the number of Clooper pairs witlt aspecific K 2> 0 is proportional
to a number which is somewhat less than (because of finite-lemperat ure smearing
effects at the Fernii surface) the overlap volume in k-space swept out by all possible
vectors k; and kg joined head-to-tail as in Figure 2, with both head and tail within
the energy-shell hwp. to give a specific CMM K. This latter overlap volume V¢
is just

Vi = Jd%O(K/2 | k| ~ kp)B(IK/2 - k| — kp)

o 0 o B 20
05+ kD — K/2 1 KDO(K/2 - k| - g 1 k) V)

The integral is exact, though tedious [46], and comprises four distinct regions

in the interval 0 < K < 2,/k% | k},. sce below. For I 0 it becomes the volume
of the spherical shell, namely
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Vo= (dn/3)k2[(1 1 ) — 1] (21)

The fractional number of pairons with a specific value of A", to those with
K =0, will then be somewhat less than

=:—M3i—[l (Lhw)™? ¢k
[(14v)2-1]

—(3/2)k(2 + v)/(1 + v)] if 0<a<(1=1/V11v)/2

Sk

If

m—][—l* ‘-‘/16 ”/ KV1+V

FE/2)VTHr — (1/2)(1 b n)dd] i VT < k< (L1 1/VTT)/2

#‘L)”f—[ —(3/2)x 1 (1/2)x?) i (11T )2 <k<l
1+v,
(22)
where « and v are defined just before (14). Finally, it is clear from Fig. 2 that

Vk/Vo=0if x> 1 (23)

These upper bounds are exhibited in Figs. 3 and 4 for diflcrent. values of
v including the value of v = 3060 appropriate for the low-carrier concentration
(=~ 10%c¢m~?) superconducting semiconductor SrT'i03 doped with Zr [18]. For
v = oo the problem reduces to that of the overlap volume of two solid spheres
[49| p. 28, namely Vg /o =1 — -K + 2x" to which the last expression of (22)
reduces when v >> 1. In general, nole the (small but nonzero) fraction of K > 0
pairons to K = 0 Cooper pairs, particularly for small v. Nonetheless, the premise
of Refs.[22-24] is that, without abandoning the phonon mechanism modeled by (7),
superconductivity is really a BEC in either 2D or 3D, of excited (K > 0) pairons
pre-existing above Tc. At T = 0 all pairous are at rest (K 0), while a mixture
of both kinds (K = 0 and K > 0) is present for 0 < 7' < 1, a K =0 pairon
being an ordinary Cooper pair. For d dimensions we have the general “excitation

energy”
Ex = A() - AK H’ a(d)vphh' (24)

11
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Figure 2: Cross section of overlap volume (cross-hatched) giving an upper bound as ex-
plained in text to the number of Cooper pairs with a definite center-of-mass momentum
RK, if the pair partners interact via the BCS model interaction (7).

where [21] a(1) 1, a(2)  2/# and a(3) 1/2. Using (24) instcad of g, -
1%k*/2m in (1) and performing the infegral implied by (3) gives 147] (for Ny ~ 0,
ju = 0) the weak-coupling Te-formula in d space dimensions

1/d
- a(d)vph | = “Fng / (25)
‘ ko [P(E)() '

Since ¢(2) - 12/6 ~ 164493 and (3) ~ 1 20206. this veduces to the T, formulae
of Refs. [22,23], for 2D and 3D respectively, namely 7. l.244hk§'umz;,/2 in
2D and T¢ - 1.0()8’1k”(7p‘”1’/:‘ in 3D |note that the coeflicient 1.244 in 2D should
replace the coeflicient 0.977 of Ref. |22] since a(2) equals 2/a in 2D instead of the
1/2 mistakeuly assumed there|. Note from (25) that 7. > G ford > 1, a result that
might conceivably be relevant in understanding quasi- 11 organic superconductors
|50]. Organic superconductors comprise (1 +¢)D materials such as the Bechgaard
salts, (24 ¢)D materials like the ET salts and fully-3D materials such as the alkali-
and alkaline-earth-doped fullerene crystals called “fulleride” superconductors [51].
The (1+¢€)D and (2+¢)D compounds consist of coupled parallel chains and planes,
respectively, of atoms.
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Figure 3: Overlap volume (20) to (22) of two spherical shells of Fig. 2 as function of K,
relative to volume when K = 0, for varions values of v = Op/Tr = k}/kE 1 v = 10-3
applies to conventional superconductors, 0.03 < v < 0.07 to cuprates; v = 3060 to
Zr-doped SrTiOj3 [46]; and the limit v ~ oo refers to overlap volume of two solid spheres
[49], p. 28.
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Figure 4: Same as Fig. 3 but on a semilog plot.
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Figure 5: Full curve refers to BEC iu d-dimensions according to (5). while dashed curve
refers to BEC according to (25) il a(d) 1 is used, for Op/Ty: 107 and np/n -
dv/A.m  2m* as explained in text. The dot at d 7 refers to (5) with ng/n 1/2
and m  2m*, namely o/l fermions paired. Light and dark crosshatchings comprise
Uemura plot [26] data for ezotic and conventional superconductors, respectively. The
thin horizontal line marked BCS “phonon barrier” corresponds to liq. (12) with A < 1/2,
namely T./Tp < (1.13e=2)0p /T ~ 0.1530 /T for the case O /T 1077

‘The large dot in Fig. 5 on the d=3 ordinate denotes the previously mentioned
BLC value of T, in units of T, for a 3-dimensional fermion gas in which we imag-
ine all the fermions paired into quadratic-dispersion-relation bhosons, i.e., (6) with
np - n/2andm - 2m” withn - k‘;j-/Jin"’ the 3D fermion-number density. In d-
dimension, using (3) for the number of fermions N 237, 0 (kg — k) one obtains
n - k%/?"‘gn"/gdl‘ (d/2). On the other hand. the number of bosons N g () ac-
tually formed under interaction (7) is g(Ip)hwp., where g(c) = (L /21 )d"k /de
(m? 20 h2)A2 1,421 1 17(d72) “Thus. instead of the maximum possible np/n
1/2 used before. one really has only np/n dhop/dlp = du/4 <« 1/2, which
allows rewriting (25) as

T U b
ﬁ - 2a(d) [ZI‘ (d)m] (pure pairon gas). (26)

If the pairons are breakable. i.e.. A < O forall K > Koy Apa(d)higit is casy
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to show from (1) and (24) that for d > 1

T. d e\ !
ﬂ ~ va(d)®(d — 1) (—U— > (27)

This is expected since for vanishingly small coupling, Ky, also vanishes so that all
the pairos are K = 0 bosons and the system remains BE-condensed at all finite
T. We have plotted (5) in units of T and (26) [assuming a(d) = 1] vs. d in Fig.
5 for the special case A = 1/2 and v = 0.05. This value of v is intermediate to the
range 0.03 < v < 0.07 appropriate for cuprates.

Finally, the average separation Ry ~ n,;l/ ? between pairon centers relative to
that between fermions in the normal state g ~ n~!/4, is

B — (n/np)!" = (4Tp/dOp)!* = (4/dv) "
~6  (in 2D with v = 0.05) (28)
~37 (in 3D with v - 107?)

where ng/n = dOp/4Tr was used. Since Coulomb repulsions between electrons
(or holes) are screened to zero beyond distances of order 1 A, whicl is of order
g, tnteractions between pairons of charge 2e are negligible.

5. Zero-sound phonons, plasmons and pairons contrasted

Pairons are entities distinct from zero-sound phonons or plasmons since the for-
mer: a) are bounded in number, and b) carry mass (2m* — Ag/c?) and fixed charge
(2e), while phonons or plasmons do not share either property.

Fig.6 compares and contrasts them in the longwavelength limit (K — 0). The
dashed quadratic curve is the plasmon dispersion relation [49], p. 180,

g n
Wy - 'u)p[l } 1—0(1\-/1\-7‘14‘)" | l (2‘))

in the “ring (RPA) approximation” valid for r, = ro/ao = (£np)~'3/(h*/me?) <<
1, where ro is an average electron spacing, np = lc%-/lh2 being the electron
number-density, ag the first Bohr radius h?/me2 with m the electron mass, while

the plasmon frequency is wp = (/47nnpe?/m and the “Thomas-Fermi inverse
screening length” is Kpp = /6nnpe?/Ep with Ep = hzkﬁ-/2m as before. The
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dot-dashed curve is the weak-coupling zero-sound phonon dispersion curve for
repulsive interactions between fermions at 7' - 0, and is given by [49] p.183,

WK ~ I] i 2(,—(27r2h2/11xkpu(o) + '_f')lul"[\. (10)

for 1(0) << h%/mkg. where 1v(q) = [dre~™TV(r) and V(r) the (repulsive)
interparticle interaction potential. The slope of this straight line rises as coupling
is increased, and assumnes the form

wie ~ |w(0)/30*(R* fnkp) | For K (31)
for #(0) >> h?/mkp. Note that (31) can he rewritten as

wh —72(—0)—— vpk? (32)

and becomes the plasmon frequency squared wp if v(K') is taken as the Fourier
integral of the Coulomb interaction, 44 02/1{2.

On the other hand, for attractive interactions 17 < ) between the fermions one
has the so-called “Anderson mode” |52].

© e . .
wie = [1 = Ag(ER)|Vl|vehs (33)

in the weak-coupling limit, which is shown as the dotted curve in Fig. 6. Finally,
the weak-coupling Cooper pair dispersion relation (19) is represented by the full
curve. In 2D), the Anderson mode (33) carries [53] a factor 71:; instead of the
715 of 3D; it thus also lies higher than the pairon dispersion relation (15) since
1/v2 > 2/x. '

Using the computer-algebra packages MATHEMATICA and MAPLE, we have
verified that the A2 term in both 2D (15) and 31) (18) diverges in the weak
coupling limit; curiously, this behavior also occurs for the plasmon, since the
quadratic term in (29) can be written as K 2/2Mp in terms of a “plasmon mass”
Mp. This mass

7!13/2f"

Mp ~ hl\'%,,'/u},, ~ W — 0 (34)
¥

e—0

so that it also vanishes in the weak-coupling (e — 0) limit.
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Figure 6: Dispersion curves for: the plasmon (29) (dashed); the weak-coupling (repul-
sive interaction) zero-sound phonon (30) (dot-dashed); the weak-coupling (attractive
interaction) Anderson mode (33) (dotted); and the weak-coupling 3D pairon (19) (full
curve).

6. BCS ground state a la Davydov

A surprising property of the BCS theory of the ground (T = 0) state of a many-
fermion system interacting via the model potential (7) is that the energy shift of
the superfluid state Es with respect to the normal state Ey is, for any coupling
strength, just the total energy of an ideal gas of point bosonic Cooper pairs. This
astounding conclusion had not been adequately stressed, to our knowledge, before
Davydov [54] (see also Ref. [23] as well as Refs. [30]). It follows directly from the
well-known result [55] for the energy shift between the superconducting (S) and
normal (N) total many-body energies

hwp 122+ A?
Es— En = 2%(E f de le - 2210 ) 35
s N g( F)O FI:F Zm (’)

where g(Er) is defined as in (11). The BCS gap energy is A = fwp/sinh[1/g(EF)V’),
but is distinct from the binding energy (11), both being valid for any coupling.
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As with Eq. (11), in arriving at (35) only hwp < Ep has been assuned--notl
weak coupling. Recall, however, that in 2I) the assumption hwj < Ep is super-
fluous, since then g(EF) is a constant independent of Ep. The integral (35) can
be performed exactly |55], and gives

Fo—In  qUl)(hap)? [I - \/: (A/hw,;)g] (36)

= |gt¥ | ‘T,}Z;-'—Th (37)
“Npol0)Bp — =~ 39(Ep)A% (3%)

wlhere A was eliminated in the second step, where g(Ep)hwp is precisely the k' 0
pairon number density Ngo(0) at T 0. provided hwpy < I and use was made
of (11) in the last equalily. lronically, (36) and (37) are found in Ref. [55]. but
nol the all-important, remarkably simple, and far-reaching equality (38) implyving
that the BCS ground state corresponds precisely to an ideal gas of composite
bosons embedded in an ideal gas of unpaired fermions. for all coupling. The final
expression in (38) is the well-known and familiar weak-coupling [A = g(Fp)V < 1]
result, where A is again the BC'S gap energy. Note the crucial difference bet ween A
and Ag (which in weak coupling reduce to 2fiwpe~Y* and 2hwpe=*2 respectively)
that was required to arrive at (38), and that is rather frequently neglected in the
original and in the textbook literature on the subject. This striking conclusion
about the ideal pairon-fermion gas mixture is not fully self-consistent since even at
T == 0 BCS predicts a smeared rather than sharp Fermi surface; however, it fullt
agrees with a self-consistent result [30] in 2D for any interaction describable by
an s-wave scattering lenght. This ideal pairon-fermion gas picture supplements
the more conunon interprefation of the BCS excited states as an ideal pas of
fermionic (“bogolon™) excitations- a picture. however, valid onlv in the limit
of weak coupling. Note that weak coupling A = g(F.)V <« 1 is distinet and
unrelated to the limit. iwp < F .

Besides striking, the conelusion that the BC'S ground-state is an ideal (i.c. -
teractionless) gas of point pairons embedded in an ideal gas of (unpaired) fermions
al all couplings, is remarkable because it holds regardless of how severely the ex-
tended pairs actually overlap. At weak coupling pairs will individually be huge
and overlap considerably; for strong coupling pairs are small and well separated.
Within the BCS-Bose crossover picture [32] these two extremes are respectively
known as the BCS and Bose (or BE) limits.
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In essence, therefore, BCS theory is an elegant generalization to two particles
of the Hartree-Fock (one-particle) theory of a many-particle system, both being
fundamentally “mean-field” theories.

7. Four-fluid statistical model in 2D

In this section we investigate a statistical model [56] of fermion pairing in two
dimensions partly motivated by the Davydov interpretation of the BCS ground
state just discussed. This is not a true many-body calculation but nevertheless
contains some interesting physics.

The total number of fermions N = L2k%/2n equals the number of unpaired
fermions Ny, plus the number of pairable ones Ny, where Ny = 2g(Ep)hwp. At
finite temperature let Noo(T') be the number of pairable but (because of thermal
and momentum-K pair-breaking) unpaired fermions; this is given by

u+hwp dEy(F) o
Noo(T ,:2/ _de9te) s k1), "
20(T) it P 41 ¢! (kpT) (39)

if pg is the fermion chemical potential of the unpaired but pairable fermions. Since
g(¢) is a constant, the integral is exact so that

. 29(EF) 1 4+ e~ Alu—p2—huwp)
Nao(T) = 3 In 1 4 e Alu—p2thup | (40)
The relevant number equation is then
Ng = Noo(T) + 2|Npo(T) + Ny seso(T)] (1)

where Npo(T) is the number of pairons with K = 0 al temperature T', while
Np,k>o(T) the number with K > 0. The latter in turn is just

Ko . "o
Npkso(T) = Zleﬂ(euu(ﬂnm] _ 1l~l (42)
K>0
where
egk(T)=2u— Ak (43)

is the (thermal) average total energy of a pairon, analogous to the T = 0 equation
Er = 2Ep — Ak introduced just below (9). The cutoff Ky in (42) is defined as
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Ak, = 0 and is illustrated in Fig. 1. Using (15) and (19), one can define an
excitation energy ey = Ay — Ay =~ %hvpK allowing one to identify ex — up,
where g is the bosonic chemical potential, with the factor multiplying § in (42),
namely eg (T') — 2p2 = ek — g = Do — Ak — g so that (43) leads to

rp 2(pa = p) 1 Do (44)

The BEC transition temperature T, is then given by up ~ 0 where from (44)
jt — po in (40) is just Ay/2. Hence (41) leads to the equation

No - Noo(T:) 1 2Ng k>o(To), (45)
The last quantity in (45) then hecomes

13 /K(l) dK K
[}]

D] cPehvpK

Npk-o(Te) (46)
where Ko; = n1g/2hvp in the linear approximation (15) since Ay, = 0, and
Bc = 1/kgT,. Since for weak coupling Ay =~ 2hwpe%/* vanishes, so does Ky,
allowing the exponential under the integral sign to be expanded to first. order,

leaving

L2 DAgm™ T,
S (47)
A—0 16R° T
Note that for quadratic-dispersion-relation bosons one has k¢ instead of A in the
exponential, making the integral in (46) diverge in the lower limit so that T, = 0
as expected in 2D. Since Ny = 2g(Er)hwp, (41) with g — po = Ag/2 in the
logarithm in (40) expanded in powers of Ag, gives the T, transcendental equation

Npk>o(Te)

Depr
n=T,

tanh (O/21;) = oo~ (48)
00— F

or, assuming 6 /21, < 1,

1, N OpTr — .. (49)
the correction term left out tending to reduce T..
Again using ng/n = dOp/4Tr = dv/4 for d=2, (49) becomes

Te 2 /npg
e 2 (B boson-fermi '
T =7V n (boson-feriion gas) (50)
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“ where the bosons are now “breakable” [i.e., the integral (46) is cut off at Koy, =

* 7Ao/2Rvg] in contrast to the “unbreakable” bosons in the pure boson gas result

" (25) following from the integral (4) in (1) which extends over all K > 0. For this
latter model, (25) for d = 2, a(2) = 2/7 and np/n = v/2 gives

T 2v6\ 2
=€~ (i) -—’/n—B (pure unbreakable-boson gas) (51)
n

Tr m n

Thus, even though T,/ Tr diverges according to (27) for a pure boson gas of break-
able pairons, embedding it in a gas of unpaired fermions “tames” this infinite
T./TF down to the finite result (50). Figure 7 compares 7./TF from (48) (ekact)
and (49) (approximate) for the boson-fermion four-fluid mnodel, with (25) for the
pure unbreakable-boson gas [21], for 2D. The shaded rectangle includes the Ue-
mura et al. [15] cuprate data for the empirical range of v = ©p/Tr values given
in Ref. [57). Since in (51) 2v/6/ =~ 1.56, (50) is about 36% lower; this lowering
ts due to the presence of unpaired background fermions plus the fact that pairons
break up for K > K,.

0.16 — Ty v ——

0.12

0.04

M Sy N U S S

ol +
10 10? 10!

©p/ Ty

Figure 7: Scaled critical temperatures in 2D BEC for the four-fluid model (48), exact,
and (49) approximate, and for the pure unbreakable boson gas model (51), as function
of v =0p/Tp.

A factor a further reducing T, can be introduced and called a “pairon-formation
suppression factor” (with respect to the ideal spherical, or circular, Fermni surface),
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and has three possible origins: i) elemental superconductors have partially hyper-
boloid Fermi surfaces where clectron-electron or hole-lole |22, 23| pairons are
formed via acoustic phonons. Since these surfaces are only small parts of the
total Fermi surface, « is expected to be quite small;. ii) pairons (either positively-
or unegatively-charged) are formed in equal numbers from the physical vacuum,
meaniug that the density of states for the non-predominant. {22, 23| fermions, e.g.
“holes” in Ph, is the relevant density-of-states entering in (11). thus making
even smaller; iii) “necks” in the Fermi surface are more favorable for pairon for-
mation than “inverted double caps™ since the densitv-of-states is larger around a
“neck”. This feature appears to explain why face-centered-cubie P has a higher
T. than face-centered-cubic Al. For these and possibly other reasons the pairon
density ng in actual superconductors is smaller than that associated with a spher-
ical Fermi surface. On the other hand. if the l'ermi surface is spherical or even
ellipsoidal but in the first Brillouin zone as in Na, K or other alkali nietals, then
a = 0 exactly; this agrees with the observed fact that alkali metals remain nor-
mal down to absolute zero temperature. If a metal lernii surface is known to
contain “necks” and “inverted double caps” (as in AL Ph. Be, W ete.) such a
nietal has a {inite, nonzero a and hence 7, > 0. An accurate determination of «
for a specific substance might conceivably be based on low temperature specific
heat comparisons with ideal Fermi gas values corresponding to spherical Fermi
surfaces.

8. Conclusions

Bose-Einstein condensation (BEC) T.-formulae for any positive space dimension-
ality d > () are readilv derived for a pure gas of bosons with either a quadratic
or linear dispersion relation. For the former one recovers the well-known result
that T. > 0 only for d > 2. On the other hand, for the latter 7. > 0 for d > 1.
This signilicant. difference has a profound impact in the theory of superconduc-
tivity. 'The reason is simply that standard BCS theory can be generalized to
inclide nonzero-center-of-mass momentum Cooper pairs. Cooper pairs with defi-
uite CMM but not. definite relative momentum are called pairons and move with
a linear encrgy-momentum dispersion relation. ‘They undergo BEC not onlyv in
2D but also for anv dimension greater than unity. As a result, robustly enhanced
T. values are possible with linear (but not quadratic) dispersion-relation bosons,
and the BCS “phonon barrier” of T, < 46K can be "broken™ without discarding
phonon-mediated interactions and without assuming strong coupling.
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Not entirely new but scarcely mentioned or understood in the literature is the
fact that the BCS ground state describes an ideal gas of bosonic Cooper pairs for
all values of the BCS interaction model coupling. This picture motivates a simple
four-fluid mixture statistical model in 2D which continues to give enhanced T,
values even in weak coupling.
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