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Abstract 

Systems containing simultaneously hadrons and their constituents are most 
easily described by treating composite hadron field operators on the same 
kinematical footing as the constituent ones. Introduction of a unitary trans­
formation allows redescription of hadrons by elementary-particle field o~ 

erators. Transformation of the microscopic Hamiltonian leads to effective 
Hamiltonians describing all possible processes involving hadrons and their 
constituents. 
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1. Introduction. The quark-gluon description of the interactions among Itadrons and 
the properties of high temperature and/or hadronic matter is one of the most central prob­
lems of contemporary nuclear physics. Such problems are characterized by processes that 
involve the simultaneous presence of hadrons and their constituents. The mathematical de­
scription of these processes requires approximations where a drastic reduction of the degrees 
of freedom is unavoidable. In this sense, one would expect simplifications by describing 
the hadrons participating in the processes in terms of macroscopic hadron field operators, 
instead of the microscopic constituent ones. The problem with such a description is the 
noncanonical nature of the composite hadron field operators which complicates the use of 
the traditional field theoretical methods. Of course, the problem can be formulated in terms 
of constituent field operators only, but then one would have to deal with other difficulties 
such as singularities in certain Green's functions of the system which reflect til<' presence of 
bound states. 

In this Letter we present a generalization to hadronic physics of a field theoretical for­
malism developed in atomic physics for problems where atoms, electrons and nuclei are 
simultaneously present in the system [1]- [2]. This formalism is based on a change of rep­
resentation by means of a unitary transformation in which composites are redescribed by 
elementary-hadron field operators. In the new representation all field operators are canonical 
and the traditional methods of quantum field theory can be employed. 

The original atomic physics formalism, useful for problems with a fixed numhf'r of par­
ticles, is generalized for hadron states with an indefinite number of constituents. This is 
important for the implementation of the formalism to models where creation and annihila­
tion of quarks and gluons play an important role and, therefore, processes such as (Teation 
and annihilation of mesons and baryons are naturally takpn into account.. 

2. Formalism. One starts with the Fock space (.1") representation of the system. Let 
Al be the creation operator of a single hadron state, 10 >= A~ 10>, where 10> is the vacu urn 
state: 

~ ( , , ,)_1/2if.l'l ...llnqlJl ... lJn4/T1 ...O'ng t t -t -t t tAt 00	 

(1)o = ~ nq.Hq.ng • 'l"o qIJI ... ql'nq q"1 ... q""q9ul ... 9"ng' 
nqn 4n g 

o represents the set of all quantum numbers (spatial and internal) of the hadron and Jl, 
... are the quantum numbers of the constituents. For tht> vacuum state one has q/lIO >= 
91110 >= 90'10 >= O. ~ is the amplitude of the Fock component with n q quarks, n q antiquarks 
and ng gluonsj it is taken orthonormalized and antisyIllJl1etric (symmetric) in the quark and 
antiquark (gluon) indices. An Einstein-like summation convpntion over repeated indices is 
used. 

While the quark and gluon creation and annihilation opt>rators satisfy canonical 
(anti)commutation relations, the hadron operators satisfy: 

A:>·A~, = &00' +Coo" A.. · A:>, = A!, . A~, = 0,	 (2) 

where the dot products denote graded Lie brackets (commutators or anticonllIlutators) [3]. 
The presence of Goal reflects the internal structure of the hadrons and is responsible for 
effects such as quark-gluon exchange in hadronic collisions. In general, it can be decOIuposed 
as follows: 
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Coal = C~a/ +C;a/ +C;;a/ , (3) 

where the components on the right are defined implicitly by the following symmetry and 
vacuum annihilation properties: 

(C~a/)t = C~/a, (C;a/)t = C;;/a' (C;;a/)t = C:'a 

C~a./O >= C;a./O >= 0, C;O" 0># O. (4) 

The symmetry and vacuum properties follow respectively from the behavior of the graded 
Lie bracket under hermitian conjugation and from the fact that different Fock components 
have different number of particles. 

We adjoin to the Fock space :F the "ideal hadron space" 1-£ with extra degrees of freedom 
described by "ideal hadron" operators aa and a! satisfying canonical (anti)commutation 
relations: 

aa . a~, = aaa" aa' ao/ = a! . a~, = O. (5) 

These operators (anti)commute with the quark and gluon operators. Next, we define the 
graded direct product of:F and 1-£: :F x 1-£ == I [4]. We introduce a new vacuum 10) which is 
the direct product of the vacua of:F and 1-£, and a constraint on allowed physical states It!' >, 
aallP >= 0, which guarantees that allowed states (those satisfying the constraint) constitute 
a subspace isomorphic to the original Fock space. 

Physical content is then ascribed to the new degrees of freedom by carrying out a unitary 
transformation U which transforms the single qnark-gluon states /a >= A!IO > into single 
elementary-particle states 10') = a!IO): 

10' >= Ula), 10) = V-lla>= Utl a > . (6) 

Fock space matrix elements of any observable a between states Ill' > and It!" > are equal to 
those of the transformed observable U- l au between the transformed states It!') and It!"). 
Defining U-laaU = Da, then the transformed constraint equation in the new representation 
is Da llP) = O. Although states It!') satisfying this constraint describe the same physics as the 
corresponding states It!' >, their mathematical representation is more convenient because in 
111') all bound quark-gluon composites are described in terms of canonical operators al, and 
the qt, ij~ and gZ describe free particles only. 

By analogy with prior work [1]- [5], the expression for the unitary operator U is of the 
form 

U= exp (iF). (7) 

F is a normally-ordered series of products of quark, antiquark, gluon and ideal hadron 
operators: 

F = B!aa - a!Ba, (8) 

where the Bo are canonical operators: 

Bo . B1, = aaal , Bo ' Bal = B1 . B1, = o. (9) 
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Ba is constructed by an iterative procedure as a power series in the Fock amplitudes ~ by 
enforcing Eq. (9) order by order. The Ba operator derived in the original atomic physics 
formalism [5] cannot be simply transcribed to the present case. Technically, this is because 
the Caa' in Eq. (2) does not annihilate the vacuum, a feature that was originally the keyele­
ment for transforming real states into ideal ones. Physically this is a consequence of the fact 
that different Fock components of an hadron state have different numbers of constituents. 
The crucial observation is that the different parts of Caa/' Eq. (3), have to be combined 
in an appropriate way. It turns out that [6] Ba , up to third order in ~ (the highest order 
required for our purposes here), is given by: 

Ba = Aa + (cta/ + ~C~a/) Aa, +(_I)NN' A~, [Aa . (C;/a// + ~C~'a//)] Aa". (10) 

The construction of such a term encompasses the required generalization for operators as in 
Eq. (1). . 

Although the physical interpretation of the Ba operator is not very transparent, the fact 
it satisfies Eq. (9) leads to the interpretation of U as a rotation of 1r /2 in the space spanned by 
the operators aa and Ba. An important consequence of this is that the effective Hamiltonians 
in the new representation are free of the post-prior discrepancy (i.e. lack of symmetry under 
exchange of initial and final states) [7]. This discrepancy usually plagues composite-particles 
formalisms and might have catastrophic consequences for scattering amplitudes. Another 
important feature is that Da does not contain aa or a! and has at least one annihilation 
operator on the right [6]. Therefore, the state in which the constituents are confined in 
single hadrons has the simple form: 

00 

"b) = L L "'n(al, ... , an) a!1 ... a!JO). (II) 
n=Oal ..·an 

Note that laJ ... an) = at ... a!JO) is not in general simply the transform of 10 1 .•• an >= 
A!, ... At 10) since a! differs from U- lA!U by terms representing complica.ted effects of 
quarks and gluons. 

In a variety of applications using field theoretical many-body techniques one will be 
interested in the Hamiltonian in the new representation. Application of the transformation 
on the microscopic Hamiltonian leads to an effective Hamiltonian of the genera.l form: 

l
U- HU = lIijqg + H a + H aijqg . (12) 

The subscripts identify the type of operators upon which the Hamiltonians depend on. One 
distinctive feature of H~qg is that it cannot form the single hadron bound-states which are 
mapped into ideal hadrons; it describes scattering processes only. This is similar to the 
"quasi-particle" formalism of Weinberg [8], in which bound-states are redescribed by quasi­
particles and their effects are subtracted from the original microscopic interaction such 
that the convergence of the Born series is improved. Ha describes baryon-baryon, meson­
meson, and baryon-meson interactions and H aijqg describes processes such as hadron-quark 
scatterings and hadron breakup and quark-gluon recombination into hadrons. 

3. Effective Baryon Hamiltonian. With the purpose of demonstrating and exempli­
fying in a transparent way the characteristics of the transformed Hamiltonian, we discuss 
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baryons in a simple quark model. We consider a general class of models in which baryons are 
three-quark bound states, the quarks interact by two-body forces, and neglect antiquarks 
and gluons. Most of the calculations of baryon-baryon interactions using quark models [9)­
[11 J, have been performed with such models. The microscopic quark Hamiltonian can be 
written as: 

t 1 (. )ttH = T(Jl )qjJ qjJ +2~q JlV, up qjJqllqpqu, (13) 

where T is the kinetic energy and ~q is the quark-quark interaction. The baryon creation 
operator is given by Eq. (1), with nq =3 and nq = n.'1 =O. For this case the C± =0 and: 

= _3i1'."IJI1'21J3i1'.IJI1'21J~qt Q + ~iI'..I'\IJ21'3i1'.jJljJ~jJ~qt qt Q qCo (14)em' "i'a "i'a' I'~ 1'3 2"i'a "i'0' I'~ I'~ 1J2 1J3' 

In free-space, a single baryon is an eigenstate of Jl: 

H(JJv; Up)~~p>. = 3 [J[IJ]uJllpT([JJ)) +~q(JlV; up)] ~~p>. = E[o]~r~>', (15) 

where we are using the convention that there is no sum over repeated indices inside square 
brackets, Eo is the total energy of the baryon. 

The evaluation of the transformed Hamiltonian follows the iterative technique of early 
applications of the formalism (1], {12J. The term that involves only quark operators is given 
by: 

Hq = H - ~ [L\(VIV2V3,J-lV'x) H(flV; up) qt
1 
Q~q~qpquq>. + h.c.) 

- ~ ~(VIV2V3, JW>') H(J-lv; up) L\(up'x, ILl JJ2JJ3) q~1 q~ q~3 ql'l qjJ2qjJ3 (16) 

where L\(Jw>',JJ'v'N) = ~~II>'~;:'II'>". It is not difficult to show that if the ~.,'s satisfy 
Eq. (15), then Hq has no baryon bound states. This guarantees that Hq describes only true 
scattering processes, the binding of the baryon is described by Ha • 

The baryon Hamiltonian, lIa , is given by: 

- iI'.*IJII>'!I( • )iI'.UP'\ t + I t ,r ( (J. f) t tHo - "i' a flV, Up "i'{3 ao a{3 2 aa a ,1'u ao a{3asa.." (17) 

where v..o is an effective two-baryon interaction given by: 

v: (o(J' J"V) = 9 V, (/lv' up) [~.I'IJ2IJ3~.1I112113 (~PIl2113~l7jJ2jJ3 _ ~17112113~PJl'1J3 _ 4~Pll2jJ3~l7jJ2113) 
IJ/I " qq r , ., fJ .., 5 .., 5 .., 5 

+ 2~:jJlljJ3~~1I1112113~~1I2113~~\UJl3 _ 2~;1J2jJ3~~IIII12I1~~llI2jJ3~rIJ2P } 

_ 3H(/lv'up) (~.I'VjJ3~.VIIl2113~1I11121'3~I7PII3+ ~"l'jJ211eJ).1I1112113~1I1I12P~I7IJ'1I3
r' 0 {3 .., 5 a (3 .., 5 

+ ~:lJjJ21J3~~1I111211~~IIl2P3~rjJ2P ). (18) 

Note that this effective baryon Hamiltonian is of general validity in that the ~'s are not 
restricted to baryon ground states, neither are they restricted to be eigenstates of the micro­
scopic quark Hamiltonian, Eq. (15). Also, it is not difficult to show that it is symmetrical 
under exchange of initial and final states and, therefore, free of the post-prior discrepancy. 
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The baryon breakup Hamiltonian is given by: 

- 3 il'.1J1 IJ2PiI'.lI\1I2" V( ) t t t t t tHa~qqq - 4""i'Q "i'fJ fll1(7p QjlqIlQl'lqI'2qv2q"la/1a"" ( 19) 

and Hqqq~a = H!~qqq is the recombi,nation Hamiltonian. In models wllere quarks are con­
fined, these terms contribute to a free-space baryon-baryon process in intermediate st.ates 
only, because free quarks should not be produced as asymptotic states in a free-space hadron­
hadron collision. The exact way this will happen depends on the particular confining 
mechanism of the underlying microscopic quark model. The breakup and recombination 
Hamiltonians can give rise to effects similar to quark deloca.lizat.ion [I:J). Also, ill a high 
temperature and/or density environment., where hadrons and quarks roexist, t.he hff'"kup 
and recombination processes can play an important role. 

The higher order terms of Bo give rise to many-baryon (>2-baryoll) forces and also or­
thogonality corrections. The orthogonality corrections correspond to the "rellormalization" 
of the relative wave function by the square-root of the normalization kernel in a resonating 
group calculation [9), [10]. Among other effects, these weaken the "int.ra-exchange" interac­
tions, i.e., interactions where the microscopic quark-quark interaction occurs within a single 
hadron [1], [5J. For ~'s that are eigenstates of the microscopic Hamiltonian, the orthogonal­
ity corrections cancel, to lowest order, the term proportional t.o ll(/w;t7p) in Eq. (18). 

4. An Example. We have derived an effective nucleon-nucleon potential, consistent 
with lowest order orthogonality, from a microscopic quark-quark interaction of the form: 

_! \1\ 2 (., + I 2 ,ii)\1 
qq - 4"""" 'e U, t7i 1." ' (20) 

where >'a are the color 5U(3) matrices, Ui are spin SU(2) matrices, and Vcand 11". an' arbi­
trary functions of the momentum transfer q. Vc can describe qnark confillelll~lIt awl ot.her 
spin-independent quark-quark interactions, whereas lJ~ describes spin-spin and t.ensor fOff·es. 
For simplicity we are not considering spin-orbit interactiolls. We use s-wave nolltclaJivistic 
nucleon wave-functions, and perform the sum over quark color-spin-flavor iudices in dosed 
form using the method of Ref. [14] to obtain a spin-isospin effective NN potent,ial [T(p, p'): 

[T I 2 + 1 2 ( ;1 + 1 2 ij). = Ue +TN'TN U' UNi t7Nj 1l~ TN'TNll,,,, (21) 

UN, TN refer to nucleon spin and isospin S'lT(2) matrices and U r , U,,'" are fuuctions of the 
center-of-mass initial and filial momenta p, p' given by: 

Uc = 4"
1 

[J1(Vc + 1/911".) + 12(vc + 11,,) + 13(1.'c -1/31.'".)1, (22) 

1 
U, = 36 [/1(Vc + 1/9v,,) +12(11c +v,,) + 1J(1.'c+ 1/311,.,)], (2:1) 

u~ = 3~ [/I(Jii vc + v~) + 12(Jij 
l'c - Jill'" +211~) + 13(J ii ve +v~)] , (24) 

U~17 = 3~4 [ldJii251.'c +vy) +2.5l2(J ij 1.'c - Jii ll" +21'~) +513 (J iJ,'lve - II~i)], (2tj) 

() 



where Ij(v), i = 1,···4 are 12-dimensional integrals which, in general, must be integrated 
numerically, and VO' = v~i. However, when the quark wave functions are approximated by 
gaussians, one can integrate the majority of the integrals analytically and obtain: 

Ij(v) = e-S/12a2(p2+pl2)+1/2a2p.pl f dqv(q)/i(qiP,P'), (26) 

where 

- _a2q2_a2q .(p_p/)
11 - e , (27) 
12 = e-3/4a2q2+I/2a2q.(p+p/), (28) 
f:l = C-Il/1fi1l2q2 [cl/4a2q.(:IP-P') + el/4a2q'(3p/_p)] , (29) 

where a is the nucleon r.m.s. radius. These last integrals must in general be done numerically. 
To make contact with previous approaches, we mention that the integrals Ii correspond to 
four diagrams of Eqs. (9-12) of Ref. [11] (the otherfour are obtained by antisymmetrization of 
initial or final hadron states), and are related by a Fourier transform to Eqs. (3.l8d-3.l8g) 
of Ref. [10]. Note that since all terms in Eqs. (21) involve quark exchange between the 
nucleons, U describes only the short-range part of the NN interaction. When considering in 
Eq. (20) only that part proportional to £71 .£72, one arrives at the recent quark Born diagram 
result [11] for the Born-order on-shell T-matrix. When solving the Lippman-Schwinger 
equation with the full non-local expression for U, one obtains [12] results numerically similar 
to the resonating group ones [9,10]. 

5. Conclusions. We have generalized a field theoretic formalism for composite parti­
cles originally developed in atomic physics to treat composite hadron interactions in quark 
models. We have derived a unitary operator which transforms a general single composite 
hadron state in Fock space into an elementary-hadron state. When the unitary operator 
is applied to the microscopic Hamiltonian one derives effective Hamiltonians describing all 
possible processes involving hadrons and their constituents. As an example we explained 
the formalism using a simple quark model where baryons are composites of three constituent 
quarks which interact by two-body forces. 

We hav~ shown that one can formally construct the unitary transformation for a generic 
Fock space decomposition of a single hadron state. In practice, however, one will in general 
need truncation of the Fock space. The cloudy bag model [15] is a typical example of such 
a truncation, the nucleon state is a superposition of a three~quarks state and a. three-quarks 
plus one pion state. In general, when using a relativistic quantum field model one will have 
to face renormalization and truncation of the Fock space will then introduce problems with 
divergencies related to the vacuum and violation of Lorentz boost invariance. One expects 
that such problems can be solved in a light-cone formulation [16] of the model. In such a 
formulation, the vacuum seems to be "simple" and hadron states are described by a finite 
Fock space basis in a Tamm-Dancoff approxima.tion. In this sense, given the renormalized 
Hamiltonian and the hadron states, one cau construct the unitary transformation and obtain 
the effective Hamiltonians describing effective hadron-hadron interactions. The effects of 
divergencies are then transferred to the matrix elements of the effective interactions. 

Recently techniques similar to the one presented here, originally developed in the context 
of nuclear structure, have been used in hadronic physics [17]. Their emphasis and aim, 
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however, are quite different from ours; whereas in references [17J the transformation is defined 
on many-composite states, here it is defined on single hadron states. Another important 
difference is that the present formalism allows applications to relativistic quantum field 
models in which hadrons are bound states of an indefinite number of constituents. In this 
sense, it would be interesting to apply the present approach in connection with the one of 
Ref. [18], where creation and annihilation operators of composites are defined in the context 
of the reduction formulas of the LSZ formalism. The treatment of composites in terms of 
ideal operators will facilitate, in view of their canonical nature, the use of Feynman rules for 
calculating Green's functions and S-matrix elements involving bound-states. 

The formalism developed here offers great opportunities for several interesting applica­
tions where field theoretical methods are required. As in the case of atomic physics studies 
of medium effects [19] and electromagnetic plasmas [20], the formalism finds natural appli­
cability in studies of the properties of hot and/or dense hadronic matter. 

Acknowledgments. Work partially supported by CNPq, CAPES, and FAPESP. M.D.G. 
thanks CNPq and FINEP for a travel grant in support of this collaboration. 
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