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Abstract

We consider a two-slit diffraction experiment with a magnetic flux confined
to an inaccessible region between two rectangular slits. We then obtain a
leading order analytic form for the asymmetry in the resulting diffraction
pattern. The corrections to the expression are bounded and disappear in the
limit of long wavelengths and/or infinite source-slit-screen spacing. Using the
analytic form obtained, we obtain a non-zero value for the asymmetry in the
number of electrons scattered to the left and to the right but a zero value for

their average displacement.
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I. INTRODUCTION

When a beam of electrons passes through two slits, the two resultant beams superpose
afterwards producing a well known diffraction pattern. If additionally, a magnetic flux is
confined to an inaccessible region between the two slits, then the diffraction pattern is shifted

by an amount depending on the magnitude of the flux. This occurs despite the fact that the
flux is “invisible” to the electrons. This unexpected result is known as the Aharonov-Bohm
effect, after Y. Aharonov and D. Bohm [1].

The shift in the diffraction pattern has been confirmed experinentally [2]. However, ti:ere
remain some unsolved problems related to the moments of the position at the ‘)bservation
screen. In particular, the first moment, i.e., the expectation value of the position of ‘lt,i]e
electrons arriving at the observation screen, has been the subject of theoretical ana.iyses
with contradictory conclusions. The question is: Is the ezpected displacement zero or 'n,a;f
? Several authors [3]- [8] claim that the expected displacement is zero for all values of the
flux. On the other hand, explicit calculations based on Feynman path-integral technique
show that that value is not zero, in general [9,10]. Unfortunately, the answer to the quesiion
cannot be formulated on the basis of general principles only. Ehrenfest’s theorem cannot
be invoked to show that the expectation value vanishes since there is no violation of filis
theoremn if the expected displacement is non-zero [10]. The no-shift theorem of Semon a.nd‘
Taylor [6]- [8] cannot be applied since it is not clear if the theorem is true in general [11].

In the following we readdress this question. In Section II, we consider a delta %unc-
tion to describe the initial wavefunction, i.e., the electron source, and apply the Feynman
path-integral method [12] to determine the wavefunction at the observation screen. The
diffraction pattern is obtained as well as the asymmetry in the distribution of the arriving
electrons scattered by the two slits. An analytical form for the leading contribution to ltilis
asymmetry is obtained, and a bound to the corrections is determined. In Section III, we
evaluate the asymmetry parameter (the number of electrons scattered to the right minus

the number of those scattered to the left) and the expected displacement. We find that the



expected displacement is bounded by a bound which approaches zero in the limit of infimte
wavelengths and/or infinite system size. This suggests but does not prove that it should be
always zero. The bound also contradicts the numerical results obtained earlier in reference
[10] and can be used as a test on any numerical calculation. It is not possible however to
analyse the results obtained earlier by Kobe [9] since he employed Gaussian slits which are

overlapping. Conclusions are drawn in Section IV.

IJ. DIFFRACTION PATTERNS

The Feyninan path integral approach to guantum mechanics [4,5,9,12] has been used to
calculate the single-slit wavefunction. Then the two-slit wavefunction is given as the linear
superposition of the wavefunctions from the two slits. The diffraction pattern is proportional

to the square of the modulus of the wavefunction.

A. Single-slit diffraction pattern

We consider here the model introduced by Kobe [9]. According to this model the motion
perpendicular to the screens (see Fig. 1) is classical while the motion parallel to the screens
is to be treated quantum mechanically. This approximation was also used by Kobe et al.
[10] and imptlicitly by Shapiro and Henneberger [13].

The approximation is justified since the action in the y direction, Sy, is many orders of
magnitude greater than A. The action is the average kinelic energy in the y direction .e.
Sy = mv‘z/Z where m is the mass of the electron, and 173 ~ 02 = (Ye = ¥a)?/(te — ta)? is the
average of the square of the velocity in the y direction in going from the space-time point
(Yarta) to (e, t.). Therefore S,/k = (m/2h)8,L ~ (L 4 1)/ where L + | =y, — y, and the
reduced de Broglie wavelength is X = h/md,. For realistic experimental setups this ratio is
in fact very large e.g. for the parameters of the experiment by Jonsson [14] with A = 107%um

and with rcasonable distance [ 4 I = 11 m, one has §,/h ~ 1012,

Thus the path integral in the y direction can be evaluated in the saddle point approxi-
mation so that the electron only follows the classical path in this direction. We thus have a
complete path integral formulation starting from the source and ending at the screens but
because S, >> h one can eliminate the path integral in the y direction and replace y by its

classical value i.e.
Y= Ya=v(t~t,) (2.1)

where v = 9, denotes the (constant) velocity in the y direction. For the single-slit ;cometry

shown in Figure 1, the wavefunction at the observation screen is given by
¥, (z.) = / d:cb/ dz, KOz, te; T, t) Gy (26 ) KO (8, t; Ta, ta) Va(za) (2.2)

where G, (z}) is the transmission function for a single rectangular slit of width 2b centered

at z¢ :
0 if |[zp — x| > b
Gi(zs) = (2.3)
1if |zp— 2ol < b

We have taken the initial wave packet to be a delta function, as in the calculation of Kobe

[9], and Shapiro and Henneberger [13]
Ba(za) = 8(z) (24)
The free propagator is given by [12]

itz — ) z")zJ : (2.5)

K%z, te; T, t0) = )
(e tei s, 1) [ih(tc—tb)] cxp[ h(t. — t)

where m is the mass of the electron and h is Planck’s constant. A similar formula holds for
K°(zy,ty; T4, ta). As shown in Fig. 1, let ! denote the distance from the source to the screen

with the slits; then
l=y—ya=v(ts — La) (2.6)

and let L denote the distance between the screen with the slits and the observalion screen;

then



L=ye—y=v(te — ts) (2.7)

Substituting equations (2.3-2.5) and definitions (2.6-2.7) into (2.2) and performing the inte-

grations yields

\Il+(zc): ;Ne ATt [El <ﬁ(l‘o+b—H_Ll‘c)) - E (ﬁ(lg*b—mlc))] (28)
where the constants are given by
N =/~ ! 2.9)
“Vaxa Ly (2

and

=2 (34 )) (.10)

where A is the de Broglie wavelength of the electron

R (2.11)

mv

and Ei(z) denotes the complex Fresnel integral defined by

Eiz) = /z dn &'57 (2.12)
0

B. Two-slit diffraction pattern

The geometry for a two-slit experiment is as illustrated in Figure 2 and the total wave-
function is given by superposing the wavefunctions from the two slits. Note that the use of
the path-integral formalism ensures that the quantum mechanical treatment starts at the
origin of the particles and not at the slits which ensures the coherence of the waves at each
of the slits. In the absence of any magnetic flux the wavefunction at the observatinn screen

is given by

Y(zr) ~ ¥, (z.) + ¥ (x.) (2.13)

o

where ¥ ,(z.) is the wavefunction from the slit centered at zo (2.8) and ¥_(z.) is the
wavefunction from the slit centered at —zo. The wavefunction ¥_(z.) is obtained by simply
replacing zo by —zo everywhere in (2.8). From equation (2.2) and the relationship G, (zs) =

G_(—=s) it can be seen that
¥ _(z.) =¥, (-z.) (2.14)

If a shielded magnetic flux is present then the wavefunctions for the two slits acquire an

additional phase factor [1]

¥, (z.) = exp (;—q A dr) U, (z.) (2.15)

cJoy

where q is the charge of the particle, A is the magnetic vector potential and C (C_.) is the
path from z,, t, to z.,t. via the slit at zo (-zo). The total wavefunction at the observation

screen is then

V(z) = ¥, () + ¥ (zc)

= exp (1—‘1/ A - dr) [‘Iu(zc) + e""\ll,(zc)] ) (2.16)
he Jo,
where ¢ = %E is the magnetic flux parameter and
q>z/B-da=fA-dr (2.17)
s c

is the enclosed magnetic flux. The diffraction pattern is then proportional to the magnitude

of the wavefunction squared i.e.
()2 = 4 (e) + [0 (2.)] + 2cos ¢ Re |¥}(z)¥_ ()] +2sind Im [¥) () ¥ (ac)]

(2.18)

C. Asymmetry in two-slit diffraction pattern

The asymmetry in the two-slit diffraction pattern defined by



Ales) W (e’ w2 (2.19) Az} = dsing N[, cos(2r X, Xo) + 15 sin(27.X, X)) (2.28)

can be evaluated as where
B B
A(z.) = 4sin ¢ Im {\l/:r(.cc) v (Ir)] (2.20) L = 2/:5 di /;B diz sin(nn, X, ) sin(m Xo) cos(mna Xc ) cos(m2 X))
S L T ;
Substituting the analytic expressions for ¥ (z.) (2.8) and ¥_(z.) = ¥, (—z.) one oblains s (2(7]2 77‘)) (2.29)

B B
I, ::/ an/ dnz {cos(nn; X.) cos(mn Xo) cos(mna X, ) cos(m12Xo)
-H -B

, l l .
A(e) = 4sing N* [(C(ﬁ[m‘o 1b - A iICD - C(Blzo-— b ZT—[L,])) .
‘ sin(mn X.) sin(mn, Xo) sin(mn2 X, ) sin(7n, Xo)} cos (;z(ng - 7)12)) (2.30)

[ l
(818600 + 0+ ) = S(6loo— 5+ 5 4)
o Splitting 1, into three parts yields

(S0t 1 g e s0gize - )

B B
1 b 1 I, = [B dm /—B dng cos(mm X, ) cos(mme X, ) + I — Iy

= m? Sillz(ﬂ'B.Xc) + 13— 14 (2.31)
. . . " ] B B i
where N and ( denote the constauts given in equations (2.9) and (2.10) respectively, and I = /E dm, /E dn cos(mn, X.) cos(7m: X.) [cos(7r1]1X0)COS(1r1]2Xg)COS (%(U: _ 7]f)> _ ]] (2.32)
C(z) and S(z) denote the cosine and sine Fresnel integrals B B -
Iy = /B dn / . dng sin(mm X, ) sin(7n: X ) sin(7n Xo) sin(mn2 Xo) cos (5(115 - 7]12)) (2.33)
C(z) = /‘ cos(qu)dr/ (2.22)
0 2 Finally therefore we obtain the asymmetry (2.19) in the form
L
S5(z) = / sin(qu)dn (2.23) 4
0 . . N , .
A(x.) = 4sing N? [;2/\,2 sin®(7 BX,)sin(2m X Xo) + E(AC)J A (2.34)

Defining the following dimensionless constants
By expanding (:05(7]1_2/\'0),sin(ql'z/\'o),cos(-’i'(nzz - 7?)) and sin(3(72 — #7)) as power series

B =pb (2.24) in the relevant arguments it can be easily shown that the first term in the integral is of
Xo = Bao (2.25) order l% and the second term is of order §° and higher order. By considering § as a small
X = ﬂil_LIC (2.26) parameter we take the first term to be our approximation to the asymmetry, interpret E(X,)

+

as an error term and proceed to find bounds on its absolute value by finding bounds on the

the expression (2.21) becomes
itegrals 1y, I3 and I4.

A(z.) = 4sin ¢ N*? [/XU et dm cos(ﬁnf) /XD e dns, sin(lrng)—~ Using the inequalities
Xo-X.-B 2 Xo+Xe-B 2
Xo-X.+B LT, Xo+Xc+B T, .
/Xn—X‘fB dim SIII(ETII)/XHX:_B dn, 505(5772) . (2.27) |'sin(z)], |cos(z)| < 1
We then redefine the variables of integration so that all the integrals run from --B to B to [sin(=)] < la|
obtain [cos(z) — 1] < %:zz (2.35)



one can obtain upper bounds to the absolute values of the integrals I, and I given by -

B B T, o N
i< [ dn [ dnsalmiXo Sk~

= i—;w’XoB” (2.36)
B B 1 T 2
i< [ dn [ dn g ((mxo)’ +omXo + (52 - 12)) )
— gw’ng‘ + %WZBG (2.37)
B B
< [ dn [ dn 7l Xo wlnalXo
=n?X2B* (2.38)

Thus we obtain a bound to the modulus for the error term given by

11 7 4
2 6b4 (__ b 2 2)
f {5 %0 + 3%0 + —45b (2.39)

The error can clearly be seen to vanish when

[21+L
B8 = ‘): “iL— — 0 (2.40)

i.e. in the limit of infinitely long wavelengths and/or infinite system size, namely

l

LL oo, 7 fixed (2.41)

Notably this bound (2.39) is also significant for realistic experiments. Using the parameters
from the two-slit experiment by Jonsson [14] (which incidentally did not include the AB

effect), namely

b=0.25 um
o =1 pm
A=5x10"% um (2.42)
and reasonable distances of
[=10m
L —1m (2.43)

the error bound is
0.83 x 1072 (2.44)
compared with the peak value of
0.104. (2.45)

We thus expect the agreement between the exact diffraction pattern and our approximate
form to be good. This is borne out by Figure 3 where the approximate and exact forms are
in good agreement. Notably, if we increase A even by a single order of magnitude, the error

bound drops by three orders of magnitude to
0.83 x 107° (2.46)
this time compared to a peak value only ten times less
0.0108. (2.47)

In this case there is no visible difference between the exact and approximate diffraction
patterns (see Figure 4). (An equivalent effect could also be achieved by increasing the
system size by a factor of 10 although this is difficult to realize experimentally.)

We note two important features of the approximate analytic form. The first is that

22 A(z.) is perfectly periodic in z. with period given as the lowest common multiple of

2 1 2 1
22 and = 2.48
e " ALze (2:48)

The second is that the dependence on z. only appears in the combination

l 2z,

LI 2.4
I+L° L (249)

ﬁ?

Thus to lowest order in 8 the whole diffraction pattern scales linearly with L, the distance

between the screen with the slits and the observation screen

10



III. EXPECTATION VALUES
A. Normalisation of the wavefunction at the screen

Although the source wavefunction is a delta function and therefore cannot be normalized

one can normalize the wavefunction at the screen, ¥/(z.). We proceed to determine bounds

on this norm for the case of the flux parameter ¢ = ¥ since this flux gives the greatest

asymimetry in the diffraction pattern. Define

N(z) = W)l bW ()

=2\, (zc)|* + 2 (z) (3.1)

where W'(z.) and V¥, (z.) are defined in equations (2.16) and (2.2) respectively. Then the

norm of the wavefunction is given by

N = /Dw dz, N(z.). (3.2)

Substituting the analytic expression for ¥, (z.) (2.8) and using the relation ¥_(z.) =

U, (—x.) from (2.14), one obtains

NI ! | :
N(z.) = 2N H( (ﬂ(z0-+b-~ A z.) ~—C(ﬁ(zor—b—- ﬁ—zc))}

st
1 {()((3(1‘ng+«—-~ ) C(ﬁ O,bJ,I_:Z c))
1 {s (0t s i ge) -5 (seob 1 1 00)} ] (3.3

where N is given by (2.9). Again using the dimensionless constants defined in equations
(2.24) - (2.26) and redefining the variables of integration so that the integration range runs

from — B to B = b one obtains
2 B b n 2 2 - , - -
N(z.) = 4N /Hdr), /[ dn; cos (i(nl - 1]2)) [cos(x Xom ) cos(m Xo72) cos(m Xeny ) cos(w X.n;)
J 3

11

+ sin(m Xom ) sin(m Xon; ) sin(7 Xcny ) sin(7 Xcn,))

B B
4N? [/B dn, /Bdm cos(m Xomy ) cos(w Xoz) + I3 + Iy

It

4
= 4N? [7F sin?(rBX.) + I + 1,,] (3.4)

where first term is of order 3 B and the last two terms are of order 8¢ and higher. The norm

is then given as

oo BXC 00
N —ane | L7 g s ‘(nBX) dz.(Is + 1y)
w2 Jo 0

X2
[+ L 1 L4l o
EEPYVCE P A S RS oI A 3.5
A 4N{ lbﬁ 1 /0 \(13+4)} (3.5)

where the standard integral ( [15] 3.821.9) has been used. One now proceeds to find bounds
on the absolute value of the second term in this equation. Firstly one must determine
z. dependent bounds on the integrands I3 and /,. This is achieved by integrating the
expressions (2.32) and (2.33) twice by parts one with respect to ; and once with respect to

72 and again applying the inequalities (2.35) with the result that

21X2B* + 4B
XZ

c

|13+ I} < (3.6)

The range of the norm integral is then divided into two pieces. On the first interval {0, '—"B

one uses the z. independent inequalities (2.37) and (2.38) to yield the following bound

< /ﬁ dX.| I+ 1|
0

< [ ax it + 1n)

7 4 4
(! 2yapgn, % 2 e)(,w)
_(37r X84 B ) (o

28 . 16
o (B2 g 37
+B (3\“453) (3.7)

T AX(Iy + 1)

0

On the second interval |4, 0o} one has

< /‘ dX |3+ 14

21X2B? 4 4B*
< [Tax FEes 102

[T axis+ 1)
B

4 X
3 21 -2 2
B (»ZAO + B (3.8)
12



Combining equations (3.7) and (3.8) yields

V dX.(Iy + I)| < n B3(14.584X2 + 1.356 B?) (3.9)
0
Finally therefore
!
W - szvtilfb[ < 4N27r9—lf15‘b3(14.534zg 1 1.3568%) (3.10)

where the term of leading order in 3 appears on the left hand side and the right hand side
vanishes in the limit # — 0. Using the parameters of reference [14] (2.42) - (2.43) one

obtains
N
(2.2 -10.613) pm < Nz < (2.2 4 0.613) pm (3.11)

It is also possible to calculate the norm using the full expression (3.4) and not just the
leading order term. This has to be integrated numerically using either the series expansions
or when appropriate the asymptotic expressions for the Fresnel integrals. If one integrates

up to the three hundredth zero of A(z.) one obtains

—A—[— = 2.194 pm (3.12)

3 =

2

B. Asymmetry parameter

The asymmetry parameter which counts the number of electrons scattered to the right

minus those scattered to the left is given by

A

i

v [ a1 - [ dee 9P

;i_/ /Om dz, Alz.) (3.13)

Evaluating this quantity to leading order in 8 for flux parameter ¢ = 7 yields

11 o . 4 . I
A= 555 /" dX. ;T} sm2(7rBXC)snx(?m‘\n,\r) (3.14)

which can be evaluated using a standard integral ( [15] 3.763.3) to give

13

A= (zo + b)In(zo + b) + (zo — b) In(za — b) — 220 In(zy)] (3.15)

1

5!
This quantity is clearly non-zero as expected from the definition and the asymmetry of the
diffraction pattern. Using the parameters of reference [14] (2.42-2.43), the quantity (3.15)

becomes

0.0804 (3.16)

compared with the value determined numerically using equation (2.28), which contains all

contributions, instead of the leading contribution (3.15) of
0.0772. (3.17)

The numerical details are as discussed in the previous section.

C. Expected displacement

The average displacement, < z. >, is equal to

1 o 1, 2
V /_wda:c T ¥ ()]

- %/0“’ do. 2. Az.) (3.18)

Evaluating this to leading order in 3 yields

1 1 L4l = 4 . .
N 4sind N? Z‘ﬁ ~ /o dX, X sin’(1 BX,.)sin(27 X X.)

-0 (3.19)

provided that the slits are disjoint i.e. b < zo. Note that the standard integral ( [15] 3.763.2)
has been used. One can also find a bound on the contribution to < z. > from the error
term E(z.), defined in Eq. (2.34). Firstly one integrates I;, {3 an I by parts three times,

twice on 1, and once on 7,, and splits the integral I; — I as

v -1, = - 4—,~~ sin?(wBXo) 4 I« (3.20)

(nX.)?

14



Then the same mequalitt © (2.35) are nsed as previously to give bounds on the absolute

values of I} and [s which do depend on z, and are given by

59X, B?

TARS )5;3—— (3.21)
51X2B + 15B°

1 < SE L 158 (3.22)

Secondly the integral which gives thie numerator for the average position is split into two
intervals. On the first interval [0, %] one uses the z. independent inequalities (2.36) and

(2.37) to obtain the following bound

’ / X, X, B(X)| < / T AX X, |1 cos(2n XoXNo) + (I3 + L) sin(27 Xo X.)|
{] o

< /:ﬁ dX X (| L]+ L) + [ 1d])

11 4 1/4\?
(272X, BS ¢ 2y2 4 26y & ( )
/(157r o 1rXB +451rB)2 5
88 56 32
B} —X —=X24 =B .23
(g XoB 1+ X3 + 32 BY) (3.23)

On the second interval |5, oo] one first divides the integral using the split {3.20)

T dX. X, B(X.)

=B

- / dX, N (I cos(2n XoX) + (I3 + ) sin(27 X, Xo))

YR
¢

4
= /’B dX. X, (11 cos (27 Xo.X.) + [ X sin*(rBX,) + 15] sin(27rXch))1
< / dX,. X. —~~~) sin (nBl\'U)sin(QnXoXc)
I /4 dX. X (Iycos(2n Xo X)) 4 Ts sin(27rXcX(,))l (3.24)
57

The first term in the rhs of equation(3.24) can be expressed in terins of a standard integral

( [15] 8.230.1) as

4 p
= sint(xBX,) s (s%") < 4B*X?

si (8%3)’ (3.25)

where si(a) denotes the sine integral

xz(([) = - / dt st (3.26)

t

The sccond term in the rhs of equation (3.24) can be bounded using the z, dependent

inequalities (3.21) and (3.22) to yield the following upper bound

Xe Xe (1) cos(2xr Xo X,) + Is sin(2r X X))

/ dX. X, (Jh]+ |1s))
< /L dX. X. ?F (59X0B* 4 51XZB + 15B°)
1 .
= B’4-(59X.,B + 51X2 + 158%) (3.27)

Combining equations (3.23), (3.25) and (3.27) yields the following bound for the numerator

of the average displacement

< 4N?%sin(¢) B° iljr—l b

ng dz .z A(z.)

[20.62 zob + (

(%)
51 b

Combining this equation (3.28) together with the bound on the norm of the wavefunction

) z3 4 4.462 b’] (3.28)

(3.10) gives the final result for the upper bound of the average displacement for flux param-
eter ¢ = 7

I+1 o

| <ze>|< [sNz—Lbu - -5 15%(14.584x2 + 1.356b2))]
2 02 l 2 2
4N2 g 2 z b? [20.62 zob 4 (31.42 4+ 4 |s [) €2 +4.462 b

-1

- %b [1 - BU(14.58422 + 1.356b2)]

g [20.62 zob + (31.42 +4 'n (%9)

) z2 4 4.462 b'z] (3.29)

This bound then vanishes in the limit 8 — 0, i.e. in the limit of infinitely long wavelength
and/or infinite system size meaning that the expected displacement in this limit is exactly
zero. Since it seems reasonable to assume that the average displacement should increase

as the distance between the screen with the slits and the observation screen increases, this

16



result strongly suggests (although it in no way proves) that the average displacement will be
zero in all cases. This result agrees with those obtained in references [4], [6]- [8] although the
derivation is completely different. In particular our result is valid for all wavelengths and
slit geometries but is only proven in the limit of infinite source-slit and slit-screen spacing.

The value of this bound for the experimental setup of Jonsson et al. [14] is
| <z.>]<282pm (3.30)

It is also possible to obtain a bound for the parameters used by Kobe et al. {10}, namely

A =174nm (3.31)
b=1nm (3.32)
Ty =3 nm (3.33)
This bound is given by
| <z.>]<22x 107" nm (3.34)

which clearly contradicts the numerical result in that work, the numerical discrepancy being
too great to be explained by the difference between the Gaussian source in that work and the
delta source used here. It is not however possible to comment meaningfully on the earlier
calculation of Kobe {9] since in that calculation Gaussian slits are used which then overlap.
If in fact one calculates the average displacement for the case of overlapping rectangular
slits z.e. b > 7o then one obtains a non-zero contribution to the average position from the

leading order term.

IV. CONCLUSIONS

A leading order analytic expressions for the Aharonov-Bohm diffraction pattern has been
obtained which is exact in the limit of long wavelengths and/or infinite source-slit-screen
spacing and good for realistic experimental setups. Using this form one obtains a non-

zero asyminetry for the number of electrons scattered but a zero value for their average

17

displacement. If a non-zero value for < z. > is present, then it must be due to terms of

higher order in 3.
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FIG. 1. The geometry of the single-slit diffraction experiment. The slit at y, has width 2b and

is centered at =, = z,. The distances ! and L are given by equations (2.6) and (2.7) respectively.
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FIG. 2. The geometry of the two-slit diffraction experiment. Magnetic flux & is present in a
shielded solenoid at z, = 0. The slits of width 2b are centered at +z,, and are separated by a

-

distance 2z,. The distances { and L are given by equations (2.6) and (2.7) respectively.
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FIG. 3. The asymmetry in the two-slit diffraction pattern for electrons of wavelength FIG. 4. The asymmetry in the two-slit diffraction pattern as in Figure 3 but with electron

oo

X = 5x 107%um with slit length 26 = 0.5 um, slit spacing 225 = 2 um, source - slit distance wavelength A = 5 x 10~ %um. Here the approximate and the exact results coincide.
! = 10m, and slit to observation screen distance [ = 1lm. Since the wavefunction has not been
normalised the scale on the y-axis is arbitrary. The solid curve shows the exact result and the

dotted curve the approximate form
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