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Abstract

The results of the evaluation of the Generalized Interacting Boson Model
(GIBM) Hamiltonian in the framework of Restricted Dynamics Approach have
been used in order to estimate the microscopical values for the parameters of two
phenomenological collective models - the Bohr-Mottelson Model (BMM) and the
standard Interacting Boson Model (IBM). The microscopically derived parame-
ter values are calculated, using the effective NN-interaction potential parameter
values obtained from the Strictly Restricted Dynamics Model (SRDM) energy cal-
culations for light a-cluster type nuclei with 8 < A < 60, and compared with
the phenomenological model parameter values obtained from the direct fit to the
experimental level energies of the same nuclei.

1. Introduction

From the point of view of the non-relativistic quantum mechanics one can regard the
free nucleus in three-dimensional space as a closed system of well localized A particles -
nucleons. The dynamics of this system is defined by its general microscopic Hamiltonian
H. At the present stage of nuclear theory development, however, one cannot solve the
Schrédinger equation for it. Therefore, H is substituted by the model Hamiltonian Ho'
for which it should be possible to solve the corresponding Schrodinger equation. '

The traditional way of nuclear model construction is to substitute the original mi-
croscopic Hamiltonian H by another - phenomenological Hamiltonian H,s. In most
cases Hpp is taken from the theory of other physical systems (e.g. as in shell model
or Bohr-Mottelson model), or based on some simplified assumptions about the nuc]ear.
structure (IBM, IBFM, etc.). Usually, it is impossible to relate these Hamiltonians
with. microscopic H. Besides, some of these H,; do not conserve all nuclear integrals of
motion.

The Restricted Dynamics Approach (RDA) [1, 2] provides one with the powerful
tool for the description of collective phenomena in nucleus via the approximate solution
of the microscopic many-body Schrodinger equation. Employing RDA, one can project.
from the general translationally invariant nuclear Hamiltonian for the system of A nu-
cleons, its collective O4_;-invariant part, depending only on six microscopic collective
variables. Although the principles how to obtain microscopic collective models from
the general microscopic nuclear Hamiltonian are known, the technique of such evalu-
ations is very complicated. At present the collective part of the microscopic central
NN-interaction potential has been evaluated analytically only for the multipole-Gauss
type Wigner pontentials. This collective part can be rewritten in the form analogous to
the potential energy term of Bohr-Mottelson type models. Again, rewriting it in terms
of creation-annihilation operators, one can obtain from it the Generalized Interacting
Model Hamiltonian.

The relationships between macroscopic phenomenological collective models and mi-
croscopic collective models in RDA for the first time have been studied in Refs.[3, 4] and
in more details in Refs.[5, 6].

Let us consider the correspondence chain for nuclear collective Hamiltonians, starting
with the General Microscopic Nuclear Hamiltonian (GMNH):

GMNH - GRDCM — GBMM — GIBM — IBM

+ l
SRDCM BMM

where

GRDCM - the general, O4_;-invariant Restricted Dynamics Collective Model;



SRDCM - the Strictly Restricted Dynamics Collective Model - the collective (Ua-1-
invariant) part of the full Strictly Restricted Dynamics Model (SRDM);

GBMM - the Generalized Bohr-Mottelson Model in 6-dimensional model space;

BMM - the standard phenomnenological Bohr-Mottelson Model for nuclear collective
motion in 5-dimensional model space (obtained by freezing collective variable p?);

GIBM - the Generalized Interacting Boson Model in 6 dimensions, which conserves Ug
symmetry;

IBM - the standard phenomenological Interacting Boson Model of Arima and lachello
for s, d-bosons in 6 dimensions (denoted in literature as IBM-1).

In the framework of this scheme it is possible to derive the microscopic expressions
of the phenomenological collective nuclear model parameters in terms of the nucleon-
nucleon interaction potential parameters. The corresponding expressions, accounting
for the nuclear kinetic energy as well as the collective potential energy expansion up to
the sixth-order terms, have been obtained in Ref.[6]. The aim of present investigation
was to estimate numerically the microscopical values of the standard Bohr-Mottelson
Model and the standard Interacting Boson Model parameters, using the NN-interaction
potential parameters obtained on the basis of SRDM calculations for a-cluster type
nuclei with 8 < A < 60. The comparison of these estimated parameter values with their
values, obtained via the direct level energy fit using phenomenological nuclear models,
can give us information about the plausibility of such estimations.

2. General Restricted Dyhamics Collective Model (GRDCM) in the case of
effective NN-potential of multipole and multipole-Gauss type

Let us consider the general translationally invariant nuclear Hamiltonian for the
system of A uucleons, interacting by two-body central forces
: . : Rl A s =2
l{mzcr - Tmlcr + Vnntr - __ Z (v' _ V]) +

2mA S,

vy (Vv (rag) + P Vag (rig) + PE) Vi (rig) + P2V (), (1)
i<j=2

where for the sake of simplicity we have neglected the difference between protons and
neutrons in the operator T™*". The subscripts W, M, B and H in Eq.(1) refer to Wigner,
Majorana, Bartlett and Heisenberg interactions, correspondingly. The P,(J ) are the
projection operators of spatial, spin and isospin states of nucleon pairs and r;; =| 7;—7 |.
Now we shall project the collective part from the Hamiltonian Eq.(1), which, ac-
cording to RDA, is its O4_;-invariant part. The projection will be carried out in three

steps:

1) Instead of the interparticle position vectors | 7; — 7 |, we shall use the A — |
translationally invariant Jacobi vectors [7]

-

2,...,A-1. (2)

" \/({+‘1' (z”-"'“) b

2) Next, we shall express these vectors in terms of Dzublik-Zickendraht variables

8, 9]

3

P = 3 pPDI(O, 0, W)DYA) (01,64 .. B3amsi0) (3)
k=1
s=1,2,3; 1=1,2,...,4—1.

Here D''3) and DU'a-1) are Wigner matrices of groups OF and O4_;, correspondingly.
These matrices are associated with the defining representations of these groups. pt*) are
three radial variables; ©,®, ¥ are three Euler angles; 8y, 0,....,034_¢ is a set of internal
angles, and o denotes two discrete parameters, referring to OA—I group [1, 2]. Let us
note, that from all 3(A — 1) variables, introduced in Eq.(3), only six:

P, P, pB e, @, W (1)

(and only these), are scalars with respect to the symmetric group S}{), acting on the
space variables 7; (Ref.[10]). Therefore, they are the collective microscopic variables.

3) Finally, the resulting collective part of the Hamiltonian (Eq.(1)), depending only
on six collective variables, one can obtain if one integrates Eq.(1) over (34 —9) internal
variables 0,,0,,...,034_q, i.e.

Heoy = Heon (P(l) P(Z) P(a’,e,q" \I’vaijvTij) =

= / Hml'cr (p(])v P(2)a p(3)’ 6, q’v \I’; 01702a e 503.4—9; Tijy Tfj) dv91 (”'Yy._, 1o d‘/giA s =

=T + Vi (5)
The Hamiltonian H..; (Eq.(5)) is the General Restricted Dynamics Collective Model

Hamiltonian. The evaluation of the kinetic energy term T™:" is still an open problem.
In order to obtain its expression one should integrate the T™*" expression in Dzublik-
Zickendraht variables over internal variables, which is a formidable task.
The problem, how to obtain from Eq.(5) explicit expresslon for the collective part
c’;‘,;" of the general microscopic central potential V™" is still open as well. At present
it is solved only for central Wigner potentials presented as

A
= ‘/0 Z Z bﬂ',‘jzl. (6)
i<j=2 t=0,1,2,...



Expression Eq.(6), despite its simple form, encompasses quite a large class of interactions.
Among others the potential Eq.(6) includes also the superposition of multipole-Gauss
type interactions:

A
Ve =10 3 (ryy)™e ), (7)
1<j=2

where ¢ = 0.1,2,... and « are the potential parameters. In the case of potential Eq.(7)
the coefficients b, of Eq.(6) have the form

3 (_a)l—a

by = ——
T =a)’

(®)
wheret =a.a+1.a+2,...

In Refs.{11, 7] the following result was ohtained for the collective potential energy
term 1M with potential Eq.(6):
A(A-1) (A=3)neE)n
ATy [ S A Sk A

g Y 2 Ar2—3) "

Vi (A ) =
t=0,1,2,...

(2k) — 1)N(2ky — 1)1(2ks — DI/ 1\Ph1 [ anhe o ks
> ] TR () M) )T o

by kb ha=t

3. Derivation of the Microscopic Generalized Bohr-Mottelson Model (GBMM)
and the standard Bohr-Mottelson Model (BMM) Hamiltonians from the
General Restricted Dynamics Collective Model

Now we shall consider how to obtain the Bohr-Mottelson Lype collective Hamiltonians
(in the generalized 6-dimensional and standard 5-dimensional versions) from the General
Restricted Dynamics Collective Model (GRDCM) Hamiltonian described in previous
section. In order to associate the GRDCM collective potential energy term Eq.(9) with
that of the Bohr-Mottelson model {12], first of all we replace (p“))z, (pm)2 and (p“”)2
in Eq.(9) by three new variables (see Refs.[13, 3, 4, 7]):

P ) )
Bsiny = 1 [(p“')2 - (pm)z] R (10)

V2

1 2 2 2
. _ (1) (2))° _ (3)
fBeosy = %[(ﬂ ) + (™) —2(p )]
Then one obtains the final expression (see Ref.[6]) for the collective potential energy
term via p?. 3%, 3% cos 3y (which are OF -scalars, as we shall see below):

i . A(A-1) (A=-3

smier 2 32 33 B _
Wi ean (/"f’ BB 60537) i Vo ) b'——(A+ 2% 3N X

1=0,1,2,...

x Y Cli,l, rn)(p2)i(ﬂ2)’(ﬂ3cos3~y)m, (11)

i+20+3m=t

where coefficients Ci(1,{,m) one can evaluate as

. B 2\ 71 (2t + I+ 2m — 1)
C’(”"’")‘(‘\/;) 3 iMlml(2t—2i+ )1 (12)

The collective part of the central Wigner interaction (Eq.(6)), written in the form of
Eq.(11), is the microscopic generalization of the potential energy term of Bohr-Mottelson
type phenomenological models in the sense of RDA, or the potential energy term of the
Generalized Bohr-Mottelson Model.

The expression for the kinetic energy term T of the GBMM, as was told above,
is yet to be obtained. For this reason we postulate that the GBMM kinetic energy term
is the usual kinetic energy operator in 6-dimensional space.

Let us introduce six new spherical coordinates glI™(I = 0,2), replacing six collective
variables p?, 3,7, 0, ®, ¥ by OF -irreducible bilinear forms of the relative Jacobi vectors,
summed on the particle index, namely:

1 11

A-1
m = Z ( E C p}"‘p;"’) ; =02, -l<m</I, (13)

21 \mim; mimzm

which turn out to be the only functions of collective variables one needs. Replacing in
Eq.(3) Carthesian index s by the spherical normalized index m = 0, %1 and using the
explicit expressions for D('*) matrices, one obtains from Eq.(13) following results:

1
oo_ _ L 2 )
q A7 (11)
4™ = —Bcos yDEN(O, 8, W) + %sinv (Din(©,0,9) + D, (0,8.9)), (15)
where D,(,zn) are usual Of Wigner matrices and p, 8 and 7 are given by Eq.(10).
Using Eqgs.(14) and (15) one can relate p?, 3%, 3% cos 3y to OF -scalars as follows:

Pt = —/3q0
0
/32 = \/E[th’q[zl]o’ (16)
35 2 0
BPcosdy = ‘/7[[,,[21,,,[21] , qm][;

where -

[q]", =T c!

v qm Q[ )m? (1
m" mm'm"
mm'



Thereflore we see, that the set of six new collective variables ¢/™ is equivalent to the set

of previous collective variables p?, 3,7,0, ¢, V.
Now one can define the kinetic energy operator of the GBMM in the canonical way:

micr _ Ck ! I-m a a
= '—2—12 Z (-1) (?qmm('iqm’ (18)

=02 m=-!

where C is the kinetic energy constant. Using Eqgs.(14) and (15) one can present this

operator as

TGBMM(pZ,‘H, 7, e’ (b, ‘I’) —

3., & (B 19,0 11 .9
- S 9 B -~ in3y—]| =
= 3%y 2(‘[,,:.2.2,3J,:(x3,7)+ﬁ4aﬁ 98T ey oy "5y
— —§Ck‘_a2—+7'BM(/3,‘y,6,(b,\I/), (19)
2 " 9(p?)’

where L' are the components of the orbital momentum operator in the internal reference
frame of the nucleus. J;(f,7) is the momentum of inertia

2
Ji(3,7) = 4f%in’ (7 -p gﬂ) i p=1,2,3, (20)

4

and TPM(...) denotes the usual (5-dimensional) Bohr-Mottelson model kinetic energy
operator [13, 3, 12].
Now, the full GBMM Hamiltonian [3] can be presented as

HOPMM = TOBMM(? 5, 7,0,0,0) + VEEMM(p, 5, ), (21)

where the potential energy operator is the same one as in the General Restricted Dy-
namics Model Hamiltonian (see Eq.(11)):

VGBMM(pZ,ﬁ, y) = ‘,‘r‘vlucc;” (/1’,)2’132,/}3 coS 3')’) . (22)

The standard Bohr-Mottelson Model (BMM) Hamiltonian in 5-dimensional model
space one can evaluate from the GBMM Hamiltonian if one "freezes” variable p?. Then

one obtains

HEMM = TPM(3,7,0,8,7) + VE(3, ), )

where the kinetic energy term TBM(.. ) is given by the corresponding term in Eq.(19),
but VBM(_ ) has form

VEM = %C‘H"’, (24)

which can be evaluated as a particular case from Eqs.(22),(11).

4. Derivation of the Microscopic Generalized Interacting Boson Model (GIBM)
Hamiltonian

In order to derive from the GBMM Hamiltonian the microscopic GIBM Hamiltonian
let us introduce six creation (7'™) and six annihilation (7*™) operators as usual:

1 7] 1 a
Im __ [{m _ . +Hm _ [tjm
"t =— ; = + . 25
V2 (q 341[1]"1) " V2 (q (?qmm) #)

By taking second order expressions in '™ and 5™ one can realize the algebra of the
group Sp(6, R), whose compact unitary subgroup Us generators are

Crymy ™™ = My pH2™2. (26)
The contravariant and covariant indices in Eq.(26) are related by
M = (_1)""1"711-m. (37)

Taking linear combinations of Us generators (Eq.(26)) one constructs all the generators
of three Us subgroup chains, ending with OF (Ref.[14)):

Us D UsD>0s204%
Us O 0sD0sD> 0% (28)
Us D> SU;D> 0%

If one inverts Eq.(25), one gets

q[l]m — % (n-Hm + nlm) : aq(:lm — _\}_i (n-Hm _ nlm) , (2())

which allows one to express, using Eq.(16), the invariants p2, 32, 33cos 3y in terms of
creation and annihilation operators as

p2 — _\/g(noo+n+oo) ,

g = %Z (mam + 1) (2™ + n**"), (30)
Breosdy = \/73_5 [0 )3 + (ot )+ 3 )+ 3(mntont)y)
where e.g.

1 o222

0 _ 2 o
(72,12, 12)o [[172’772] ,772]0 V5 mimams MMz m

n2m|772m27]2m3, (3] )
3



and similarly for other terms of the 33 cos 3y expression in Eq.(30);
Now, let us rewrite the GBMM Hamiltonian Eq.(21) in terms of creation-annihilation
operators Eq.(25)

JIGBMM ( Im 7]+l'm') — TGBMM (

. 77“"~’7+l'm’) + YGBMM (ulm’ 77+1'm') , (32)

where
1) the kinetic energy operator is obtained from the canonic expression (Eq.(18)), in
which the replacements, given by Eq.(29), are made:

TGBMM (,]lvn1 7’+l’m’) — % Z (1 + :anmmm) _ % Z ( o + 77+1mm+m) : (33)
! [

m m

2) for the potential energy operator from FEq.(11) one obtains

";GBAIM (Ulm’]ﬁ-l‘m’) - A(4 - 1) ‘/O Z ’),Rt %

9
2 =0,1,2,...

1 ] m
Y Cidm) [(p’(. ) (B ) (B cos3(...) ] , (34)
+2143m=t¢
where (A3

ko= Ata—3) (35)
and p?(...),3%(...), 3% cos 31(. . .) denote the corresponding expressions, given by Eq.(30).
Now, we split the microscopic GBMM Hamiltonian (Eq.32)) in two parts, the first

of wlicl contains only l/s generators and constant terins, i.e.,

HﬁBl\IM (qlmyn+l'm') = {]C’IBM (T’lm‘)]+l'm') + I{'GBAIAI (nlm‘,q+l'm') . (36)

In Eq.(36) HC!BM (n’"‘,n“""') = HOBM s the Generalized Interacting Boson Model
(GIBM) Hamiltonian - the Us-restricted part of the GBMM Hamiltonian HEBMM,
Again, one can write H®/BM a5

HOIBM (gim ') — TSIBM(yim ') | y/GIBM (yim ') (37)

The kinetic part easily can be written as Us-restriction of the kinetic operator (Eq.(33)):

. C Ce (5
TGIBM _ Tkz (1 + 277‘"17714,;,) = Tk(N +3). (38)
Im -

Here N is the operator of the total number of Us-quanta. Concerning the potential
energy operator Fq.(34), when one takes into account Eq.(30), one can easily see, that
from the terms p?(...), B%(...), B*cos3y(...) only those with i + 2/ + 3m = t =even
have Ug-restricted terms.

10

Finally,. from Eq.(37), taking into account Eq.(38) and the ¢ = 0,2,4,6 terms of
the potential energy expansion Eq.(34), one can write the GIBM Hamiltonian in the
following form (for details see Ref.[6]):

1, 2
HOIBM _ SCN +3) +C, [boRo 4+ bR, (?OFz(z,o, 0) + 8F5(0, 1,0)) +

560
+ byRy (TF4(4,0,0) +576F,4(0,2,0) + 1344F,(2,1,0) —

32032
_ 256\/§F4(1,0,1)) +beRs( 27 0 i (6.0,0) + 640;40
732160v/6

— =g Fo(3,0,1) + 549120 5(2,2,0) — 133120v/BFy(1,1,1) +

+ 115200F%(0,3,0) +20480F6(0.0,2))], (39)

Fe(4.1.0) —

where we have used the notation

Ft(i,l,m):[(f,2(...))"(ﬂ2(.,.))'(ﬂ350537(...))m] ;o t=i4204+3m,  (40)

I’

for the Ug-restriction of the corresponding monomials of Of -scalars. Coefficients R: in
Eq.(39) are given by Eq.(35). Parameters b, describe the features of the chosen NN-
potential, taken in the form of Eq.(6). In the case of multipole-Gauss type potential
Eq.(7) by are given by Eq.(8). For the superposition of two multipole-Gauss type poten-
tials (Eq.(A.6)) the coefficients bR, are given by Eq.(A.20).

Besides the kinetic energy constant Cy, there is one more constant in Eq.(39) - the
potential energy constant C,. For the Wigner type central NN-interaction it assumes
simple form
_A(A-1)
===
One can easily obtain the C, expression also in more general case, when the central NN-
interaction contains Wigner, Majorana, Bartlett and Heisenberg forces of equal potential
depth and radial form [4], given by expressions Eq.(6), or Eq.(7):

Cp Vo. (41)

Cp = [Aoew + A(f)em + A(S)ep + A(T)ey| Vo, (42)

where Ay = A(A — 1)/2 and A(f),A(S),A(T) are the eigenvalues of the symmetric
group class operators, consisting of orbital, spin and isospin exchange operators [15, 16].
cw,cM, cB, cy are the exchange constants of the central interaction.
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5. Microscopic derivation of the standard Interacting Boson Model (IBM)
Hamiltonian and its microscopic extension

The standard IBM Hamiltonian can be written in several equivalent forms. For our
purposes the most convenient form is the one written directly via Casimir invariants

(Ref.[])

H'BM = e 4 ey N + 205(Us) + eita + aCy(Us) + &1 N - g +
+ BCH(05) + 2912 + 8C3(SUs) + nCy(Og), (43)

where €, 1, €2,€,a,¢1,3,7,d,n are model parameters.
In Eq.(43) all two-boson interaction operators are presented using first and second

order Casimir operators (expressed via [ generators Eq.(26)) of three Us subgroup
chains (Eq.(28)). Then,

CiUs) = ¥ Cin™ =3 ™ = noon™™ + 3 oyt =
Im m

Im

= o+ ha=N; (44)
CQ(UG) = Z Cll"‘l IQm?CIng fum = Z 77hm17]+12m7nlzm27]+llml =
i ]
= N(N +5); (45)
C(Us) = 3 Con™ =3 ™™ = fig; (46)
m m
(‘2((,5) = Z CZm. 2’"2027112 m = Z 772m1n+2m27l2m27l+2rm =
myms myma
= fg(fa +4); (47)

Four remaining Casimir operators in Eq.(43) one can express via combinations of boson
operators in the similar way

(C3(Oe), ("2(05)7(«"2(5"3)‘("2(0.;') = iz) = f1,2,3.4(711ms71+1m) (48)

(see expressions (49)-(54) in Ref.[6]).
The next, most difficult, step in the study of relationships between GIBM and IBM

Hamiltonians (Eq.(39) and Eq.(43)) is to obtain, in terms of Casimir invariants of the
Us subgroup chains Eq.(28) (Eqs.(44)-(48)), the explicit expressions for Us-restricted
monomials Fi(,1,m) (see Eq.(40)) of OF -scalars, entering in the potential energy terms
of Eq.(39):

Fyi,,m) = fuitm(N, fia, Co(Us), Co(Us), Co(05), L, Co(SUs), Co(Os)). (49)

The calculation methods, examples and results of Fi(7,!,m) evaluation for t = 2,4,6
values are given in the appendix of our paper [6].

12

If one inserts the Fy(i,1,m) expressions for ¢ = 0,2,4,6 values into the GIBM Hamil-
tonian (Eq.(39)) and compares the coefficients at corresponding Casimir invariants in
Eq.(43) and H5'®M (Eq.(39)) one can derive (see Ref.[6]) following microscopic expres-
sions for the parameters of the standard IBM Hamiltonian (Eq.(43)), via b,(t = 0,2,4,6)
values associated with NN-interaction potential:

3
€ = §Ck + Cp(boRo + 30b; R, + 11340b, Ry + 15947400bg R);

1
e = §Ck + 20 Cy(ba Ry — 36bs Ry + 179742006 Rs);
€ = 40 Cp(63b4 R4 + 3831065 R(;),

€ = —12C,(b;Ry + 378b4 Ry + 256688065 Rs);

o = —8C,(81bsR, — 240130bg Rs); (50)
€1 = —16C,(81bs Ry — 140690b Rs);

B = 216C,(byRy + 17000 Rs);

v = —16C,(9b4Ry — 11260bs Rs):

§ = 48C,(9b4R, — 10180bs Re);

n = —24Cp(9b4Rq + 56720bs Rg).

These results generalize the microscopic IBM Hamiltonian parameter calculations
presented in Ref.[4], because we have accounted for the contribution of the kinetic energy
term (characterized by the kinetic energy constant Cy), included the ¢ = 6 order terms
in the potential energy expansion, as well as corrected somne errors in ¢ = 4 order terms.

6. The Strictly Restricted Dynamics Model (SRDM)

It is a rather difficult task to solve the Schrédinger equation for the full Restricted
Dynamics Model Hamiltonian Hgpps with realistic NN-interaction potentials. Because
of this, in Refs.[1, 17] the simplified version of Hrpas - the so called Strictly Restricted
Dynamics Model (SRDM) Hamiltonian, was proposed. In this case O4_, group is en-
larged to the unitary group Us_; and SO; group - to Us. The detailed description of
SRDM and its application for a-cluster nuclei with A < 40, employing effective NN-
interaction potential of multipole-Gauss-exponent type, one can find in our review paper
[18].

The general structure of SRDM Hamitonian is

HSRDM = HO — H()call + HOa, (51)

where H%! js the U4_-collective (scalar) part of the general microscopic niiclear Hamil-
tonian H (Eq.(1)) and H% - the Usscalar part of H, which is responsible for the
anticollective effects in the nucleus. The basis function of SRDM can be written as
Y (NAo | pi,pas- -+, pam13Q), where:
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p: are Jacobi vectors (Eq.(2));

Q the set of A-nucleon spin-isospin variables;

Ao - the set of nuclear integrals of motion, which must be conserved according to the
symnielry requirements of the many-nucleon system: Ag = (7JMyM7Aa);

N - the additional quantum number, denoting both U3 and Uu-, IRs.

In order to separate the orbital and spin-isospin parts in the basis function of SRDM
we shall nse the Wigner supermultiplet scheme approximation (19, 20]. For the calcula-
tions in the framework of SRDM it is more convenient to use the unitary scheme basis
functions [21], characterized by the following group reduction chain:

Usa—ty D Usx s
U U (52)
SO3 04-1 D Sa

In this case quantum nuinbers of the orbital part of Wigner supermultiplet scheme basis
functions have the following meaning:

Ny - quantum number of the symmetric representation [No,0,...,0] of group Us(a-1),
determining the parity of SRDM state;

N = (N NzN3) - quantum numbers corresponding to IRs of groups Us and Ua-, in
the chain U.’s(A—l) O Uz x Ua_y, where N} + No + N3 = No;

I - quantum number corresponding to IR of group SO3, with K denoting it’s mul-
tiplicity in the chain Us D SOs;

« = (wiwaws) - quantum numbers denoting the IR of O4-1 group, and & - the
multiplicity index for w in the chain Usoy D Op-y. If Ng = Npin, then wy = Nj,w;p =
Na.wy = N3, and, therefore. 4 is redundant;

1 - denotes the IRs of gronp S4 in the chain Oy D Sx with multiplicity a.

For orbital basis functions of Wigner supermultiplet scheme the reduction rules in
the chain Usa_1y D Us x Uy-y are well-known [15, 7]. In the Us D SOs chain the
reduction rules are equivalent to those of SUs D SOs chain [7]. If IRs of Us group are
labelled by [Ny N, Ns), then one can introduce for SU; group IRs the Elliott’s notation

(/\[1) = (Nl - Nz, IVQ - Na) (53)
In this case, according to Ref.[22], the multiplicity index K assumes following values:
K = min(A, pt), min(A, pt) = 2,...,0 or 1, (54)

and

) > — Ly i K= )
Lz{max(/\,/:),ma‘((/\,y) 2,...,00rl, if 0 (55)

K, K +1,..., K+ max(A, ), if K#0.
Note, that SUs basis functions |(Ap)KLM > in the chain SUs D S0; O SO, are

not orthogonal with respect to I, therefore, one must perform the orthogonalization
procedure before the diagonalization of SRDM Hamiltonian matrix.

.

In the chain Us_y D Oa1 D Sy the reduction rules are more complicated [15].
Taking into account that in the unitary scheme (Eq.(52)) groups Us and U4_, are com-
plementary [7] (i.e. IRs of Us and Us-, are determined by the same set of quantum
numbers [N; N3 Ns)), one can use for unitary scheme basis the well-known SUj classifi-
cation scheme for nuclei, introduced by Elliott [22].

The problem of the classification of spin-isospin functions of Wigner supermultiplet
scheme is reduced to the classification of (S, T) multiplets, entering in IRs f of group
Sf;"). Here, (5, T) denotes the pair of IRs A, and A, of groups S,(:) and SE{), which for
fixed A value are related by expressions [A;] = [(4/2) + S, (A/2) — S],[A\] = [(A/2) +
T,(A/2)—T). Therefore, the classification of (S, T') multiplets is reduced to the reduction

[f]=3 60,2, (56)

a

where & is the multiplicity index of equal pairs (A,, ;) in f, which can be calculated
using formula given in Ref.[23)].

According to Eq.(51), the SRDM Hamiltonian consists of two parts, accounting for
collective and anticollective effects, correspondingly. The general SRDM Hamiltonian
matrix structure in the employed Wigner supermultiplet basis functions is:

NK(LS)JM; B NK'(L'S"YJM; _
$wa(f f)aT Mra 5’w’a’(f’f’)&’T'MTa >=

H® =
[HON, 0, MD)] s arscwstsrar v

[HOCOU(N’ J,f,T, MT)] ’@[H"“(N, S, MT)]

. . (57)
KLS&,K'L'S'a Swa f&T w'a’ &' T!

Indices, placed in brackets (...) at Hamiltonian terms, denote quantum numbers which
are conserved. Therefore, the general SRDM Hamiltonian matrix is numerated by nine
quantum numbers: K, L,S,é,w,a, f,&T.

The evaluation of SRDM Hamiltonian matrix Eq.(57) is described in Ref.[18]. The
general structure of its matrix elements is

Hsppm = Higy + HZ + HEP + B 4 HP o+ Hi + HE + HE o (58)

where separate terms denote collective (coll) and anticollective (a) kinetic (kin) and
Coulomb (e) energies as well as the central (c), vectorial (v) and tensorial (t) NN-
interactions.a

7. The results of a-cluster type nuclei energy calculations in the framework
of SRDM

The a-cluster type nuclei with A = 4,8,... are characterized by the Young pattern
[f] = [4*/4] and the spin-isospin pair (S,T) = (0,0). The SRDM quantum numbers for
a-cluster type nuclei with A =4,8,...,80 are given in Table 1.
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The SRDM Hamiltonian for a-cluster type nuclei, following from Eq.(58) if one
notices that for the states given in Table 1 the vectorial and tensorial terms of NN-
interaction vanish, has the form:

Hsppm = HEZ + HEY + HO' + Hi, + HE + H?. (59)

kin

Joining together all expressions for particular terms of SRDM Hamiltonian Eq.(59) (for
details see Ref.[18]), the following final expression for the SRDM matrix elements in the
case of a-cluster type nuclei can be obtained:

E in 2
o =" (BRRE +1) + GVVaAA - EG(K L E'L)+
Table 1: The characteristics of a-cluster type nuclei with 4 < A < 80

> A —4
Nuclews | {7 [ NNaNel | () [ vor [ pggie, e+ E:“] e [%—’Ec‘“’(u K'L) + B

‘He [4 [0,00] | (0,0)]0 16 16

836 42 4,0,0] (4,0) 0 62 a —a Au)L

ac | )| (ool | (04) [0 v B g - paRr - (60
%0 [4°] [4.44] | (00)]0 The quantities entering in Eq.(60) have the following meaning:

*Ne 4°] (12,44] | (8,0) |0 The oscillator frequency parameter v4 (or the wave function scaling factor ry) is
Mg | [49 [168,4] ] (8,4) | 0,24 adopted according to Ref.[16], and it is equal to

g | [47] [16,16,4] | (0,12) |0 \

%28 {43 | [20,26,8] | (4,8) 10,24 e = 1V 5(No+3(A-1)/2) (61)
%Ar | [4°] | [20,20,12] | (0,8)]0 A7 \r) T A

10Cq |[4'9 | [20,20,20] | (0,0) [ O L i i

T | 41| [32,20,20] | (12,0) | O where rgo, entering in the nuclear radius expression R = rgA!/3, we shall regard as a
s0r | [47] | [40,24,20] | (16,4) | 0,2,4 model parameter.

s2pe | [4'9] | [48,24,24] | (24,0) | 0 The model parameters C and C; are defined by expressions:

S6N: | [4"] | [52,32,24] | (20,8) | 0,2,4,6,8 C o= V. te

s0zn | [4%] | [56,36,28] | (20,8) | 0,2,4,6,8 ! o ow +cm), 4

6iGe | [4'] | [56.48,28] | (8,20) | 0,2,4,6,8 C, = Vo [(cw —cMm)+ R (c8 + cy)] . (62)
85e | [4'7] | [56,56,32] | (0.24) [0 ‘

2K | [4'9] | [60,56,40] [ (4,16) | 0,2,4 These parameters are two independent combinations of central force exchange constants
w5y | [419] | [60,60,48] | (0,12) | O (subjected to the normalization condition [24] cw +car+cg —cy = —1) together with the
807y | [4%] | {60,60,60] | (0,0) | 0 common NN-interaction potential depth V.o, assuming that the eflective central NN-

interaction potential Vi has the same shape for Wigner (W), Majorana (M), Bartlett
(B) and Heisenberg ( H) forces.
FEyin denotes the kinetic energy term

Ein = 20.7357v4 (No + (34 ~ 1)/2)) [MeV]. (63)
The collective submatrix elements of orbital operators for Wigner interaction are

given by the expression:

E&W(KL,K'L) 21’» (Vi Vg ) QN (KL, K'L), (64)

=0



where Qﬁ“w"”( K L, K'L) denotes the collective (U4—j-invariant) density matrices in com-
pact form and I,¥ (Vi Vi) are Talmi integrals of central (V4), or Coulomb (Viy) inter-
action. Some details about collective density matrices are given in Ref.[18], and their
calculation. technique is described in Refs.[25, 26, 27, 28, 29, 30]. The evaluation of
Talmi integrals for the effective NN-potential employed in our calculations is described
in Ref.[31] and Appendix A.

EZ%° in Eq.(60) denotes the anticollective (SUs-invariant) orbital matrix elements of
central (¢) and Coulomb (e) interactions (see Eq.(B.12)). The details of their evaluation
one can find in Appendix B.

The SRDM Hamiltonian matrices are given in the Elliott’s basis |(Au)K'L >, and
the quantities B,(,"v\,“(),l‘, entering in Eq.(60), can be expressed [18] via the overlap integrals
< (M) L|(Me)R'L > of SUs basis functions (see Ref.[32] and Appendix D of Ref.[18]).
Applying to 1q.(60) the orthogonalization and diagonalization procedures, we obtain
cigenvalues (energies E) and mixing amplitudes of the SRDM Hamiltonian (Eq.(59)).

I'he choice of NN-potential is limited by the consideration that it’s expression should
not be too complicated, so that one can evaluate Talmi integrals. But, on the other hand,
it must reproduce the experimentally known features of NN-interaction (e.g. it must
be able 1o describe a hard core at small distances, and it’s tail must not extend outside
the size of the nucleus). One can see. that the single multipole-Gauss potential Eq.(7)
does not satisfy these requirements. ‘The next in complexity potential, which allows one
to reproduce partly the characteristics of the realistic NN-interaction potential, is the
superposition of two multipole-Gauss type potentials [31], which we have employed for
the calculations of a-cluster type nuclei with 4 < 60. The analytical expressions of this
potential. its parametrization, as well as the details of Talmi integral calculations one
can find in Appendix A.

The results for a-cluster type nuclei with 8 < A < 60, obtained with the NN-
interaction potential taken in the form of Eq.(A.6), are given in Table 2. In this table

m 1/2

d = |3 (Foutei) = Eergi)?/m| (65)

with m - the number of experimentally known levels (including binding energy). The
values of following parameters have heen obtained by the fit to the available experimental
binding and excited level energies:

roo - the nuclear radii parameter (see Eq.(61));

ro.71.K - the parameters defining the shape of the potential formed by the superposition
of two multipole-Gauss type potentials (see Appendix A);

('},Cy - parameters combining potential depth V7o and exchange constants (see Eq.(62)).

These results seem to be quite satisfactory with regard to the fact, that the ground
state binding energies (whose values vary in the interval ~ 30 — 350 MeV) and the

Table 2: The SRDM parameter values for a-cluster type nuclei with 8§ < A < 60

Nucleus | m | roo [fm] | ro [fm] | 7, [fm] | & | Ci [MeV] ]| C; [MeV] | d[MeV]
5Be 3 1.385 0.75 2.433 |0.663 | -611.202 | 1101.430 4.82
12 3 1.064 0.75 1.876 |0.717 | -686.108 824.354 5.90

ONe | 5 | 1.236 0.75 1.770 | 1.151 | -68.401 61.637 4.52
Mg |15 1.109 0.75 1.376 | 0.881 | -79.653 66.917 4.19
%5t | 4| 1.387 | 0.25 | 2.126 | 0.500 [ -52.488 | 42.150 3.27
2g 8 1.175 0.75 1.386 | 0.868 [ -66.801 51.535 2.38
36 Ar 4 1.166 0.5 1.679 |0.654 | -54.072 40.616 3.68
“Ty 4 1.033 0.5 1.491 | 0.507 | -27.569 19.891 1.53
“Cr | 10| 1.284 0.25 1.630 | 0.082 ( -22.179 15.750 2.15
S2Fe 4 1.221 0.75 1.668 | 0.501 | -26.041 18.239 1.66
S6Ni | 11| 1.081 0.75 1.457 | 0.521 | -34.951 24.203 2.66
607Zn 5 1.291 0.25 1.599 | 0.419 | -22.958 15.752 2.00

low-lying excited level energies (which are in the energy interval ~ 1 — 15 MeV) were
calculated together at the same time. Contrary to the results obtained for light a-cluster
type nuclei with A < 40 (Ref.[33, 18]), the effective NN-interaction potential parameter
values for 40 < A < 60 region a-cluster nuclei reveal significant dependence from the
nuclear mass number A. The obtained values of nuclear radii parameters rgy are in
reasonable agreement with the known calculation results for other neighbouring nuclei.

8. Numerical estimation of microscopic values for the parameters of phe-
nomenological collective models

The relationship chain between nuclear collective Hamiltonians is based on the Gen-
eral Restricted Dynamics Collective Model (GRDCM) Hamiltonian Eq.(5) evaluated
from the General Microscopic Nuclear (GMNH) Hamiltonian Eq.(1). Since GRDCM
Hamiltonian remains unsolved as yet in the case of many-nucleon system, we shall em-
ploy for our numerical estimation of microscopical values for phenomenological collective
model parameters the results of a-cluster type nuclei energy calculations presented in
Sect.7.

We shall consider the microscopic estimations for parameters entering in both phe-
nomenological collective models - the standard BMM and the standard IBM Hamilto-
nians. The microscopical values of two standard Bohr-Mottelson Model (BMM) Hamil-
tonian parameters (the mass parameter - B and the nuclear stiffness parameter - (7),
obtained using the results of SRDM energy calculations for o-cluster type nuclei, can be
compared with their phenomenological values, which follow from the BMM rotational
band energy formula. The Standard Interacting Boson Model (IBM) Hamiltonian is
characterized by 10 parameters eg,€),€,...,7. The microscopical valucs of these pa-
rameters, estimated using the NN-interaction potential parameter values obtained from
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the SRDM energy calculations for a-cluster type nuclei, can be compared with their phe-
nomenological values, obtained by means of standard IBM energy formulas for limiting
cases. The preliminary results of such comparison have been reported in Ref.[34].

Iirst of all, we need to derive the microscopic values of the kinetic energy constant Cy,
(see Eq.(38)) and the potential energy constant C,, (see Eq.(39)). The rough estimation
for the kinetic energy constant microscopic value C;3**" one can obtain assuming that the
kinetic energy terms of GIBM and SRDCM Hamiltonians are approximately equal. This
assumption gives us the following relationship between corresponding matrix elements:

1 .
L < LR (66

Then o 1 3
;(N +3) = 5(No+ (4~ 1))20.7357w, (67)

and the microscopical value of kinetic energy constant is

Cpier — W'zo.n&sm [MeV], (68)
0

where we have used the microscopic value of the total number of Us-quanta (bosons)
N = N™ = Ny/2. (69)

According to the prescription of V.Vanagas [3, 2] such N™" value can be deduced from
the following branching rule for the reduction chain /g D SU; D O3 if N is IR of Us,
then one can enmmerate all SU; IRs contained in N by counting all the partitions of
number 2N into no more than 3 parts, i.e. 2N = 2N™< = N, + Ny + N3 = N, where
Ny > N, > Nz and all Ny, N2, Ny are even. The representations [NV) N; N3] obtained in
such a way denote all SU; IRs contained in N. _

The nicroscopic value of the potential energy constant (;*'" also is adopted from the
collective central NN-interaction energy term of SRDM Hamiltonian (Eq.(59)). Then,
for a-cluster type nuclei we have

(3¢, = 5C)A  (3C) + 5C,) A?

y = [MeV], (70)

micr _
o=

where (' and (’; are parameters, whose values are determined from the SRDM energy
fit calculations.

For the microscopic estimation of the standard BMM parameters we shall employ
now the phenomenological version of the standard BMM Hamiltonian (see also Eq.(23))

2

h 1
HpM = == Thu(5,7,0,8,9) + SCF, (1)

2

which is characterized by the nuclear mass parameter B and the stiffness parameter (.
The solution of HEMM in diagonal approximation for axially symmetric quadrupole de-
formation, characterized by deformation parameter Go, yields the well known rotational
band energy formula [35]:

, 1. 1 .
B(I, K, ny,n9) = (2n, + 14+ 5K)E, + (ng + 5)Eg + T+ = K A, (72)

from which one can obtain the phenomenological values of parameters B and C:

A h
GArOtﬂg’ hz hz
The microscopic value B™<" of the mass parameter B one can obtain from the
comparison of microscopically evaluated (see Eqs.(23),(19)) and phenomenological (see
Eq.(71)) kinetic energy terms of the standard BMM Hamiltonian, which gives

. h?
Bmle = -

4Cl:mcr ) ( { 1)
where CP*" is determined according to the formula Eq.(68). Analogously, the micro-
scopic value of the nuclear stiffness parameter C™<" can be obtained by comparing
the phenomenological potential energy term of Eq.(71) with corresponding microscopic
potential energy term in the expansion of HZBMM (Eqs.(22),(11)):

1 ; .
50;82 = 8CF5(0,1,0)b2 Ry = 8C" 32b, Ry, (75)

which gives . ‘
lecr = IGC;)II'CTb2R2’ (7()-)

where values of C;"‘", b, and R; are determined according to formulae Eqs.(70), (8), (35),
correspondingly, or Eqs.(70) and (A.20) in the case of superposition of two multipole-
Gauss type potentials (Eq.(A.6)).

The comparison of the microscopical values of the standard BMM Hamiltonian pa-
rameters B™", C™ " with their phenomenological counterparts for a-cluster type nuclet
is presented in Table 3.

The microscopic values of the standard IBM Hamiltonian parameters €0,€1,...,7
can be calculated using formulae Eqs.(50), inserting microscopic values of kinetic and
potential energy constants CPr, C;,"“’ (see Eqs.(68),(70)). The corresponding phe-
nomenological values of the standard IBM Hamiltonian parameters one can obtain using
the diagonal energy formulae of standard IBM in SUs, SUs and O limiting cases (see
Ref.[36]):

1) in SUs case

Esu,(N,ng,v, L) = A(N) + eng + ang(ng + 4) + £, Nny +Bv(v+3)+2yL(L +1); (77)



21

2) in SU; case
Foun(N. M L) = A(N) 4 6200 4+ 52 430 +30 + ) + 20L(L +1); (78)
3) in Og case
Foo(N,o,7,L) = A(N) + 250(c +4) + 287(r + 3) + 27L(L + 1), (79)

where A(N) =g+ ey N + eoN(N +5).

The results of comparison between microscopical and phenomenological values of the
standard IBM Hamiltonian parameters for a-cluster type nuclei one can find in Table
4. In both cases the microscopic value (Eq.(69)) of the total boson number N = N™ir

was used. @

9. Conclusions

For the first time the numerical estimation and comparison of microscopical and
phenomenological values of the standard BMM and the standard IBM parameters have
been performed. using the Restricted Dynamics Approach based relationship chain be-
tween collective iodels. The Strictly Restricted Dynamics Model (SRDM) parameter
values, used as input data for the evaluation of microscopical values for BMM and IBM
parameters, have been obtained in SRDM energy calculations for a-cluster type nuclei
with .1 < 60.

The comparison of microscopically derived values of phenomenological model pa-
rameters with their values obtained from the direct fit to the experimental level energies
shows considerable discrepancies in the case of standard BMM (2-3 orders of magni-
tude). This fact can be explained remembering that standard BMM usually is employed
for the description of heavy nuclei (A > 100), characterized by the stable deformation of
the nuclear core. In the case of standard IBM the microscopically estimated parameter
values agree with their phenowmenological counterparts much better.

These results indicate that our approach can give only a first very rough estimation
for the parameters of phenomenological collective models. One needs more elaborated
cfforts for the real success in this direction.

Appendix A. The NN-interaction potentials and Talmi integrals

In order to calculate the collective and anticollective matrix elements of NN-interaction
one needs to calculate interaction integrals for the chosen NN-interaction potential. In
the collective matrix elements Fq.(64) interaction integrals I,; . are already reduced to
Talmi integrals I, (since Ly gn = Lgsss = Iss)-

For the evaluation of the anticollective matrix elements we shall use the SUs-averaged
interaction integrals Ijpole (see Ref.[15]), depending on the interaction integrals I; (I =

o]
()

[el,zl):
20+1
I[(]O]ezz d I, (Al)
1 e
whfare d. = (E+‘1)(6+2)/2. Interaction integrals Iy, in turn, for values e = 0, 1, 2,3,4,5,6,
which we need in our calculations, can be reduced to Talmi integrals I.,, nsing formulae
of Table 15.1 in Ref.[15]. Then we have (see Ref.[24]):

1[00]0 = Iy

1[00]1 = Ly

looz = (loo— 211 +515) /4;

loops = (31 — 6120 + Tl33) /4; (A.2)
[[00]4 = (100—4111 + 18122—28133"’21144)/8;

Tioos = (1051y; — 42012, + 1050133 — 1260144 + 693155) /168;

Ioos = (105100 — 6301y, + 40951y, — 12180155 + 21735144 — 20790 1ss +

+ 9009765)/1344.

For the convenience of practical calculations, we introduce into chosen NN-interaction
potential expression the wave function scaling factor ry (see Eq.(61)), which leads to the
replacement

. ™Y e
Vv, g1 (Pa) — Viwr (r—"’ \/ipn) (A.3)
P

for the particular exchange components of the central NN-interaction. Talmi integrals
of SRDM, taking into account Eq.(A.3), have the forin

B2 Vi) = 1t (Vs (285 ) =
p

. /0 padpa Ry (pa) Vi1 (:—w\/ipa) R (pa), (A.4)
4

where p, = |§,|. Integrals Eq.(A.4) are defined with respect to the unknotted three-
dimensional harmonic oscillator radial wave functions

Ty :;&Eex)_lp_"z 4
Rse (pa) (T¢)3F(5+3/2) (rw) 1} [ 2(T¢,) ] . (/\))

The NN-interaction potential, written as the superposition of two multipole-Gauss
type potentials [31], which we have employed for the calculations of a-cluster type nuclei
with A < 60, can be presented as follows:

L} I3 @ P
Voo =i (2) e |2 (2) ]*Vw%:(&) exp [—Zm(ﬁ) ]
1p T1p T2p T2

(A.6)
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where
Zoy = sign(aq); Zy2 = sign(az),

and

/4, 1/82
' .

rp=lo|” rap=|eoa|”

In Ganss potential case (when q; = ¢ = 0 and B, = (3, = 2) the potential Eq.(A.6)
is characterized by 4 parameters: ry,,72p, Vo1, Vo2. Taking into account the replacement
Eq.(A.3), the NN-interaction potential expression Eq.(A.6) becomes

v (\/57'.11)") = Vm(7‘1p)m Vg, 721, Zor, Br) + "/02(7'2;:)92 V" (g2, 722, Z02, 32) =

7o o P\ - Pa i JATRY ) (&)q2 _ (p_ﬂ)ﬁ2
= Vor(rp)? (;2—1) exp [-Zm(m) ] + Voa(r2p) - exp [—Zo2 = , (A7)
where . i

r21 = 7'1;»\/%? T2 = "2,.\/—2—- (A.8)

Such superposition of two multipole-Gauss type potentials allows to obtain wide
variety of potential shapes, which are more convenient to investigate if one introduces
new parameters:

(7'lp-r2p7v017‘/62) — (7'077'lav15".')v (Ag)
where
V(pa=10) =0; = V(r);
a Q- Ozﬁzrx
ko= L

V{pa) lpa=ri=0;
Dpa e lh—alﬂl’;
New parameters (ro, 71, Vi, £) have the following meaning:

7o - the distance , where V(p,) = 0. (In our calculations this parameter was fixed, since
the potential shape is defined by the ro and r| ratio.)

r1 - the distance, where §%v(pﬂ) =0.
4 - the total potential depth defined as V; = V(ry).

2
% - the ratio of the first and second Gauss potential scales k ~ %2
P

When one introduces parameters o, 71, Vi and &, then the old parameters, entering
in the potential expression Eq.(A.6), can be evaluated as follows:

(kg — @2) (1—(3}) )+ﬂ ln[ q. qz]
"o (A.10)
" o (- ) (- (%)

o) (1= (2)") + i [~ 2)"] i

" e e (- @)-a (- @)
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and
Vo = —M(m)wexti([r—.;wo)m]: (A.12)
Vor = V'(TO)MX;([;T(W]’ (A.13)

where

Ulr) = (ro)™(n)"exp [~ (aa(ro)” + az(r1)*)] -
(r0)%(r1)" exp [-— (a,(rl)"' + ag(ro)ﬁ?)] . (A.14)

For NN-potentials, written as a superposition of two multipole-Gauss type potentials
(Eq.(A.6)), corresponding Talmi integrals are obtained as the weighted sum of two Talmi
integrals for each multipole-Gauss potential V' and V" (for details see Ref.[31]):

T 19241 (r, f12/2) T T (26 + g+ 3)/2)
I.. (erp ?azhﬂ): Y P YR (A.15)
\/F(25+1)!(r;",u,1/2+z|)

where q,r,, 21, 3 for the first part of the potential assume values qi,7y,, Zo1, 51, and for
the second part - g3, 12, Zo2, B2, correspondingly. Then, the summed Talmi integrals
can be presented as follows:

Iea (V(\/ird'pa)) = VE)II I;e (111, T')pv 52&, Zm,ﬂl) + Volzléle <(12,7'2p” U?A, Zoz,/jz) N (A l(i)

where the weight factors:

Voll = vﬁl(rlp)ql; vo’g = V()Z("Zp)q2 (A.17)

one can express using Eqs.(A.12) and (A.13). Since the common part of the potential
depth V) = Vo we include in parameters C; and C; (see Eq.(62)), then from Eqs.(A.17),
(A.12) and (A.13) we finally obtain following expressions for the weight factors between
two parts of the Talmi integral Eq.(A.16):

. (T‘Q) exp [’—02 10)[32]
—(rlp) (rl) )
(ro)™ exp [—a, (ro)a‘]

U(ry) ’

which should be used also when evaluating the potential part of HG'BM (Eq.(39)). Then,
in the case of potential Eq.(A.6), we have

bR, = (b,+b)Ri =

(=)™ (= 02) ) (A-3) .
(V" (t- l ar HVe )(A+2t—3)!!’ (A.20)

Var

(A.18)

Vor = (rp)” (A.19)




where oy and oy are defined by Eqs.(A.10) and (A.11).

Appendix B. The expressions of SRDM anticollective density matrices

The resulting formulae for the anticollective orbital matrix elements of Wigner and
Majorana interactions are following [24]:

2e0+1er

Ev(Viw) = 3 ljooe(Viv ) Qpooje(Swar f, §'w'e f'), (B.1)
e=0
260+1tex

Ey(Vi) = Y (—1)* Jig0je( Var ) Qpooge(dwar f, 8w’ f'), (B.2)
e=0

where ¢ = 0,1.2,... denotes SUj-shells (s.p,sd,...) and i, - ground (i, = 0) and
excited (i, = 1,2,...) SlUs-configurations. In Eqs.(B.1) and (B.2) Qe)e(...) denotes
the anticollective (Us-scalar) two-particle density matrix. Its general expressions are
known only in the case of p-shell (¢g = 1) and sd-shell (¢ = 2) nuclei. One can find
them in Refs.[15, 1, 24].

For other shells (o > 3), which we need in the case of a-cluster nuclei with A >
40, we must use the approximate expressions for the two-particle anticollective density
matrix components, which have been evaluated employing the approach described in
Refs.[15. 37]. According to this method, the two-particle anticollective density matrix
Qooje = Q. can be approximately expressed using "four universal relationships” (see
Eqs.(25.14), (25.15), (25.17) and (25.32) in Ref.[15]):

ZQ AA-D_y, (B.3)
Z(—l AS) = fan (B.4)
ZEQe f\u— f3: (B.5)

A
ZEZQE -Nl A1 z\o+3(r+4¥(€o)

[k3 45 M(sf”” 3)/3+ ASPN + 8,2, N)| /A= fo.  (B6)

In Eq.(13.4) A(f) is the eigenvalue of the orbital coordinate exchange operator, its ex-
pression one can find, e.g. in Ref.[18]. Quantity G in Eq.(B.6) is the eigenvalue of the
second (quadratic) Casimir operator of the ST/5 group:

G=1A+m)A+p+3) = ()] /9. (B.7)

Expressions for functions §Z™) | {%™ k. one can find in Refs.[15, 37).
From the sums of both sndes of these four relationships with coefficients bl ,bY,
b and M, b A, M| correspondingly, one obtains:

bw

<O

1) the approximate equation in the case of Wigner forces:
S QY (B + (~1)%6Y +eb¥ + ) = 3" Q¥ looyei (B.3)
2) and, analogously, in the case of Majorana forces:

2R (B + (—1) B + bl + M) = T QM (—1) fjye. (B.9)

Coefficients b¥, bM (i = 1—4) one can find solving the overdetermined linear equation
systems [37):
b+ (—1)8) + by + e = Ijo0). (B.10)
and
Y+ (—1)bY + el + 26} = (1) Jjgqy, (B.11)

where for A < 80 ¢ = 0,1,...,6. The expressions for SUs- -averaged integrals Iy,
one can find in Appendix A. Then, takmg into account relationships Egs.(B.3)-(B.7)
and using evaluated coefficients b ,bM, we can express the total anticollective energies
entering in Eq.(60) as follows:

_EV+EY _

E= e 2

[(bw £ 00 S+ (O 80 f + (O £ 68 fy 4+ (B £81)74]
(B.12)
using Coulomb and central NN-interaction potentials, correspondingly.

For the first time the approximate expressions for the $Us-invariant two-particle
density matrix have been obtained in Ref.[37]. Though, empolying these expressions in
our SRDM calculations of 44 < A < 80 nuclei, we have found that these expressions
contain errors. Therefore, we have solved systems Eqs. (B 10) and (B.11) again and
obtained the corrected formulae for the coefficients %, bM, which we have used in our
calculations (in the following expressions € = emar = 260 + ter for 40 < A < 80, since
€0 =3 and 7., = 0, therefore, £,ns, = 6): -

w o 3 €
by = (e—2)e(e+l)(e+2)(e+4)§[354_452_85_1_

= (e=D(e+1) 2+ 1)(-1)' +10*(? e +1) —

— 6e(2e +1)(e ~1)i]ll;  (fore —even); (B.13)
wo_ 3 ¢ a l_
b= (5—1)(e+2)(e+1)(e+3)§[35 +2-2—e(e+2)(-1)" +

+ 2i’(—5+5e)+6ie(1-2s)]1 (fore — odd); (B.14)
woo_ 1
b= 53 )e(e+2)e+4)§[ Ye-DEe+ D+

+ (= D(e+1)(e+3)(=1)' +30i(c — )] (fore — even); (B.15)
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= 1 (- 3¢ +6i 2)(-1)};
R e S D DU AR AL
(fore — odd); (B.16)
. 6 £ ) ;
' = -6 1)(3+5(-1)") +
W= e e gt T T e e
+ 2i(16e% 4 2¢ — 8 — 15¢i)]1; (fore — even); (B.17)
yo= ¢ y o —6c +3+32 + (1)) +
by = (e-l)(e+1)(e+2)(e+3)§“ ’ i+(=1))
+ 2i(2-15)+ 2(=1)]1 {for ¢ — odd); (B.18)
T = 30 552—56‘+1+—1"+
W= e e g e
+ 62+ 1 —(=1)];  (fore —even); (B.19)
: 30 S eia D) 4 60l
S e T ey DU LA
(fore — odd). (B.20)

Coefficients b} one can obtain replacing in all expressions [; with (-=1)';. &
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Table 4: The microscopical and phenomenological values of the standard IBM Hamiltonian parameters for a-cluster type nuclei

Nucl.

£+ N¢gy

B

n

micr

A(N)

ph micr ph

micr

ph

micr

ph

ph

micr

ph

8Be

IZC
Ne
%Mg
B8

325
36 Ar
447y
‘cr
52Fe
56 Ni
80Zn

-29
-134
-150
-203
-235
-252
-300
-362
-390
-425
-465
-480

-27 115.0

-82127.0(-2.6
-151(12.8} 2.6
-184( 9.5 | 1.7
-22210.7| 3.4
-259( 5.8 | 1.8
-287|10.5| 3.5
-361|10.3| 1.9
-390| 7.5 | 2.4
-428| 6.7 | 2.3
-462| 6.9 | 1.9
-480| 5.7 | 4.5

0.17
0.29
0.03
-0.18
0.08
-0.10
0.07
0.05
0.04
0.02
0.02
0.02

1.07
-0.10
0.01
-0.19
-0.05
-0.26
-0.10
-0.13
-0.10
-0.06
-0.34

-0.186
-0.286
-0.143
-0.153
-0.063
-0.090
-0.055
-0.045
-0.030
-0.029
-0.030
-0.021

0.046
0.028
-0.010
0.022
0.005
0.027
0.004
0.010
-0.005
0.008
0.025

-0.217
-0.342
-0.126
-0.049
-0.082
-0.031
-0.070
-0.056
-0.039
-0.033
-0.032
-0.024

-0.100
-0.258
-0.037
-0.029
-0.019
-0.013
-0.017
-0.006
-0.006
-0.004
-0.004
-0.005

0.313| -
0.472(-0.260
0.2741-0.039
0.363 | -0.044
0.099-0.026
0.212]-0.017
0.087]-0.017
0.071(-0.007
0.048 | -0.009
0.050 | -0.006
0.054 | -0.005
0.036 | -0.007

0.070
0.111
0.040
0.013
0.027
0.008
0.023
0.018
0.013
0.011
0.010
0.008

0.299
0.272
0.039
0.057
0.051
0.050
0.083
0.020
0.017
0.015
0.024
0.007
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Table 3: The microscopical and phenomenological values of the standard BMM Hamiltonian parameters for a-cluster type nuclei

Nucleus [N] Nst] N C;nicr C;mcr Bo B C
mice Bm ﬁf Cmier CPT'
®Be (4,0,0]] 2[23.679|12.661| - [0.011] - 9.423 -
2 [4,4,0]| 4|41.582(30.713|0.574|0.006 | 0.760 | 17.571| 11.825
2Ne [12,4,4] | 10]27.758| 7.583 |0.722]0.009 | 3.162 | 5.381 | 20.942
Mg [16,8,4] | 14]32.327| 1.299 |0.607 | 0.008 | 3.445 | 2.285 | 22.687
%85; [20,8,8]| 18]19.384|33.450]0.411|0.013 | 8.101 | 6.164 | 40.503
325 | [20,16,8]| 22|25.427| 1.017 [0.315]0.010 | 11.640 | 1.500 | 36.347
36 4r 1[20.20,12]( 26]24.37822.358]0.256 | 0.011 | 14.624| 5.072 | 33.040
“Ti |([32,20,20}| 36|28.230(22.711|0.260| 0.009 | 53.639| 4.493 | 80.162
#Cr | [40.24,20] | 42]17.527|15.006|0.368 | 0.014 | 27.024 [ 2.892 | 50.782
2Fe | [48,24,24]| 48|18.661| 7.722 |0.266 | 0.013 | 54.400 | 2.263 | 107.191
S6Ni | [52.32,24] | 54(22.965| 5.407 |0.174( 0.011 | 80.574 | 2.087 | 267.581
%0Zn |[56.36.28]| 60|15.562|10.0900.223 | 0.016 | 80.759 | 1.742 | 142.365






