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THE RESTRICTED DYNAMICS APPROACH FOR A ~ 60 NUCLEI 

Abstract 

The result.s of the evaluation of the Generalized Interacting Boson Model 
(GIBM) Hamiltonian in the fra.mework of Restricted Dynamics Approach have 
been used ill order to estimate the microscopical values for the parameters of two 
phenomellological collective models - the Bohr-Mottelson Model (BMM) and the 
standard Interacting Boson Model (IBM). The microscopically derived parame­
ter values are ralculated, lIsing the pffediv(\ NN-interaction pot,ential parameter 
values obtain<'d from the Strictly Restricted Dynamics Model (SRDM) energy cal­
culations for light a-cluster type nuclei with 8 ~ A ~  60, and compared with 
the phenomenological model para.meter values obtained from the direct fit to the 
experiment.al level energies of tht> same nuclei. 

1. Introduction 

From the point of view of the non-relativistic quantum mechanics one can regard the 
free nucleus in three-dimensional space as a closed system of well localized A particles ­
nucleons. The dynamics of this system is defined by its general microscopic Hamiltonian 
H. At the present stage of nuclear theory development, however, one cannot solve the 
Schrodinger equation for it. Therefore, H is substituted by the model Hamiltonia.n Ho, 
for which it should be possible to solve the corresponding Schrodinger equation. 

The traditional way of nuclear model construction is to substitute the original mi­
croscopic Hamiltonian H by another - phenomenological Hamiltonian H-ph. In most 
cases H-ph is taken from the theory of other physical systems (e.g. as in shell model, 
or Bohr-Mottelson model), or based on some simplified assumptions about the nuclear 
structure (IBM, IBFM, etc.). Usually, it is impossible to relate these Hamiltonians 
with microscopic H. Besides, some of these H-ph do not conserve all nuclear integrals of 
motion. 

The Restricted Dynamics Approach (RDA) [1, 2] provides one with the powerful 
tool for the description of collective phenomena in nucleus via the approximate solution 
of the microscopic many-body Schrodinger equation. Employing RDA, one can project. 
from the general translationally invariant nuclear Hamiltonian for the system of A nu­
cleons, its collective 0 A_I-invariant part, depending only on six microscopic collecti ve 
variables. Although the principles how to obtain microscopic collective models from 
the general microscopic nuclear Hamiltonian are known, the technique of such evalu­
ations is very complicated. At present the collective part of the microscopic central 
NN-interaction potential has been evaluated analytically only for the multipole-Gauss 
type Wigner pontentials. This collective part can be rewritten in the form analogous to 
the potential energy term of Bohr-Mottelson type models. Again, rewriting it in terms 
of creation-annihilation operators, one can obtain from it the Gelleralized Interacting 
Model Hamiltonian. 

The relationships between macroscopic phenomenological collective models and mi­
croscopic collective models in RDA for the first time have been studied in Refs.[3, 4] and 
in more details in Refs.[5, 6]. 

Let us consider the correspondence chain for nuclear collective Hamiltonians, starting 
with the General Microscopic Nuclear Hamiltonian (GMNH): 

GMNH -+ GRDCM -+ GBMM -+ GIBM -+ IBM 

~  ~  

SRDCM BMM 

where
 

GRDCM - the general, 0 A_I-invariant Restricted Dynamics Collective Model;
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SRDCM - the St.rictly Restricted Dynamics Collective Model - the collective (UA-I­
invariant) part of the full Strictly Restricted Dynamics Model (SRDM); 

GBMM - the Generalized Bohr-Mott.eISOIl l\'lodel in 6-dimensional model space; 

BMM - the standard phenomenological Bohr-Mottelson Model for nuclear collective 
motion in 5-dirnensional model space (obtained by freezing collective variable p2 ); 

GIBM - the Generalized Interacting Boson Model ill 6 dimensions, which conserves U6 

S)'llllllf'tl'y; 

IBM - the standard phenomenological Interacting Boson Model of Arima and lachello 
for .Cl,d-hosons in 6 dimensions (denoted in lit.erature as IBM-I). 

In the framework of this scheme it is possible to derive the microscopic expressions 
of the phenomenological collective nuclear model parameters in terms of the nucleon­
nucleOli interaction potential parameters. The corresponding expressions, accounting 
for t.he nuclear kinetic energy as well as the collective potential energy expansion up to 
the sixth-order t.erms, have been obtained in Ref.[6]. The aim of present investigation 
was to estimate numerically the microscopical values of the standard Bohr-Mottelson 
Model and the standard Interacting Boson Model parameters, using the NN-interaction 
potential parameters obtained on the basis of SnDM calculations for a-cluster type 
nuclei with 8 ~ A ~  60. The comparison of these estimated parameter values with their 
values, obtll,ined via the direct. level energy fit. using phenomenological nuclear models, 
can give liS infor\ll(ll.ioll ahollt the platlsihility of SlIch estimations. 

2. General Restricted Dynamics Collective Model (GRDCM) in the case of 
effective NN-potential of multipole and multipole-Gauss type 

Let us consider the general translationally invariant nuclear Hamiltonian for the 
system of A lIucleons, interacting by two-body central forces 

. . . rz2 1 ~ (~ ~ )2
Urn,c,. = Tmrc,. +vnllcr = --- L.. Vi - V j + 

2m A i<j=2 

A r . )('·'1) f . )(I1'J) r. )(7'J) r+ L (lW(7'i))+lij . h,(r,j) + J jj ·h(7ij)+lij '~H(rij)),  (1) 
i<j=2 

where for the sake of simplicity we have neglected the difference between protons and 
neutrons in the operator Tmic,·. The subscripts W, M, Band H in Eq.(I) refer to Wigner, 

Majorana, Bartlett and Heisenberg interactions, correspondingly. The Pi~''')  are the 
projection operators of spatial, spin and isospin states of nucleon pairs and rij =1 i;-rj I. 

Now we shall project the collective part from the Hamiltonian Eq.(I), which, ac­
cording to RDA, is its OA_I-invariant part. The projection will be carried out in three 
steps: 

1) Instead of the interparticle position vectors I r: - 7~1 /, we shall use the A - I 
translationally invariant Jacobi vectors [7] 

_ 1 (~_  ._)
Pi = ~ L..rj - zritl ; i = I, 2, ... , A-I. (2)

l(z+I) j=1 

2) Next, we shall express these vectors in terms of Dzublik-Zickendraht variables 
[8,9] 

3 
p~.)  ~ (Ie)D(la)(e If-, '1')D(I A -d (0 0L.. P Ie. , 'i', 't' A-'HIe,i 1l 2,"" 

0 .)
3A-9, (J' (:I) 

1e=1 

S = 1,2,3; i = 1,2, ... , A-I. 

Here D(la) and D(lA-d are Wigner matrices of groups ot and OA-I, correspondingly. 
These matrices are associated with the defining representations of these groups. p(k) are 
three radial variables; e,~,  III are three Euler angles; OI, O2•• •• , 03A-9 is a set of internal 
angles, and (J' denotes two discrete parameters, referring to OA-I group [1, ~]. Let. liS 

note, that from a1l3(A - 1) variables, introduced in Eq.P), only six: 

p(l), p(2), p(3), e, cIJ, \II (/1) 

(and only these), are scalars with respect to the symmetric group S~),  acting 011 tI)(' 
space variables r: (Ref.{lO]). Therefore, they are the collective microscopic variablf>s. 

3) Finally, the resulting collective part of the Hamiltonian (Eq.(1)), depending only 
on six collective variables, one can obtain if one integrates Eq.(l) over (3A - 9) internal 
variables 01, O2 , ••• ,03A-9, i.e. 

- H I (p(l) p(2) p(3) 0. .T. ­If-, no .. ...... )Hcoll- col , , ,O,'i','t"V'j"'j­

-f Hmic,. ((I) (2) (3) 0 ~  .1"0 0 0 .....) d1, llr d1r ­- p ,p ,p , ,'i','t', .. 2, .. ·, 3A-!J,(J"}lT'j VIJII 1J2 ,· .. , VIJ'A_9­

= Tcn;/r + ~';;iicr. (;») 

The Hamiltonian Hcoll (Eq.(5)) is the General Restricted Dynamics Collective Model 
Hamiltonian. The evaluation of the kinetic energy term Trn;l~cr  is still an open problem. 
In order to obtain its expression one should integrate the Tmicr expression in Dzublik­
Zickendraht variables over internal variables, which is a formidable task. 

The problem, how to obtain from Eq.(5) explicit expression for the collective pa.rt 
'<::iic

" of the general microscopic central potential V micr , is still open as well. At present 
it is solved only for central Wigner potentials presented as 

A 

v.mic,. 1/ ~ ~  b 21
W = vo L.. L.. Irij. (6) 

i<j=2 1=0,1,2, ... 
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Expression Eq.(6), despite its simple form, encompasses quite a large class of interactions. 
Among oth~rs  the potential Eq.(6) includes also the superposition of multipole-Gauss 
type interactions: 

A 2 

Fm~c,·. = I' '"" (t·· .)2u e- rt (r'J) (7)",(, I~  0 L...J I} , 

i<j=2 

where a = 0, 1,2, ... and 0 are the potential parameters. In the ca.c;e of potential Eq.(7) 
the coefficif'nt.s bl of Eq.(6) have the form 

b, = (_0)'-<1 
(8)

(I -o)!' 

where t = a. a + 1. a +2, ... 
In Refs.[l 1, 7] the following result was ohtained for t.he collective potential energy 

t.erm \ ;:~ii" wit It pokllt.ial Eq.(6): 

\·mir.r (1 (I) (2) (:I))_A(I1-1)\/ " b(A-3)!!(2t)!!x 
Ir "011 I, P , P .P - 2 0 L. 1 (A +2t - 3)!!

1=0,1,2, ... 

'"" (2kl - 1)!!(2k2 -1)!!(2k3 - I)!! ( (1))2kt ( (2))2k2( (3))2k3. (9)
X L...J k 'k 'k , P P P 

1'1 +~·2+~·.1=r 'I· '2' ':\. 

3. Derivation of the Microscopic Generalized Bohr-Mottelson Model (GBMM) 
and the standard Bohr-Mottelson Model (BMM) Hamiltonians from the 
General Restricted Dynamics Collective Model 

Now we' shall consider how to ohtain the Bohr-Mottelson type colleet.ive Hamiltonians 
(in tlw gcrwra.li7.ed 6-dimensional and standard 5-dimensional versions) from the General 
Hestrict(~d  Dynamics Collective Model (GRDCM) Hamiltonian described in previous 
sectioll. In orciN to associate the GRDCM collective potential energy term Eq.(9) with 

that of the Bohr-Mottelson model [12], first of all we replace (p(J))2, (p(2))2 and (p(3 lf 
in Eq.(9) hy three new variables (see Refs.[I3, :3, 4, 7]): 

/ (p(l)f + (p(2)f + (p(3))2, 

{,sirl')' (p(2)f] , (10)~ [(p(l)f ­
/1 cos 1 ~ [(p(I))2 + (p(2)f _ 2(p(3))2]. 

Then one obtains the final expression (see Ref.[6]) for t.he collective potential energy 
term via p2. iF. /p cos 3r (which are OJ -scalars, as we shall see below): 

',""'irr(A 232a:1 'J) A(A-l)" "b (A-3)!!
~lI'roll  /I,p ,f ,1' cos')')' = --?--vo L. I(A _)" x 

- '=0,].2,... +2t 3 .. 

x L CI(i, I, m)(p2r(.82) I(,83 cos 3')') m, (11 ) 
i+21+3m=1 

where coefficients C,( i, i, m) one can evaluate as 

CI(i, i, m) = (_. mm 1 (2t + 1)!(21 +2m - I)!! 
( 12)V3") 31 i!l!m!(2t - 2i + I)!! . 

The collective part of the central Wigner interaction (Eq.(6)), written in the form of 
Eq.(II), is the microscopic generalizat.ion of the potential energy term of Bohr-Mot.telson 
type phenomenological models in the sense of RDA, or the potential energy I erm of tlw 
Generalized Bohr-Mottelson Model. 

The expression for the kinetic energy term T('n;I~cr  of the GBMM, as was told above, 
is yet to be obtained. For this reason we postulate that the GBMM kille( ic Plwrgy terrIl 
is the usual kinetic energy operator in 6-dimensional space. 

Let us introduce six new spherical coordinates qll]m( I = 0,2), replacing six collective 
variables p2,,8, " e, 41, '11 by OJ-irreducible bilinear forms of the relative .Jacobi vectors, 
summed on the particle index, namely: 

q1llm = E(LeI 1 l p't P'j2) ; 1= 0,2; -I :S til :S I, (1:1) 
j=1 m\ m2 ml 71!2 711 

which turn out. to be the only functions of collective variables one needs. Replacing in 
Eq.(3) Carthesian index s by the spherical normalized index m = 0, ±1 and using t.hp 
explicit expressions for nth) matrices, one obtains from Eq.( 13) following results: 

1
q1010 = - v'JP2 , (1'1) 

ql21m = -{3cosln~2J.(e,4I, '11) + ~sinl (D~~(e,~, '11) + D~2Jm(e,~, '11)), (V» 

where nr~  are usual OJ Wigner matrices and p, {3 and I are given by Eq.(10). 
Using Eqs.(14) and (15) one can relate p2,{32,{33cos3')' to OJ-scalars as follows: 

p2 _v'JqIO]O, 

{32 J5[qI2] , qI2]]:' (16) 

{33 cos 3')' tf-[[qI2], qI2]] 2, qI2]]:, 

where 
I" i i' I" 

[qlll q111] = L C "QII]mqll']III" (17) 
, mil mm' Tn Tn' 711 
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Therefore we see, that the set of six new collective variables qll]m is equivalent to the set 
of previous collective variables p2, (J, "(, e, 4>, III. 

Now OIJf" can define the kinet.ic elJergy operator of the GBMM in the canonical way: 

I a amin Ck " ,,( ])'-m _r ' = - - L..J L..J - -n-- aq(l]m ' (18) 
coli 2 1=0,2 m=-I Oq[l)m 

where Ck is the kinetic energy constant. Using Eqs.(14) and (15) one can present this 
operator as 

r GBMM (p2,,fJ, 1, e, 4>, \lI) = 

-~c.~ -2('. [" (L~)2  ~~3"!!- ~_l_~.  ~]  

2 ka(p2)2 k P='t2.3 J;(j3,,) + 134aj31 013 + 132 sin 3, a, sm3, 0, 
2
 

3(, a l'BM(j3 Do '" 'T')
--k-.-2 + ,"(,O,'i', '¥ , (19)
2 D(p2) 

where L~  are the components of the orbital momentum operator in the internal reference 
frame of t.he nucleus. J;U3, "() is the momentum of inertia 

, (.12Sill 2 ( 2 ) 3Jp(lJ,,)J = 4 • , - ]1"311" ; P = 1,2, , (20)1 

' 

and T BM (... ) denotes the usual (5-dimensional) Bohr-Mottelson model kinetic energy 
operator [13, 3, ] 2]. 

Now, the full GBMM Hamiltonian [3J can be presented as 

/lGBMM = r GBMM(p2,/3",e,4>, \lI) +VGBMM(p2,(J,,), (21) 

where the potential energy operator is thp same one as in the General Restricted Dy­
namics Model Hamiltonian (see Eq.( 11)): 

VGB I\II\I(p2 {3 ..... ) = \-:mic,' (A , p2 132
,1'Jlcos3

'I'
..... ) (22), , I - Wcoll , 

The standard Bohr-Mottelson Model (BMM) Hamiltonian in 5-dimensional model 
space one can evaluate from the GBMM Hamiltonian if one "freezes" variable p2. Then 
one obtains 

H BMM = r BM(j3",e,<I>, \lI) +VBM(fJ,,), (23) 

where the kinetic energy term r BM ( ... ) is given by the corresponding term in Eq.(l9), 
but V BM( ... ) has form 

V BM = ~C(.l2 (24)2 f.I, 

which can be evaluated as a particular case from Eqs.(22),(11). re 

~ 

4. Derivation ofthe Microscopic Generalized Interacting Boson Model (GIBM) 
Hamiltonian 

In order to derive from the GBMM Hamiltonian the microscopic GIBM Hamiltonian 
let us introduce six creation (17'm ) and six annihilation (17+lm ) operators as usual: 

17'm = ~ (q(l]m _ _ a_) ; 17+lm = ~ (q[l]m + _a_) . (2.1)J2 aq[l]m J2 Dq[l]m 

By taking second order expressions in 1]1n& and 7}+lm one can realize the algplHa of til<'
 
group Sp(6, R), whose compact unitary subgroup V6 generators are
 

T1lC,1Tll .'2 2 = 7111l/1t 11+12m2 • (2(;) 

The contravariant and covariant indices in Eq.(26) are related by 

171m = (_1)'-1Il 1!'-m. (~'i) 

Taking linear combinations of V6 generators (Eq.(26)) one constructs all the genprators
 
of three V6 subgroup chains, ending with at (Ref.[14]):
 

V6 J V5 J 0 5 J at 
V6 J 0 6 J 0 5 J at (28) 
V6 J SV3 Jot 

If one inverts Eq.(25), one gets 

a 1q[l]m = ~ (17+ lm +1]lm) ; (29)aq[l]m = J2 (1]+Im - 1]lm) , 

which allows one to express, using Eq.(16), the invariants p2,/p, 133COS 3, in terms or 
creation and annihilation operators as 

p2 -If (1]00 + 1]+00) , 

/32 ~ L (1]2m + 1]tm) (1]2m + 1]+2m), (30) 
m 

/33 cos 3, J35 [ ° (+ + +)00+ 3(1]2,1]2,1]2+)0 ( + +)0]° ' -4- (1]2,172,1]2)0 + 1]2,1]2' 1J2 0 + 3 1]2,1]2,1]2 

where e.g. 

]2]0 " 22(1]2,172,1]2)0o = [r1]2,1]2 ,1J2 0 = 1!"i5 L..J C 2 172T1l.1]2m 21l 2m3, (31) 
Vi) m.m2ffl3 m, m2 1123 



~ 

and similarly for other terms of the (33 cos 31' expression in Eq.(30). 
Now, let liS rewrite the GBMM Hamiltonian Eq.(21) in terms of creation-annihilation 

operat.ors Eq.(25) 

lInRMM (7]lm,11+ llm') = T GRMM (7]/lIl.7]+I'm') + l/GBMM (17 /m ,7]+llm'), (32) 

when' 
I) the kinetic energy operator is obtained from the canonic expression (Eq.(18)), in 

which th(' r<'placements, given by Eq.(29), are made: 

T(;RMM (I/m , q+I'm') = ~k L (1 +21/m 7](;,,) - ~k L (7]lm7]lm +7]+lm7]i;,,); (33) 
1m 1m 

2) for the pot.ent.ial ('Il('rgy operat.or frolll Eq.( II) om~  ohtaills 

/r.BMM (1m +1''''') _ A(A - I) \1. ""' I R X
\ 11 ' 17 - ') 0 ~ Jtt 

~  t=0,1.2 •... 

x L C,(i,l, 111) [(p2( ... )f(f32( ... ))/(f33cos3)'( .. .))m], (34) 
i+2/+1m=t 

wlWf"(' 
R _ (A-:l)!! 

t - (A +2t _ 3)!!' (35) 

and p2( ... ), (J2( ... ), {33 cos 3,,( ... ) denote the corresponding expressions, given by Eq.(30). 
Now, we split the microscopic GHMM Hamiltonian (Eq.32)) in two parts, the first 

of which wntains only (16 generat.ors and mnstant terms, i.e., 

llmI/(;R,\1 M (17/'\ 7]+1''''') = llm RM (7]lm. 17+ ') + l/'GBl\f M (7]lm , 17+I'm') . (36) 

In Eq.06) HGIBM (7]/m, 7]+1''''') = JlGIBM is the Generalized Interacting Boson Model 

(GIBM) Hamiltonian - t.he U6-restrided part. of the GBMM Hamiltonian H 
GBMM 

. 

Again. one can write Hr.lBM as 

UG1Bl\'(7]/m,111'm') = TGIBM(17'm,17/'m') + V G1BM (7]lm,7]I'm'). (37) 

The kinetic part easily can be written as U6 -restriction of the kinetic operator (Eq.(33)): 

rG1Rl\f = Ck L (1 +217/m17~,)  = ~k(N +3). (38) 
4 1m ~ 

Here k is the operator of the total number of lI6-quanta. Concerning the potential 
energy operator Eq.(:l4), when one takes into account Eq.(30), one can easily see, that 
from the terms p2( .. .), (32( ... ), {33 cm;3,,(. .. ) only those with i +2t + 3m = t =even 
h<l\,(' l rf,-I'csf.rid('d t.erms. 

/(/ 

Finally, from Eq.(37), taking into account Eq.(38) and the t = 0,2,4,6 terms of 
the potential energy expansion Eq.(34), one can write the GIBM Hamilt.onian in the 
following form (for details see Ref.[6]): 

HG1BM 
= ~Ck(N  +3) +Cp [bo14> +~R2 (20 F2(2, 0,0) +8F2(0, 1,0)) +

3

560+ b4R4( TF4(4,0,0) +576F4(0, 2, 0) + 1344F4(2, 1,0) ­

320320 640640
 
256V6F4 (1, 0, I)) +b6~  ( ~F6(6,0,0)  + -3-F6(4.1.0)­

732160V6 ,
--F6 (3,0, I) +549120F6 (2,2,0) -133120V6f6 (1, I, I) + 

+ 1L5200F6 (0, 3, 0) +20480F6 (0, 0, 2)) I, (:l9) 

where we have used the notation 

Ft(i, t, m) = ((p2( .. .)) i ({32( ... ))' ({33 cos 3,-{. .. )) m] ; t = i +21 + :lm, (.10) 
IP~  

for the U6-restriction of the corresponding monomials of ot-scalars. Coefficients Ht ill 
Eq.(39) are given by Eq.(35). Parameters be describe the features of the chosen NN­
potential, taken in the form of Eq.(6). In the case of multi pole-Gauss type potential 
Eq.(7) bt are given by Eq.(8). For the superposition of two l1Iultipole-Gallss typ(' pol.<'I1­
tials (Eq.(A.6)) the coefficients btR, are given by Eq.(A.20). 

Besides the kinetic energy constant Ck , there is one more constant in Eq.(39) - the 
potential energy constant Cpo For the Wigner type central NN-interaction it assuITws 
simple form 

C = A(A~- I) V . 
p o (41 ) 

One can easily obtain the Cp expression also in more general case, when the central NN­
interaction contains Wigner, Majorana, Bartlett and Heisenberg forces of equal potent ial 
depth and radial form [4], given by expressions Eq.(6), or Eq.(7): 

Cp = [Aocw +A(f)CM +A(S)CB +A(T)cul \10, (42) 

where Ao = A(A - 1)/2 and A(f), A(S), A(T) are the eigenvalues of the symmetric 
group class operators, consisting of orbital, spin and isospin exchange operators [15, 161. 
cw, CM, CB, CH are the exchange constants of the central interaction. 
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5. Microscopic derivation of the standard Interacting Boson Model (IBM) 
Hamiltonian and its microscopic extension 

The standard IBM Hamiltonian can be written in several equivalent forms. For our 
purposes the most convenient form is the one written directly via Casimir invariants 

(Ref.[4]) 

H IBAI = eo + fiN +C2C2(lf6) +end +oC2(lf5) +eiN. nd + 
+ /3CAOs) +2,,[} +JC2(Slf:l) +17(;2(06 ),	 (43) 

where to,e.,e2,e,0',c.,/3,'Y,O,17 are model parameters. 
In Eq.( 43) all two-boson interaction operators are presented using first and second 

order Casimir operators (expressed via tTl) generators Eq.(26)) of three [!6 subgroup 

chains (Eq.(28)). Then, 

'" C 1m	 '" +Im +00 +'" +2mc.(lTt,)	 L '1m = L 171m 17 = 770017 L 772m77 = 
1m 1m m 

(44)110 + r"d = Ni 
'" C 12 m 2C Itml '" +h m 2 +I\m\C2 (U6 ) L 'l\m1 12m 2 = L 171\m\77 7712m277 ­
'1m. 'Im\ 
'2m2 '2 m 2 

N(N +5);	 (45) 
'" /"' 2m	 '" +2", (46)A('I (lTs) L t '2m = L 772m 77 = nd;
 
m m
 

'" C 21ll~C 21111 '" +2m
2 +2m.('Alfs ) L ,'2"'1 -' 2m 2 = L 772m\77 772m 2 77 = 

mlm2	 mlm2 

nd(ild +4);	 (47) 

Four remaining Casimir operators in Eq.( 43) one can express via combinations of boson 
operators in the similar way 

«(:2(06 ), ('2(Or,), ('2(S(T3),('2(Ot) = f-2) = !I,2,3,4(77I11" 7J+lm) (48) 

(see expressions (49)-(54) in Ref. [6]). 
The next, most difficult, step in the study of relationships between GIBM and IBM 

Hamiltonians (Eq.(39) and Eq.(43)) is to obtain, in terms of Casimir invariants of the 
U6 subgroup chains Eq.(28) (Eqs.(44)-(48)), the explicit expressions for U6-restricted 
monomials F;(i, I, m) (see Eq.(40)) of ot-scalars, entering in the potential energy terms 

of Eq.(:39): 

f~(i, I, m) = !t;i;l;m(N, nd, C2(U6), C2(Ur,), C2(05), U, C2(SU3), C2(06)). (49) 

The calculation methods, examples and results of Ft(i,l,m) evaillation for t = 2,4,6 
values are given in the appendix of 01\[ paper [61· 

1~ 

If one inserts the Ft(i, I, m) expressions for t = 0,2,4,6 values into the GIBM Hamil­
tonian (Eq.(39)) and compares the coefficients at corresponding Casimir invariants in 
Eq.(43) and HG1BM (Eq.(39)) one can derive (see Ref.[6]) following microscopic expres­
sions for the parameters of the standard IBM Hamiltonian (Eq.(43)), via bt(t = 0,2,4,6) 
values associated with NN-interaction potential: 

3 
eo 2"Ck +Cp(bo~ +30b2 R2 + 11340b4 R4 +15947400b6 R6 ); 

1 
el 2"Ck +20 Cp(b2 R2 - 36b4 R4 +1797420b6R6 ); 

e2 40 Cp(63b4 R4 +3831Ob6/4;); 

c -12Cp(b2 R2 + 378b.,R4 + 2566880b6~); 

a -8 Cp(81b4 R4 - 240130b6R-6);	 (50) 

[I -16Cp(81b4 R4 - 140690b6 R6)i 

f3 216Cp(b4 R4 + 1700b6~)i 

'Y -16Cp(9b4 R4 - 11260b6 R6 )i 
8 48 Cp(9b4 R4 - 10180b6~); 

-24 Cp(9b4 R4 +56720b6Rs).77 

These results generalize the microscopic IBM Hamiltonian parameter calculations 
presented in Ref.[4], because we have accounted for the contribution of the kinetic pnergy 
term (characterized by the kinetic energy constant Ck ), included the t = 6 order terms 
in the potential energy expansion, as well as corrected some errors in t = 4 order terms. 

6. The Strictly Restricted Dynamics Model (SRDM) 

It is a rather difficult task to solve the Schrodinger equation for the full Restricted 
Dynamics Model Hamiltonian HRDM with realistic NN-interaction potentials. Because 
of this, in Refs.[1, 17] the simplified version of HRDM - the so called Strictly Restrided 
Dynamics Model (SRDM) Hamiltonian, was proposed. In this case OA-I group is en­
larged to the unitary group UA - I and 503 group - to U3 • The detailed description of 
SRDM and its application for a-cluster nuclei with A S; 40, employing dfeetive NN­
interaction potential of multipole-Gauss-exponent type, one can find in our review paper 
[18]. 

The general structure of SRDM Hamitonian is 

HSRDM == HO = HOcoll + HOll,	 (51) 

where HOcoll is the UA_I-collective (scalar) part of the general microscopic nuclear Hamil­
tonian H (Eq.(I)) and HOa - the U3-scalar part of H, which is responsible for the 
anticollective effects in the nucleus. The basis function of SRDM can be written as 
\11 (N A.o 1,01,,02, ... ,PA-I; Q), where: 
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ji; are .Jacobi vectors (Eq.(2)); 
Q the st>t of A-nuclt>on spin-isospin variables; 
Ao - the set of nuclear integrals of motion. which must be conserved according to the 

s~'IllIllf'lry  requirements of the many-nucleon system: Ao = (7rJMJMr Aa); 
N - the additional quantum number, denoting both U3 and [1A-1 IRs. 
In order to separate the orbital and spin-isospin parts in the basis function of SRDM 

we shall use the Wigner supermultipll't scheme approximation (19, 20]. For the calcula­
tions in the framework of SRDM it. is more convenient to use the unitary scheme hasis 
functions [21 J. characterized by the following group reduction chain: 

lh(A-I) ::)	 11:\ X (TA-I 

U U (52) 

803 004.-1::> 8A 

Iu this case <jua.lltum numbers of the orbital part of Wigner supermultiplet scheme basis 
fllnet.iOlls have the following meanillg: 

No quantnm number of the symmetric reprf'sent.ation [No, 0, ... ,0] of group U3(A-I), 

dct.prmining the parity of SRDM state; 
IV == (1\'1 NzN3 ) - qnantum numbers corresponding to IRs of groups U3 and UA - I in 

tile chain (l3(A-1) ::> [13 x [lA-I, where N I + Nz + N3 = No; 
L - quantum number corresponding to IR of group 803 , with K denoting it's mul­

tiplicity in the chain U3 ::> 803 ; 

u.' = (WIWZW3) - quantum numbers denoting the IR of 004.-1 group, and 6 - the 
llIultiplicit.y index for W in til(' chain UA- I ::> 0;\-1' If No = Nmin , then WI = NI,wz = 
Nz. ""':1 = N3 , and, thert>fore. 6 is redundant; 

f denotes the IRs of group 804. in the chain 004.-1 ::> 804. with multiplicity 0'. 

For orhital basis functions of Wigner supermultiplet scheme the reduction rult>s in 
the chain U:l(A-I) ::> lJ3 x UA-I are well-known [I5, 7J. In the [[3 ::> S03 chain the 
reduction rules are equivalent to those of SU1 ::> 503 chain (7]. If IRs of U3 group are 
labelled by [NINzN:l], then one can introduce for 8U3 group IRs the Elliott's notation 

(A'l.) = (N I - Nz,Nz - N3 )·	 (53) 

In this case, according to Ref.(22J, the multiplicity index K assumes following values: 

l\' = min(A,II),min(A"t) - 2, ... ,0 or 1, (54) 

and 
L = {maX(A,Jt},maX(A,Il) - 2, ... ,001' 1, if K = 0, (55)

l\', l\' + I, ... , l\' + max( A, It), if l\' i- O. 

Note, that SU3 basis functions 1(A1l)/{ LM > in the chain 8U3 ::> 803 ::> 802 are 
not orthogonal with respect to 1\', therefore, one must perform the orthogonalization 
procedure before the diagonalization of SRDM Hamiltonian matrix. 

In the chain UA - I ::> 004.-1 ::> 804. the reduction rules are more complicated [VlJ. 
Taking into account that in the unitary scheme (Eq.(52)) groups U3 and UA - I are com­
plementary [7] (i.e. IRs of U3 and UA _ I are determined by the same set of quantum 
numbers [NIN2 N3 ]), one can use for unitary scheme basis the well-known 8U3 classifi­
cation scheme for nuclei, introduced by Elliott [22J. 

The problem of the classification of spin-isospin functions of Wigner supermultiplet 
scheme is reduced to the classification of (8, T) multiplets, entering in IRs j of group 

8~T).  Here, (8, T) denotes the pair of IRs .\, and AT of groups Sr) and S~.. ), which for 
fixed A value are related by expressions [A(1J = [(A/2) + 8, (A/2) - 5], [ATJ = [(A/2) + 
T, (A/2)-TJ. Therefore, the classification of (5, T) multiplets is reduced to the reduction 

UJ = LO('x'" AT)'	 (!)(i) 
ti 

where a is the multiplicity index of equal pairs (A (1 , A.. ) in .1, which nUl bf' calculated 
using formula given in Ref.[23J. 

According to Eq.(51), the SRDM Hamiltonian consists of two parts, accounting for 
collective and anticollective effects, correspondingly. The general SRDM Hamiltonian 
matrix structure in the employed Wigner supermultiplet basis functions is: 

< NI«~8)JMJ  IHol NK'(L~8')JMJ >= 
6wa(f f)oT MTa 6'w'a'(f'1')ciT'MTa 

[HO(N, J, MT )]KLS6wa/CiT.K'L'S'.s'w'a'!'CiI T 1 = 

[Hocol/(N J I T M )] EB [lloa(N 8 M )] (!)7) 
, , , , T	 KLSti.K'L'S'ci' , , T .swOt!tiT.f,'w'Ot'!'ti'T'· 

Indices, placed in brackets (... ) at Hamiltonian terms, denote quantum numbers which 
are conserved. Therefore, the general SRDM Hamiltonian matrix is numerated by nine 
quantum numbers: I<, L, 8, 6,w, a, I, 0, T. 

The evaluation of SRDM Hamiltonian matrix Eq.(57) is described in Ref.[18J. The 
general structure of its matrix elements is 

HSRDM = Hk~~ + H~oll + H~oll + ll~oll  + H;oll + llkin + H: + H:, (.58) 

where separate terms denote collective (colI) and anticollective (a) kinetic (kin) and 
Coulomb (e) energies a.<; well as the central (c), vectorial (v) and tensorial (t) NN­
interactions.re 

7. The results of a-cluster type nuclei energy calculations in the framework 
ofSRDM 

The a-cluster type nuclei with A = 4,8, ... are characterized by the Young pattern 
[f) = [4A/ 4J and the spin-isospin pair (8, T) = (0,0). The SRDM quantum numbers for 
a-cluster type nuclei with A = 4,8, ... ,80 are given in Table 1. 



Table 1: The characteristics of a-cluster type nuclei with 4 ~ 

Nucleus [f] [NI N2NJ ] (Ap) 1\ 
4He [4] [0,0,0] (0,0) a 
8Be [4 2] [4,0,0] (4,0) a 
12c [43 

] [4,4,0] (0,4) a 
160 W] [4,4,4] (0,0) 0 

2°Ne [45
] [12,4,4] (8,0) a 

241\1g [46
] [16,8,4] (8,4) 0,2,4 

288i [47
] [16,16,4] (0,12) 0 

325 [48] [20,16,8] (4,8) 0,2,4 
36Ar [49

] [20,20,12] (0,8) a 
40Ca [4 10

] [20,20,20] (0,0) 0 
44Ti [4 11 

] [32,20,20] (12,0) 0 
48Cr [4 12

] [40,21,20] (16,4) 0,2,4 
52Fe [4 13J [48,24,24] (24,0) 0 
56Ni [4 14J [52,32,24] (20,8) 0,2,4,6,8 
60Zn [4 15

] [56,36,28] (20,8) 0,2,4,6,8 
64Ge [4 16

] [.56,48,28] (8,20) 0,2,4,6,8 
68Se [4 17

] [56,56,32] (0,24) 0 
72l\r [418] [60,56,40] (4,16) 0,2,4 
76Sr [4 19

] [60,60,48] (0,12) 0 
80Zr [420] [60,60,60] (0,0) 0 

15 1(i 

The SRDM Hamiltonian for a-cluster type nuclei, following from Eq.(58) if one 
notices that for the states given in Table 1 the vectorial and tensorial terms of NN­
interaction vanish, has the form: 

HSnDM = Hkf~1 + H;o/l + H~o/l + Hkin t H: t U:. (.59) 

Joining together all expressions for particular terms of SRDM Hamiltonian Eq.(59) (for 
details see Ref.[18]), the following final expression for the SRDM matrix elements in the 
case of a-cluster type nuclei can be obtained: 

E;in (B~k~L+ 1) + ~JVAA(A-2)E~f~(/\'L,K'L)+ 

A ~ 80 

+c [3A(A +4) Ecoll(yL Y'L) + E+a] +C [5A(A - 4) Ecoll (/\ L K'f) t E-a] t 
1 16 cW \ , \ c 2 16 cW , , C 

+~ [E;a + ~E;a]  - EB~~~L  = O. (60) 

The quantities entering in Eq.(60) have the following meaning: 
The oscillator frequency parameter VA (or the wave function scaling factor 1'.;,) is 

adopted according to Ref.[16]' and it is equal to 

UJ 5(No t3(A-l)/2)� 
VA = (61)�

3r~A5/3 
 

where roo, entering in the nuclear radius expression R = 1'00 A1/3, we sha.ll regard as a 
model parameter. 

The model parameters C1 and C2 are defined by expressions: 

C1 = VeO (cw +eM) , 

C2 = VeO [(cw - CM) t ~ (ca +CH)] . (62) 

These parameters are two independent combinations of central force exchange constants 
(subjected to the normalization condition [241 Cw +CM t Ca - CH = -1) together with the 
common NN-interaction potential depth VeO , assuming that the effective central NN­
interaction potential VNN has the same shape for Wigner (W), Majorana (M), Bartlett 
(8) and Heisenberg (H) forces. 

Elcin denotes the kinetic energy term 

Elcin = 20.7357vA (No + (3A - 1)/2)) [MeVJ. (63) 

The collective submatrix elements of orbital operators for Wigner interaction art' 
given by the expression: 

NI 
Eco/l (K L K'L) ="r,,(VC v,e )QN,colI(KL K'L) (64)c,e w' LJ.. w, w ..,w , ,

.=0 
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where Q~·.WI(  1\' L, [\" L) dellotes the collective ((lA_I-invariant) density matrices in com­

pad form and I;:' (\!~~,  Vii·) are Talmi integrals of central (Vw), or Coulomb (Vw)inter­
action. Some details about collective density matrices are given in Ref.[18], and their 
calculat.ion, t,echnique is descrihed in Refs. [2,1, 26, 27, 28, 29, 30]. The evaluation of 
Talmi inteJ:!;rals for the effective NN-pot.ential employed in our calculations is described 

in ReL[:JI] and Appendix 1\. 
E't:; in Eq.(60) denotes t.he anticol1ective (SU3-invariant) orbital matrix elements of 

central (c) and COli lomb (e) interactions (see Eq.(B.12)). The details of their evaluation 

ollr can find in Appendix n. 
Tlw SHDJ\t Hamiltonian llIat.ricrs are given in t.he Elliott's hasis IpJ.l)KL >, and 

the quallt ities Bk'r.-'/', entering in Eq.(60), can be expressed (18] via the overlap integrals 
< ()..jJ)l\' "!PJ.l)!\" L > of 5lJ3 basis functions (see Ref.[32] and Appendix D of Ref.[18]). 
Applying to Eq.(60) the ortltogonalization and diagonalization procedures, we obtain 
rigC'nvalues (energies E) and mixing amplitudes of the SRDM Hamiltonian (Eq.(59)). 

I'lw choice of NN-pot.ential is limited by the consideration that it's expression should 
not 1)(' too cOlllplica.ted, so that. olle can evaluate Talmi integrals. But, on the other hand, 
it. nlw,t reproduce the experimentally known features of NN-interaction (e.g. it must 
1)(> ahle to describe a hard core at smal1 distances, and it's tail must not extend outside 
the size of the IIl1cleus). One can see. that the single multipole-Gauss potential Eq.(7) 
dOl's not sat.isfy these requirement.s. The I]('xt in complexity potential, which allows one 
to repro<!llce partly the characteristics of the realistic NN-interaction potential, is the 
superposition of two multi pole-Gauss type potentials [31], which we have employed for 
the calculations of a-cluster type nuclei with ,4 ~ 60. The analytical expressions of this 
potential. it.s paramet.rizat.ion, as well as t.hr details of Talmi integral calculations one 

call find in Appendix A. 
The results for a-cluster type nuclei with 8 ~ A ~  60, obtained with the NN­

int.eractiou potential takeu ill til(' for11l of Eq.(A,6), are given in Table 2. In this table 

I7l ] 1/2 
d = 

[
t; (F:,-,,/.-(i) - F:,rp(i))2/ m , (65) 

wit h m .. the number of experimentally known levels (including binding energy). The 
values of following parameters have been obt.ained by the fit to the available experimental 

binding aud excited level energies: 

1'00 - t.hl' nuclear radii parameter (see Eq.(61)); 

1'0,1'1.1\, - the parameters defining the shape of the potential formed by the superposition 
of t.wo lIIultipole-Gallss type pot.entials (see Appendix A); 

('), ('2 - parameters combining potential depth ~'d1  and exchange constants (see Eq.(62)). 

These results seem to be quite satisfactory with regard to the fact, that the ground 
state hinding energies (whose values vary in the interval", 30 - 350 MeV) and the 

11" 

Table 2: The SRDM parameter values for a-cluster type nuclei with 8 ~ A ~ 60 

Nucleus m TOO [fm] TO [fm] Tl [fm] I\, C1 [MeV] C2 [MeV] d[MeV] 
sBe 3 1.385 0.75 2.433 0.663 -611.202 1101.430 4.82 
12C 3 1.064 0.75 1.876 0.717 -686.108 824.354 5.90 

2°Ne 5 1.236 0.75 1.770 1.151 -68.401 61.637 4..52 
24Mg 15 1.109 0.75 1.376 0.881 -79.653 66.917 4.19 
28Si 4 1.387 0.25 2.126 0.500 -52.488 42.150 3.27 
325 8 1.175 0.75 1.386 0.868 -66.801 51.535 2.38 

36AT 4 1.166 0.5 1.679 0.654 -54.072 40.616 3.68 
44Ti 4 1.033 0.5 1.491 0.507 -27.569 19.891 1.53 
48CT 10 1.284 0.25 1.630 0.082 -22.179 15.750 2.15 
52Fe 4 1.221 0.75 1.668 0.501 -26.041 18.239 1.66 
56Ni 11 1.081 0.75 1.457 0.521 -34.951 24.203 2.66 
60Zn 5 1.291 0.25 1.599 0.419 -22.958 15.7.52 2.00 

low-lying excited level energies (which are in thE' energy int.erval '" 1 - I!) MeV) were 
calculated together at the same time. Contrary to the results obtained for light a-cluster 
type nuclei with A ~  40 (Ref.[33, 18]), the effective NN-interaction potent.ial paramet.C'r 
values for 40 < A :s; 60 region a-cluster nuclei reveal significant dependence from the 
nuclear mass number A. The obtained values of nuclear radii parameters TOO are in 
reasonable agreement with the known calculation results for other neighbouring nuclei, 

8. Numerical estimation of microscopic values for the parameters of phe­
nomenological collective models 

The relationship chain between nuclear collective Hamiltonians is based on thE' Gen­
eral Restricted Dynamics Collective Model (GRDCM) Hamiltonian Eq,(5) evaluated 
from the General Microscopic Nuclear (GMNH) Hamiltonian Eq.{l). Since GRDCM 
Hamiltonian remains unsolved as yet in the case of many-nucleon system, we shall em­
ploy for our numerical estimation of microscopical values for phenomenological collective 
model parameters the results of a-cluster type nuclei energy calculations presented in 
Sect.7. 

We shall consider the microscopic estimations for parameters entering in both phe­
nomenological collective models - the standard BMM and the standard IBM Hamilto­
nians. The microscopical values of two standard Bohr-Mottelson Model (BMM) Hamil­
tonian parameters (the mass parameter - B and the nuclear stiffness parameter - C'), 
obtained using the results of SRDM energy calculations for a-cluster type IIuclei, can be 
compared with their phenomenological values, which follow from the BMM rotational 
band energy formula. The Standard Interacting Boson Model (IBM) Hamiltonian is 
characterized by 10 parameters eo, et, e2, ... ,1]. The microscopical valurs of these pa­
rameters, estimated using the NN-interaction potential parameter values obtained frolll 
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the SnDM energy calculations for a-cluster type nuclei, can be cOmpared with their phe­
nomenological values, obtained by means of standard IBM energy formulas for limiting 
cases. The preliminary results of such comparison have been reported in Ref. [34]. 

First of all, we need t.o derive the microscopic values of the kinetic energy constant Ck 

(see Eq.(38)) and the potential energy constant Cp (see Eq.(39)). The rough estimation 
for the kinetic energy constant microscopic value crier one can obtain assuming that the 
kinetic energy t.erms of GIBM and SRDCM Hamiltonians are approximately equal. This 
assumption gives us the following relationship between corresponding matrix elements: 

c;,r;JHM _ ~  T,,81WM (66)"kIn - 2 '''kin 

Then 
e'k 1 3 
2(N + :3) = "2(No + "2(A - 1))20.7357vA (67) 

and the microscopical value of kinetic energy constant is 

cmicr _ 2No +3(A - 1)?0 735"" [M VI (68)' k - No +6 ~.' I v.4. e, 

where we have used the microscopic value of the total number of V6-quanta (bosons) 

N = Nmic,' = No/2. (69) 

Accorcling to the prescription of V.Vanagas [:3, 21 such Nmicr value can be deduced from 
the following branching rule for the reduction chain U6 J SV3 Jot: if N is IR of U6 , 

then on(~  call enulJlerat.e all 8U3 IRs contained in N by counting all the partitions of 
numher 2N into no more than 3 parts, i.e. 2N = 2Nmier = NI + N2 + N3 = No, where 
N

1 
~ N'l ~ N3 and all N I , N 2, N3 are even. The representations [N] N'lN3] obtained in 

such a way denote all Su., IRs containpd in N. 
The microscopic value of the potential energy constant C;'ier also is adopted from the 

collective central NN-interact.ion euprgy term of SRDM Hamiltonia.n (Eq.(59)). Then, 
for n-duster type nuclei we have 

('min' = (3('1 - 5C1 )A (3('1 +5C2 )A 
2 

[MeV] (70) 
p 4 + 16 ' 

where C. and C2 are parameters, whose values are determined from the SRDM energy 

fit calculations. 
For the microscopic estimation of the standard BMM parameters we shall employ 

now the phenomenological version of the standard BMM Hamiltonian (see also Eq.(23)) 

l/l~MM = -;;J7~M(~",0,<I>,IIJ)+ ~C~2, (71 ) 

:W 

which is characterized by the nuclear mass parameter B and the stiffness parameter C. 
The solution of H~MM  in diagonal approximation for axially symmetric quadrupole de­
formation, characterized by deformation parameter (30, yields the well known rotational 
band energy formula [35]: 

E(l, K, n.." niJ) = (2n.., +1 + ~K)E.., +(niJ + ~  )E,8 + [/(/ + 1) - /(2] Arot , (72) 

from which one can obtain the phenomenological values of parameters Band C: 

h2 C _ Bph E2 Rph E2~{3 

Bph- -/32; Ph (Tl)
- 0 -rT~T6Arot 

The microscopic value Bmier of the mass parameter B one can obtain from tl1(' 
comparison of microscopically evaluated (see Eqs.(23),(19)) and phenomenological (see 
Eq.(71)) kinetic energy terms of the standard BMM Hamiltonian, which gives 

2 
Bmier = h (71)

4Crier 
' 

where Crier is determined according to the formula Eq.(68). Analogously, the micro­
scopic value of the nuclear stiffness parameter cmier can be obtained by comparing 
the phenomenological potential energy term of Eq.(71) with correspondillg microscopic 
potential energy term in the expansion of HGBM M (Eqs.(22),( 11)): 

8cmier F (0 1 O)b R 8cmier j'Pb~Cf32 = = R (7!l)2 p 2" 2 2 P 2 2, 

which gives 
cmie,' = 16C;;ierb2R2, (76) 

where va.lues of C;:'ier, b2 and R 2 are determined according to formulae Eqs.(70), (8), (3.5), 
correspondingly, or Eqs.(70) and (A.20) in the case of superposition of two multi pole­
Gauss type potentials (Eq.(A.6). 

The comparison of the microscopical values of the standard BMM Hamiltonian pa­
rameters Bmier, cmier with their phenomenological counterparts for a-cluster type nuclei 
is presented in Table 3. 

The microscopic values of the standard IBM Hamiltonian parameters fO, fl,"" t7 
can be calculated using formulae Eqs.(50), inserting microscopic values of kinetic and 
potential energy constants Crier, C;:ier (see Eqs.(68),(70)). The corresponding phe­
nomenological values of the standard IBM Hamiltonian parameters one can obtain IIsing 
the diagonal energy formulae of standard IBM in SUs, SU3 and 0 6 limiting casps (see 
Ref.[36]): 

I) in 8U" case 

ESlf5 (N, l1d, 1', L) = A( N) + cl1d + and(nd + 4) +CINnd + (3v( v + 3) + 2,L( /; + ]); (77) 
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2) ill Sh case 

!:;81'.,(N,)"IJ, L) = A(N) + J~(),2  +IJ2 +3), +3IJ + )'IJ) +2)'L(L + 1); (78) 

1) ill 0 6 casp 

E06 (N, a, T, L) = A(N) +2,w(a +4) +2(3T(T +3) +2)'L(L + 1), (79) 

wll<'re it(N) = Co + (~IN +C2N(N +5). 
The n'sults of comparison between microscopical and phenomenological values of the 

standard IBM Hamiltonian parameters for a-cluster type nuclei one can find in Table 
4. III both casps the microscopic valul' (ECj.(69)) of the total boson number N = Nmicr 

was u:-('d. ,{' 

9. Conclusions 

For the first time the numerical estimation and comparison of microscopical and 
phelloll1Pnological values of the st.andard 8MM and the standard IBM parameters have 
))('Pll pprformed. using the Restricted Dynamics Approach based relationship chain be­
tween collective models. The Strictly Restrictf'd Dynamics Model (SRDM) parameter 
values, used as input data for the evaluation of microscopical values for BMM and IBM 
parallleters, havl' hef'1l obtainl'd in SHOM energy calculations for a-cluster type nuclei 
with A S; 60. 

'I'll(' comparison of microscopically derived values of phenomenological model pa­
rallwtprs with their values obt.ainl'd from the direct fit. to the expl'rimentallevel energies 
shows cOllsiderable discrepancif's in the case of standard BMM (2-3 orders of magni­
tudp). This fact can be explained rPlllembering t.hat standard BMM usually is employed 
for lhp descript.ion of heavy nuclei (A > 100), characterized by the stable deformation of 
the nuclear core. In thf' casp of standard IBM the microscopically estimated parameter 
\'a!lws agree with their phpllolllenological counterparts much better. 

These results indicate that our approach can give only a first very rough estimation 
for the parameters of phenomenological collective models. One needs more elaborated 
efforts for t.he real success ill this direction. 

Appendix A. The NN-interaetion potentials and Talmi integrals 

rn order to calculate the colIeetive and anticollective matrix elements of NN-interaction 
one needs to calculat.e interaction integrals for the chosen NN-interaetion potential. In 
the collective matrix elements Eq.(64) interaction integrals leV/I are already reduced to 
Talmi integrals lu (since Is/,sI/i = Iss,ss == Iss). 

For the evaluation of the anticollective matrix elements we shall use the SU3-averaged 
interaction integrals I[oo)~  (sep Ref.[ 15]), dppending on the interaction integrals lei (I~l == 

Id,e,): 
21 + 1 

l[oOle = L -d- Id , (A.I) 
I e 

where de = (c+ 1)(E+2)/2. Interaction integrals lei, in turn, for values c = 0,1,2,3,4,5,6, 
which we need in our calculations, can be reduced to Talmi integrals lu, lIsing formulap 
of Table 15.1 in Ref.[15]. Then we have (see Ref.[24]): 

1[0010 = 100 ;� 

1(00)1 = Ill;� 

1[00)2 = (/00 - U ll +5/22 ) /4;� 

l[ooJ3 = (3/ 11 - 6122 +7/33 ) /4; (A.2)� 

1(00)4 = (100 - 4/11 + 18/22 - 28/33 +21144 ) /8;� 

1[00)5 = (l05/11 - 420/22 + 1050/33 - 1260/44 + 693155 ) /168;� 

1[00)6 = (105/00 - 630/11 +4095/22 - 12180/33 +21735/"4 - 20i!IOhs +� 
+ 9009/66 )/1344. 

For the convenience of practical calculations, we introduce into chosen NN -interaction 
potential expression the wave function scaling factor r", (see Eq.(61)), which leads to thf' 
replacement 

l!\V,M,B,H (Pa) ------t VW,M,B,H (~: V2pa) (A.1) 

for the particular exchange components of the central NN-interaction. Ta.lmi intf'grals 
of SRDM, taking into account Eq.(A.3), have the form 

I;: (VW,M,B,H) = I;:,u (VW'M'B'H (~:V2pa)) = 

001 p~dpaR;t(Pa)VW,M,B,H(~:  J2Pa) R:~~I(Pa), (A.4) 

where Pa = IPaI· Integrals Eq.(AA) are defined with respect to the unknotted three­
dimensional harmonic oscillator radial wave functions 

R;t(p.) ~  ,I, ,,_,2 - '- (~:r  exl' [-H~;)l  (1\.5) 

The NN-interaction potential, written as the superposition of two multipole-Gauss 
type potentials [31], which we have employed for the calculations of a-c1ustf'r type nuclei 
with A :::; 60, can be presented as follows: 

V(P.) = VOl rl~ (;.:r exp [- ZOI ( ;.J'] +V02rl; (;J' exp [- Z02 ( ;,J'] , 
(A.6) 
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where 
ZOI = sign( 0'1 ); ZU2 = sign( (2), 

and 
1"lp = I 01 1-1/1"; 1'21' = 102 1-1/.02. 

In Gauss potential case (when ql = 42 = 0 and {31 = {32 = 2) the potential Eq.(A.6) 
is characterized by 4 parameters: 1'11',1'21" VOll ~~2'  Taking into account the replacement 
Eq.( A.a), til(' NN-intcraction potential expression Eq.(A.6) becomes 

Q2 
V

II ,. (J21'lj'p,,) = \Od7'lp)ql~"(ql,7'21,ZOI,/3d + \!02(7'2p) (q2,1"22,Z02,/J2) = 

1
= '01 (1"lp)QI (~)qJ exp [-ZOI (Pa )1 1] + ~~2( 7'2p)q2 (~a ) q2 exp [-Z02 (Pa )fh], (A,7)

1"21 r21 722 1'22 

where 
fVA fVA7'21 = 7'1!·V 2; 1"22 = 7'2"V 2'� (A.8) 

Such superposition of two multipole-Gauss type potentials allows to obtain wide 
variety of potential shapes, which are more convenient to investigate if one introduces 

new parameters: 
(1"11'.1'21" ''OJ, V02 ) ---+ (7'0,7'1. Vhll:) , (A.9) 

where 
\l(Pa = 7'0) = 0; VI = V(rdi 

a ! _.. _ q2 - 02{32 r f2 
~~ (Pa) IPa=rl- 0, K - {3 1 • 
(jpa ql-O),B)7·1

New parameters (7'0,7'1, VI, K) have the following meaning: 

7'0 - the distance, where V(Pa) = O. (In our calculations this parameter was fixed, since 
the pot.ential shape is defined hy the 1'0 and rl ratio.) 

1'1 - the distance, where 8~a  V (Pa) = O. 

"'I - the total potelltiaJ depth defined as Vi = V(rl)' 
2 

II: - the ratio of the first and second Gauss potential scales II: '" ~.r 2p 

When one introduces parameters 1'0, 7'1, VI and K, then the old parameters, entering 
in the potent.ial expression Eq.(A.6), can be evaluated as follows: 

(Kql - q2) (1- (~){J2) + (12 In [K(~r-q2] 

01 (A.lO) 
(7'd131 (1I:{31 (1 - (~)132)  - {32 (1 _(~)131)) j 

(h~ql  - q2) (1 - (~){JJ)  + K{3l ln [K(~rl-Q2] 

02 (A.H) 
(rd132 (1I:{31 (I _(~),o2) _{32 (1- (~/I))' 

and 

(1'0 )q2 exp [-02( 1'0 ).02 ] 
\101 (1\.12 ) -VI U(1'd ; 

(1'o)ql exp [-0.(1'0).01] 
V02 (A.I:J)

\;J U(1'd ' 

where 

U(rd = (7'0)QI(rdq2 exp [- (01(7'0)131 +02(7'd132 )] ­

(ro)92(rd 91 exp [- (al(rd131 +02(1'0).02)] . (1\.1/1) 

For NN-potentials, written as a superposition of two multipole-Gallss type potentials 
(Eq.(A.6)), corresponding Talmi integrals are obtained as the weighted SUlIl oftwo Talmi 
integrals for each multipole-Gauss potential V' and V" (for details sec R('f.[~H]):  

r::J;l\ 2~+3  

,[VA ) _ £!22~+1 ( rp yvA/2J f((2c:+q+3)/2) " 
lu ( q,T PV2,Zl,{3 - ( ),,+(q+3)/2' (A.I,» 

j1r(2c + I)! r~vA/2  +ZI 

where q, 1'1" ZI, {3 for the first part of the potential assume values ql, rip, ZOI, {31, and for 
the second part - q2, 1'21" Z02, {32, correspondingly. Then, the summed Talmi integrals 
can be presented as follows: 

l~~ (V( V2r",Pa)) = V~II;~ (qt, 1'lp~, ZO.,{3I) + V~21;~ (q2' 7'2p~, Z02, t32)' (A. 1G) 

where the weight factors: 

V~l  = VOl(rlp)Qlj V~2 = V02 (r2p)Q2 (A.I7) 

one can express using Eqs.(A.12) and (A.l3). Since the common part of the potential 
depth VI == "dl we include in parameters C1 and C2 (see Eq.(62)), then from Eqs.(A.17), 
(A.12) and (A.l3) we finally obtain following expressions for the weight factors betweell 
two parts of the Talmi integral Eq.(A.16): 

(ro)Q2 exp [-Q2( 1'0){J2] 
V~I -(r1p)QI U(rd ; (A.IS) 

(1' )Ql exp [ 0 (1' )131]
\/,' = (. )Q2 0 - ) 0� (A 19)

02 121' U(1'd'� .. 

which should be used also when evaluating the potential part of HG1BM (Eq.(39)). Then. 
in the case of potential Eq.(A.6), we have 

btRt� = (b~  + b~')Rt  = 

_ (v.,(-od-a 
, (-od-a 

) (A-3)!! 
(A.20)

- 01 (t-a)! + ~2 (t-a)! (A+2t-3)!!' 



wl)('I'<' 0, and n2 arp ddinpd by Eqs.(A.lO) cllld (1\.11). 

Appendix B. The expressions of SRDM anticollective density matrices 

The rf'sulting formulae for the anticolledive orhital matrix elements of Wiguer and 
Majorana interactions are followin~  [2·1]: 

2~o+i.x 

Ef,,(\'w) - L 1[oo).(h11 ) Q[OO). (d"wo!, o'w'a'.f') , (8.1) 
.==0 

2'o+i" 

E~f(\';\r)  L (-1)'1[00).(\';\1 )Q[oo)Aowa!, 0'''/0'/,), (B.2) 
•=0 

where Eo = 0, 1. 2, denotes SU:rshells (s, p, ..,d, ...) and i er ...- ground (iex = 0) and 
excited (ie,. = 1,2, ) SU3-configurations. In Eqs.(8.1) and (8.2) Q[OOI~("')  denotes 
the ant icol\l'dive (U3-scalar) two-particle density matrix. Its general expressions are 
knowlI only in the case of p-shell (Eo = I) and sd-slwll (co = 2) nuclei. One can find 
thplll ill Refs.[l.1), 1,24]. 

For ot.her shells (co ~ :l), which we need in the case of a-cluster nuclei with A > 
40, we IlIIlSt. use the approximate expressions for the two-particle anticollective density 
mat.rix component.s, which haw beell evaluat.ed employing the approach described in 
Refs.[ 15. :ri]. According to this method, the two-particle anticollective density matrix 
Q[OO]. == Q~ can be approximately expressed using "four universal relationships" (see 
Eqs.(25.1·t), (2.5.15), (2.5.17) and (2.5.32) in Ref.[l.5]): 

'" Q _ A( A - I) _ j' . (D )
LJ • - 2 - I, .3 
~ 

L( -I rQ. = A(f) = 12; (8.4). 
LcQ~  = ~j\,o  = h: (8..5) 
~  -
'" 2 1 ,2 A - 4 . • 3 Af7 c Q~  = ~i\o  + -4-1'-1 0 + 2G + "4.\'(eo) = 

[l:3 + 4sy',N) (.'iy,lV) - 3)j:l + A(S\Z,N) + .)2(Z, N))] /4 = !4' (B.6) 

In Eq.( B.4) .\(f) is the eigenvalue of the orbital coordinate exchange operator, its ex­
pression one can find, e.g. in Ref.[18]. Quantity G in Eq.(B.6) is the eigenvalue of the 
second (quadratic) Casimir operator of the S(J3 group: 

G = [(A + p)(A + Il + 3) - (All)] /9. (8.7) 

Expressions for functions S\Z,N), 8~Z.N), k3 one can find in Refs.[!.), 37]. 
From the sums of both sides of these four relationships with coefficients br', b'f, br', 

b~r  awl b~f,  b~l,  b~f,  b~f,  cOfl'Pspondingly, olle ohtains: 

L\I 

1) the approximate equation in the case of Wigner forces: 

L Q~  (b~V + (-l)~b~ + ebf + e2bf') ~  L Q~ l[ooJ~; (B.8) 
~ ~ 

2) and, analogously, in the case of Majorana forces: 

L Q~ (b~ + (-l)~b~ + eb~ + e2b~f) ~ L Q~ (-It l[ooJ~'  (B.9) 
e ~ 

Coefficients W', bt' (i = 1-4) one can find solving the overdetermined linear equation 
systems 137]: 

br' + (-1Yb~  + ebf + e2bf' = 1(00)• (B.IO) 

and 

b~  +(-l)'b~  +cb~f  +c2b~  = (-lt1[OOk' (B.II) 

where for A :::; 80 e = 0,1, ... ,6. The expressions for SU3-averaged integrals 1(00). 

one can find in Appendix A. Then, taking into account relationships Eqs.(B.3)-(B.7) 
and using evaluated coefficients br, br, we can express the total anticolJective C'nergies 
entering in Eq.(60) as follows: 

±a E~ ± E~ 1 [( W bM) W M) bW M W At ]
Ee,c = 'l = 2 bl ± 1 !I + (b2 ± b2 12 + ( 3 ± b3 )h + (b4 ± b4 ).f4 , 

(B.12) 
using Coulomb and central NN-interaetion potentials, correspondingly. 

For the first time the approximate expressions for the SU3-invariant two-particle 
density matrix have been obtained in Ref.[37]. Though, ernpolying these expressions in 
our SRDM calculations of 44 :::; A :::; 80 nuclei, we have found that these expressions 
contain errors. Therefore, we have solved systems Eqs.(8.lO) and (8.11) again and 
obtained the corrected formulae for the coefficients br, br, which we have used in our 
calculations (in the following expressions e = emax = 2co + i ex for 40 < A :s: 80, since 
eo = 3 and i ex = 0, therefore, emax = 6): 

bW 3 ~[4 2 
I LJ 3e - 4c - 8e - 1 ­

(e - 2)e(e + l)(e + 2)(e + 4) ;=0 

(e - 1)(e + 1)(2e + 1)(_l)i + lOi 2(e 2 
- c + 1)­

6c(2c + l)(e - 1)i]/; (fore - even); (B.13) 
3 ~ 

bW 
I ----L[3e3 +2e - 2 - e(e + 2)(-lr + 

i=O 

+ 2i2(-5+5e)+6ie(1-2e)]/i (fore-odd); (8.14) 
1 ~ 

bW ------.L[ -3(e -1)(2c + 1) +2� 
i==O� 

+ (e - l)(e + l)(e + 3)( _l)i + 30i(e - i)]/; (for c - even); (B.15) 
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bW 
2 (c _ 

1 ' 
1)(E + 1)( E+ 1) ~  [ ­ 3E + 6i + E( E+ 2)( -1 )il/i 

6 ~ (fOfE-odd); (B.16) 

b"'3 (E _ 2)c(E + l)(E + 2)(£ + 4) t; [c( - 6£2 + (E + 1)(3 + 5(-1)i)) + 

+ 2i(16c2 + 2£ - 8 ­6 1!)£i))/i (fOfE -" even)' (B.17) 

b"'3 (E _ I)(E + I)(E + 2)(E + :3) ~ [.:( - OE + 1 + 32i + (-1 )i) + 

+ 2i(2-15i)+2(-I)il/i30 (forE-odd);
f: (B.18) 

bH' 

" 
(E _ 2)c(.: + I)(E + 2)(E + 4) t; [E2 - c(6i + 1 + (-1 )i) + 

+ 6i 2 + 1 - (-1 )iPi30 (forE - even)':' (B.19) 
2� 

b"' (t - 1)E(E + l)(e + 2)(£ + 3) ~  [c2 - E(6i + 1) + 6i ]Ii� 

" 
(fOfE - odd). (8.20) 

Coefficients b~l  one call obtain replacing in all expressions Ii with (-I) i1i' <e 
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Table -1: The microscopical and phenomenological values of the standard IBM Hamiltonian parameters for a-cluster type nuclei 

Nucl. N A(N) £+N£1 Q (3 6 1} T 
mia micr ph micr ph micr ph micr ph micr ph micr ph micr ph 

8Be 2 -29 -27 15.0 - 0.17 - -0.186 - -0.217 -0.100 0.313 - 0.070 0.299 
12C 4 -134 -82 27.0 -2.6 0.29 1.07 -0.286 0.046 -0.342 -0.258 0.472 -0.260 0.111 0.272 

20Ne 10 -150 -151 12.8 2.6 0.03 -0.10 -0.143 0.028 -0.126 -0.037 0.274 -0.039 0.040 0.039 
24Mg 14 -203 -184 9.5 1.7 -0.18 0.01 -0.153 -0.010 -0.049 -0.029 0.363 -0.044 0.013 0.057 
288i 18 -235 -222 10.7 3.4 0.08 -0.19 -0.063 0.022 -0.082 -0.019 0.099 -0.026 0.027 0.051 
32 8 22 -252 -259 5.8 1.8 -0.10 -0.05 -0.090 0.005 -0.031 -0.013 0.212 -0.017 0.008 0.050 

36Ar 26 -300 -287 10.5 3.5 0.07 -0.26 -0.055 0.027 -0.070 -0.017 0.087 -0.017 0.023 0.083 
44Ti 36 -362 -361 10.3 1.9 0.05 -0.10 -0.045 0.004 -0.056 -0.006 0.071 -0.007 0.018 0.020 
48Cr 42 -390 -390 7.5 2.4 0.04 -0.13 -0.030 0.010 -0.039 -0.006 0.048 -0.009 0.013 0.017 
52Fe 48 -425 -428 6.7 2.3 0.02 -0.10 -0.029 -0.005 -0.033 -0.004 0.050 -0.006 0.011 0.015 
56Ni 54 -465 -462 6.9 1.9 0.02 -0.06 -0.030 0.008 -0.032 -0.004 0.054 -0.005 0.010 0.024 
60Zn 60 -480 -480 5.7 4.5 0.02 -0.34 -0.021 0.025 -0.024 -0.005 0.036 -0.007 0.008 0.007 

Table 3: The microscopical and phenomenological values of the standard BMM Hamiltonian parameters for a-cluster type nuclei 

Nucleus [N1N2N3] N crier CP
m1cr f30 B C 

micr Bm,er Bpn cmlcr (}ph 

8Be [4,0,0] 2 23.679 12.661 - 0.011 - 9.423 ­
12C [4,4,0] 4 41.582 30.713 0.574 0.006 0.760 17.571 11.825 

'lONe [12,4,4] 10 27.758 7.583 0.722 0.009 3.162 5.381 20.942 
24Mg [16,8,4] 14 32.327 1.299 0.607 0.008 3.445 2.285 22.687 
288i [20,8,8] 18 19.384 33.450 0.411 0.013 8.101 6.164 40.503 
328 [20.16,8] 22 25.427 1.017 0.315 0.010 11.640 1.500 36.347 

36Ar [20.20,12] 26 24.378 22.358 0.256 0.011 14.624 5.072 33.040 
44Ti [32,20,20] 36 28.230 22.711 0.260 0.009 53.639 4.493 80.162 
48Cr [40.24,20] 42 17.527 15.006 0.368 0.014 27.024 2.892 50.782 
52Fe [-18,24,24] -18 18.661 7.722 0.266 0.013 54.400 2.263 107.191 
56Ni [52.32,24] 5-1 22.965 5.407 0.174 0.011 80.574 2.087 267.581 
6fJZn [56.36.28] 60 15.562 10.090 0.223 0.016 80.759 1.742 142.365 
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