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Abstract: Recently Lukierski et a1. [I] defined a It-deformed Poincare algebra which is 
characterized by having the energy-momentum and angular momentum sub-algebras not 
deformed. Further Biedenharn et a1.[2] showed that on gauging the It -deformed electron 
with the electromagnetic field, one can set a limit on the allowed value of the deformation 
parameter f == 1/It < 1 fm. We show that one gets Regge like angular excitations, J, of 
the mesons, non-strange and strange baryons, with a value of f '" 0.082 fm and predict a 
flattening with J of the corresponding trajectories. The Regge fit improves on including 
deformation, particularly for the baryon spectrum. 

•Supported by FAPESP, S.P., Brasil and in part by DST grant no. SP/S2/K04/93, Govt. of India, 
permanent address: 1/10 Prince Golam Md. Road, Calcutta 700 026, India 

Q-deformed algebras are new symmetry structures recently introduced into physics [3]. 
For the Poincare group the deformation structure is not unique, a particular form due to 
[1] is considered for this paper. They showed that the three dimensional rotation and the 
translation subgroups are not deformed, the algebra of Lorentz boosts is modified, both 
for bosons and fermions. The relevant q-defonnation parameter, in this cue i. called Ie, 
and when this goes to infinity we recover the undefonned algebra [1]. Thi. IC-deformed 
version has two Casimir invariants C1 and C2 [1]. The Ie-deformed Ie-Dirac equation has 
recently been found [4], and it factorizes the second Casimir invariant, quite unlike the 
usual case which factorizes the first one. 

We will use the notation of Biedenharn, Mueller and Tarlini [2], who for example 
use f, the inverse of It, to avoid confusion with the Dirac quantum number. To obtain 
the Dirac-Coulomb equation they gauged the deformed Dirac equation, applied it to the 
quantum relativistic hydrogen atom, with the aim of finding any induced shift in the 
ground state energy level with the recent precision quantum optics measurements. They 
obtained the remarkable result that the first order effect vanishes identically, while from 
the logarithmic cut-off of the second order perturbation they find f to be less than 1 £m. 
As they comment this self consistent estimate of the Poincare length is both speculative 
and not very accurate. But it raises the important question that this may then affect 
particle and nuclear physics phenomenology since the relevant length scale there is indeed 
the fermi. 

Can one specify f, by assuming It-deformation and by looking at the Regge type angular 
excitations of the particle spectrum? We answer this question in the affirmative. The 
present analysis adopts a simplified picture, associated to a single parameter, the Regge 
slope a'. Once a' is given by an acceptable theory, the parameter f can be obtained by 
minimizing the sum of the average deviations (between theory and experimental results) 
we obtain for each particle trajectory. This slope we fix from calculations with strings 
(15], [6]), that gives as a reasonable value a' = 0.85 GeV- 2

• Given this a', the deformation 
parameter is obtained by the best fitting of the Poincare deformed values of the energies 
of the states E( J) to the experimental baryon spectrum. From the pion to the baryons, 
the spectrum of all particles is fitted with a uniform value of the deformation parameter 
f = 0.082 fm, given the Regge slope as a'= 0.85 GeV-2. The results, displayed on Tables 
1-7, already shows that our fits are better than the fits given by the Regge trajectories, 
using this set of parameters. Now, if we release this constraint from string theories, 
we observe that a better fit can be achieved with a smaller value of a'. We vary a' 
within a large range, a' < 0.9 GeV-2, and find that with It-deformation we always fit the 
experimental trajectories better than the Regge formula. Our best fit, in the It-deformed 
case, gives a' = 0.72 GeV-2 and f = 0.14 fm, as we show through the minimum of the 
total deviation given in Fig.!. Also we show in Fig.2 that such a best fit present. a 
significant curvature for some states which are well fitted. In Fig.l we clearly show that 
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the best Regge trajectory results without deformation (corresponding to E = 0 in the 
deformed case) are near Q = 0.9 GeV-2, and that such result is considerably improved 
by introducing deformation and a smaller value of o. 

As is well known, the model of a rotating string predicts a linear relation between 
the square of the mass of a state and its orbital angular momentum [7]. In the simplest 
variant, the quarks at the ends of the rotating string are massless, so the model contains 
only a single parameter - the string tension. In more refined versions, strings with masses 
at the ends - quarks or di-quarks, are introduced to treat mesons [5] and baryons (see [61 
and references therein). 

We start with the commutation relations [1] between the components of energy­
momentum PI! (v = 0,1,2,3), angular momentum Mi and Lorentz boosts L i : 

[Pi, Pi] = 0, [Pi, Po] = 0, [Mi , Pi] = iC:iikP'q 

[Mi , Po] = 0, [Li, Po] = iPi, [Li, Pi] = iE- 16ii sinh( EPo), 

[Mi , Mi] = iC:iikMk' [Mi , Li ]= iC:iikLk' (1) 

[Li, L i ]= -iC:iik (Mkcosh(EPo) - ~PkPIMI) , 

where i,i, k = 1, 2, 3. Following is the first Casimir operator, ClI which commutes with 
all the generators : 

2. (EPO)] 2C1 = [~smh 2 - Pi~.  (2) 

In the rest frame ( Pi = 0 ) : 

C1= [~sinh  (~E)  r (3) 

and for a general frame (E, P) (E == Po) 

[~sinh (E:)]2= p 2+ [~sinh  (~E)] 2 (4) 

This gives 

E = ~sinh -I [m' ~ +sinh' C')r (5) 

where we have put, in the spirit of the Regge phenomenology: 

E 2 = m 2 +­J 
(6)

0' 

with J = 0, 1, 2, ... for mesons and J = 1/2, 3/2, ... for baryons. In eq.(6), m 2 is fixed 
by the first physical state of the trajectory and a' gives the Regge slope which, in string 
theories, is related to the string tension (J through a' = (27r(Jtt and, therefore, with the 
dimension of the system. This m is sometimes unphysical for example for the p meson 
where the first state starts from J = I, as is well known to users of Regge theory [5], (6]. 
In the limit E going to zero, we get the above equation from eq.(5). Observe that we can 
rewrite the eq.(5) such that 

2
1 [(E (J-io)) ]E = ~COSh-l  20' + cosh (Emo ) , (7) 

where rno and io are the mass and the angular momentum of the first state. 
We note that the present phenomenology is solely based on the first deformed Casimir 

operator Ct of the K-deformed Poincare algebra. It is clear however, that a more refined 
analysis may require the explicit introduction of the 2nd. deformed Casimir operator C2 , 

as well. 
The marked difference between the equations eq.(5) and eq.(6) is for high J, the first 

one showing flattening of the spectrum, while E 2 is linear in J in the second one. The 
kind of result that we get is indicated by considering any hadron, with J = 1000 say, 
where eq.(5) gives f"OoJ 12.8 GeV for 0' = 0.85 GeV-2 and f"OoJ 9.0 GeV for 0' = 0.72 GeV-2, 
when eq.(6) gives 34.3 GeV. To our knowledge, the first reference to a possible flattening 
of the hadronic trajectories is due to Hendry (8]. 

We calculate several hadronic trajectories, 27 in all, 13 mesonic and 14 baryonic. 
When the parameter a' is taken to be 0.85 GeV-2, and E is fitted to be 0.415 GeV- 1

, 

we get results that are displayed in Tables 1-7, both for eq.(6) and eq.(5), or equivalently 
eq.(7). We see that there is good fit to experiment [9]. We define the dimensionless root 
mean square deviation as 

_E th6= [! t (1 ) 2] (8) 
n i Eezp i ' 

where n is the number of states for which Eezp are known. We determine E by requiring 
that the sum of 6-s be minimum for the chosen fit of mesons and baryons. Eq.(6) gives a 
sum of 6-s = 1.188 (for 27 trajectories), whereas the K deformed case gives a value 0.990. 
As we have already mentioned the baryon fit looks better than the meson fit for the K 

deformed case. 
As we have stated before, we have also varied 0' and in each case find the E that gives 

the minimum total deviation for the 27 trajectories chosen by us. These are shown in 
Fig. 1 where the total deviation for the Regge case, and for the minimum E found in 
K deformed case, are also shown. We find that the latter show a global minimum for a 
value of 0' = 0.72 GeV-2. At this value the meson trajectory fo-w and the baryon E· 
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are plotted in fig. 2, since they have observed high angular momentum excitations. The 
graphs show significant curvature. 

Recently there has been some excitement about hadronic scale string theories [11], [12], 
[13]. This started from the work of Kutasov and Seiberg [14] who observed that desta­
bilizing tachyons in a string theory severely constrains the difference of the asymptotic 
densities of bosons and fermions in that theory. Their result shows that tachyon elimi­
nation does not require full fledged supersymmetry. Cancellation between the boson and 
fermion density of states is all that is needed. These results were translated for hadronic 
scale string theory [11] where indeed the experimental and some model density of states 
ofmesons and baryons [15] are seen to be equal over a large energy range. In [12] these 
results are analyzed further, and it was shown that the boson/fermion ratio of the theory 
fluctuates around unity, gradually approaching unity. In particular, it is obvious that at 
low energy the meson density is higher than that of baryons, and then the latter take 
over. The pattern continues for more involved boson and fermion configurations. This is 
reviewed in [16]. In the more recent paper Dienes and Cudell [13] claim that conformal 
invariance and modular invariance is indeed reflected in the hadron spectrum. It could 
be that a complete treatment of K deformed Poincare algebra with both could also yield 
information about the density of states and allow comparison with their results. This 
would be fascinating. At this point the only comment we can make is that we take 0' as 
suggested in [13] for our tables and so our good fit supports their limiting temperature of 
TH == 300 MeV. 

A simple model of rotator based on the K-Poincare energy mass relation describes the 
rotational levels of even nuclei [17]. Since the velocities here are typically a thousandth 
part of that of light, the appropriate from of the angular momentum is taken to be J( J +1) 
by these authors. 

To summarize, the present work is based on the K-deformed Poincare algebra of [I] 
which encompasses and extends, in a natural way, the Wigner pioneering work on the 
inhomogeneous Lorentz group[18]. We find that the form of the K-deformed Poincare 
algebra combined with a Regge-like behaviour for the angular momentum hadronic exci­
tations, provides an universal fitting of the experimental data with a value of € == 0.082 
fm. In addition, by means of eq.(5), we predict a flattening of the energy spectrum as a 
function of J. This would imply that many higher angular ,momentum states are densely 
packed in an energy region of say 13 to 20 GeV. There will be experimental consequences. 

We are grateful to Dr. Keith Dienes for providing us with a fax of ref. [13] and to Dr. 
Marco Tarlini for pointing out the reference [17] and encouraging comments. LT would 
like to thank CNPq of Brasil for partial support. 
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Figure 1: The deformation f (full line) and the corresponding minimum total deviation, 
6T = Ltra;ec:torll6, and the deformation parameter f which gives this (dashed line), as a 
function of the slope parameter 0' for the trajectories chosen. The f is multiplied by 3 to 
put it in the same scale. The sum of deviations for the Regge case, 6;', is also given for 
comparison (dot-dashed line). 
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Figure 2: The fo-w (solid line) and the E· (dashed-line) It-deformed trajectories as a 
function of J, for the parameters 0' = 0.72 GeV-2 and f = 0.705 GeV-t, clearly showing 
curvature and good fits to the experimental observed states (boxes for fo-w and losangles 
for E·). 
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Table 1. Experiment and theory for two trajectories of 11" and two of a- p states, obtained 
from eq.(7), given the mass m o and the spin io of the first physical state of the trajectory. 
The second row for each J gives the Regge results, eq.(6). The percentage deviations are 
marked 0,. for our fit, and OR in the case of Regge results. 

=:!J 'Il' - b Exp. I 'Il' Exp. I p - a Exp. Ia - p Exp 

0 0.138 'Il'(.138) 1.300 11"(1.30) - - .980 ao(.98) 
0.138 1.300� .980 

1 1.084 b1(1.235) 1.672 - 0.770 p(0.77) 1.445 p(1.45) 
1.093 1.693 0.770 1.462 

2 1.515 11"2(1.670) 1.966 11"2(2.10) 1.316 a2(1.32) 1.783 ­
1.540 2.011 1.330 1.820 

3 1.839 2.215 - 1.683 P3(1.69) 2.059 P3(2.25) 
1.884 2.285 1.716 2.119 

4 - - - - 1.976 a4(2.04) 2.295 ­
- - 2.030 2.380 

5 - - - 2.223 ps(2.35) 2.504 ­
- - 2.302 2.616 

6 - - - - - - 2.692 a6(2.45) 
- - 2.832 

7� - - - - - - 2.863 a6(2.45) 
- - 3.032

:1.1 I I I9% 4.5% 1.6% 6.5%� 
OR 8% 3% 0.9% 9%� 
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Table 2. The same as in Table 1 for three trajectories of K states.� Table 4. The same as in Table 1 for three trajectories of w - I states. 

~  K Exp. I K Exp. I K Exp� II w - I Exp. I I - w Exp. II - w Exp. 

0� 0.494 K (.494) 1.460 K (1.46) 1.830 K(1.83) 0 0.975 lo( .975) 1.240 10(1.24) 
0.494 1.460 1.83� 0.975 1.240 

1� 1.180 K1(1.27) 1.795 K1 (1.65) 2.099 - 1 0.783 w(0.783) 1.441 w(1.39) 1.627 w(1.60) 
1.192 1.819 2.127� 0.183 1.459 1.647 

2� 1.583 K2 (1.77) 2.069 2.330 K2 (2.25) 2 1.323 h (1.27) 1.780 f:,(1.81) 1.929 12(2.01) 
1.612 2.118 2.388� 1.338 1.818 1.972 

3� 1.894 2.304 K3(2.32) 2.535 3 1.689 W3( 1.67) 2.057 - 2.183 ­
1.943 2.379 2.623 1.722 2.117 2.251 

4 - 2.512 K4(2.50) - 4 1.980 J4 (2.05) 2.294 14(2.3) - ­
2.615 2.035 2.378 

5 - 2.699 - 5 2.227 - 2.503 - - ­
2.831� 2.306 2.614 

6� 2.444 16(2.51) - ­]J I I7.3% 4.4% 2.5% 2.549bR 6.3% 5.8% 4.3% 
7� 2.637 - - - ­

2.770Table 3. The same as in Table 1 for two trajectories of K· and one of <p states. 11 I I2.1% 2% 2.5% 
OR 2.9% 3% 2%~  K· Exp. I K· Exp. I <p Exp 

1� 0.892 K· (0.892) 1.680 K· (1.68) 1.020 <p (1.02)� 
.892 1.680 1.020� 

2� 1.388 K; (1.43) 1.973 K; (1.98) 1.471 I~ (1.525) 
1.404 2.000 1.489 

3� 1.739 K; (1.78) 2.221 - 1.804 <P3(1.85) 
1.774 2.275 1.842 

4� 2.022 K; (2.045) - 2.077 14 (2.22) 
2.080� 2.138 

5� 2.263 K; (2.38) 2.311 
2.346� 2.397 

6� 2.476 ­
2.58411� I 12.8% 0.3% 3.9%� 

6R 1.3% 0.7% 2.2%� 
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Table 5. The same as in Table 1 for three trajectories of nucleon and A states. The third 
one, in each case, have the first state with negative parity. 

=CI N Exp. I N Exp. I N Exp.� 

1/2 0.939 (.939) 1.440 (1.44) 1.535 (1.535)� 
0.939 1.440 1.535� 

3/2 1.418 (1.52) 1.779 (1.70) 1.855 (1.72)� 
1.435 1.803 1.880� 

5/2 1.762 (1.68) 2.056 (2.00) 2.120 (2.2)� 
1.799 2.104 2.170 

7/2 2.041 (2.19) 2.293 - 2.349 ­
2.100 2.367 2.426 

9/2 2.280 (2.22) - 2.552 (2.25) 
2.364 2.658 

11/2 2.491 (2.60) - - 2.735 ­
2.601 2.870 

13/2 2.680 (2.70) - ­
2.818 

15/2 2.852 - - - ­
3.019� 

~  4.5% I 3.1% I 8%� 
5R 4.8% 4.6% 10.2%� 

=0 A Expt. I A Expt. I A Expt.� 

1/2 1.116 (1.116) 1.600 (1.6) 1.670 (1.67)� 
1.116 1.600 1.670� 

3/2 1.537 (1.52) 1.907 (1.69) 1.965 (1.89)� 
1.556 1.933 1.991� 

5/2 1.857 (1.82) 2.164 (2.11) 2.214 ­
1.897 2.217 2.268 

7/2 2.121 (2.1) - - - ­
2.185 2.468 

9/2 2.350 (2.35) - - ­
2.440 

11/2 2.553 ­
2.670� 

~ 1.1% I 7.6% I 2.8%� 
5R 3.3% 8.8% 3.8% 

11 

Table 6. The same as in Table 1 for four trajectories of E. No spin was assigned for 
the (t) states in ref.[9]. We predict the spin on the basis of a small deviation 51(.' 

J I E Expt. I E Expt. I E Expt. I E· Expt� 

1/2 1.197 (1.197) 1.660 (1.66) 1.620 (1.62) - ­
1.197 1.660 1.620� 

3/2 1.595 (1.58) 1.957 (1.94) 1.924 (2.08) 1.385 (1.385)� 
1.615 1.983 1.950 1.385� 

5/2 1.903 (1.915) 2.207 (2.07) 2.178 1.736 (1.775)� 
1.946 2.260 2.231 1.795� 

7/2 2.161 (2.1) 2.425 - - 2.020 (2.03)� 
2.228 2.507 2.067� 

9/2 2.385 - - - - 2.261 (2.25) (t)� 
2.478 2.334� 

11/2 - - - - - 2.474 (2.455) (t)� 
2.574� 

13/2 - - - - - - 2.665 (2.62) (t)� 
2.793� 

15/2 - - - - - - 2.838 ­
2.996 

1.6% 3.8% 5.3% 1.2%� 
6R 3.3% 5.5% 4.4% 3.8%� 
6" 
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Table 7. The same as in Table 1 for four trajectories of fj. states. Isobar states marked 
(1) are from Hendry and (2) are from Hoehler et al., p. VIII-57 of ref.[9]. 

J ~ _- ~xp~-,_- ~  _ txpt. I fj. _ Expt. I fj. Expt. 

1/2 - 1.620 (1.62) 
1.620 

3/2 1.232 (1.232) 1.600 (1.6) 1.924 (1.92) 1.700 (1.7) 
1.232 1.600 1.950 1.700 

5/2 1.621 1.907 (1.93) 2.178 (2.35) 1.989 (1.905) 
1.641 1.933 2.231 2.017 

7/2 1.924 (1.95 ) 2.164 2.400 (2.39) 2.235 (2.2) 
1.967 2.217 2.481 2.290 

9/2 2.179 (2.40) 2.388 (2.4) 2.598 - 2.451 (2.3) 
2.247 2.468 2.707 2.534 

11/2 2.401 (2.42) 2.587 - 2.777 2.644 ­
2.495 2.696 2.917 2.756 

13/2 2.599 (2.65)(1) - 2.942 (2.794){2) ­
2.720 3.112 

15/2 2.778 (2.85)(1) - - 3.094 (2.99)(2) - ­
2.929 3.295 

17/2 2.942 3.235 ­
3.123 3.469 

6... 1.5% 0.7% 3.9% 3.9% 
6R 2.2% 1.6% 6.8% 6.3% 
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