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Abstract

One-fermion-loop corrections are known to destabilize the translationally invariant
vacnum in all renormalizable theories. The inclusion of one-boson-loop corrections can
only climinate the problem in asymptotically free field theories. One of the manifesta-
tions of this instability is the presence of tachyon poles in the boson propagators. In
the present work we derive a quantitative relation between the tachyonic pole positions
and the vacuum fluctuations corrections at the one loop order for such theories. An
application to the Lincar Sigma Model is performed.

'"Work partially supported by FAPESP and CNPq (Brasil).

Chiral field theories without asymptotic freedom are a current research tool in the arca of
low energy hadron physics!'l. It is hoped that the low encrgy properties of such phenomeno-
logical theories will not be sensitive to their high energy behavior. Sonil?! has noted that the
inclusion of one-fermion-loop corrections to the energy of chiral solitons can result in a total
energy which is negative. Cohen, Banerjee and Ren! further extended the previous work
by including one boson corrections and considering all renormalizable theories which do not
contain derivative coupling. They have shown that the negative energy solitons exist in all
such theories. Later Perry®! has shown that the vacuum instability is indicated by tachyon
poles in boson propagators and divergence of the effective coupling constant. The analy-
sis performed relates the vacuum instability to well known problem with Yukawa theories,
leading to the simple interpretation that the loop expansion diverges at high momentum in
non-asymptotically free field theories.

In this letter we provide for a quantitative relation between the discussed tachyon poles
and the vacuum energy. The present results can be used to answer the question as to how
much the high energy behavior of the theory affects its low energy behavior in terms of
the vacuum fluctuation corrections. We show that the deeper the tachyonic pole is located,
the smaller the vacuum fluctuations (they decrease as |s,[~'/2 , where s, is the ghost pole
position).

Let us take the simple Lagrangeana
1
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where ' stands for a fermionic field and ¢ is a scalar field with a Yukawa coupling to the
fermionic fields plus self interaction terms. M (m) is the mass of the bosonic (fermionic)
field quantum, b and ¢ are constants and C.T. stand for counterterms.

Within the framework of the effective action formalism, once the one fermion and one

boson loop corrections are included we get for the effective action in the present case
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where Tr stands for the trace operation. The parameters can be adjusted so that the expec-
tation value of the scalar field is zero in the vacuum state (), = 0.
Next consider small amplitude vibrations of the scalar field around the vacuum. We get,
in the momentum space
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where D=1 stands for the one loop approximation to the inverse scalar field propagator.
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where « stands for the trace over the internal fermionic degrees of freedon (isospin, flavor

and color) and tr stands for the trace over Lorentz indices.

For time independent. fields p(x, 1) = (x) we get the one loop energy correction
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Then, the s = —p? < 0 is the relevant region in the momentum space. For these space-like

iD~'(-p?) (5)

momentum one can show that
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with

L, (s) = 87:23 {- V—s(1m? —5) ln[\/_+2m4m _9] s} (7)

The finite constants 2’ and AL, 2 are fixed by the requeriment that D manifest the scalar

hoson.

From the expressions (5) and (6) it becomes clear that the vacuum is unstable. Let us

consider a static field distribution given by
X
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where o is an arbitrary functional form and R is a distance scale which we will take as a

variational parameter. Inserting (8) in (5) gives
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where q = Rp. In the limit of small values of R we get
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Now, minimizing with respect to R
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where I =2—I,/I, . The value of E, at this point is
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As pointed out. by Perry™l, the fact that the inverse bosonic propagator starts out negative
for p* = 0 and turns positive in the deep enclidean region indicates that it must go through
zero for some space-like momentum. Thus the bosonic propagator presents a tachyonic pole
for some s = —p? < 0. In what follows we show the explicit relationship between the
tachyonic pole and the energy fluctuation just derived.

From eq.(5) and the condition
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we get
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The corresponding residue can be obtained as
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The above relations allow for an analytic expressions which relate R, and E,in with sp

and Res'™). We find

Ro= —mee o 112 (18)
{spl
and
Rest-) —
Epin = Il & (19)

V15l

This result is quite general and should apply to all renormalizable theories without asymp-
totic freedom. Therefore we restricted ourselves to the simplest possible case. We have also
applied the results to the well known Linear Sigma Model®™ which follows in the category
of field theories discussed and moreover finds applications in the description of low energy

hadronic properties'®™. Due to lack of space we only quote the results: in its renormalized

<«

versions® both the pion and the sigma propagators exhibit tachyonic poles?. In the case of
the pion this pole is found at m = 1.6 GeV. Its location is rather independent of the free
renormalization parameter A,,. On the other hand. for the sigma propagator the position of
the ghost pole strongly depends on \,,, but also for a large range of values of this parameters
the location of the pole is found for smaller values of energy, i.c., y/ [s_| <1 GeV’. However,
if we permit lower values of the coupling strenghth G, due to chiral symmetry the position
of both poles coincide in the asymptotic region. We thus looked for analytical asymptotic

expressions for s, we find
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with a = 4A2 F? I},,(0). We numerically checked that the above expressions show a re-
markable agreement with numerical values for G < 3. In this case, our results suggest. that
this model results will be rather stable and independent of the high energy behavior of the
theory. Considerable disagreement (larger than 50%) is found for 7—N coupling constant

values (G ~ 10).

The authors want to thank Prof. L.Wilets for helpful discussions and suggestions that.

initiated this work.

2From here on we use the expressions and notation of Ref. 8.
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