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Ahstract 

lJsin~  2 body trees 011 a Oat space hackground, it is shown that the ac­

tions A[g,¢J = Jd'l x A [~+ ~ (gl'Val' 4>av4> +>.R4>2) J and .4[g,1>] = 

I d4 x A [~+  !gI'Vol,~av¢ J desc.ribe the same theory at the tree-level 

ill this ca.'>e. W(' also deIIlollstratf' th(' quantulII equivalence (at one-loop) of 

the barred aud 11 II barred syst.ellls for>. = -1/6 (conformal coupling). 

Pi\CS nUlllbers: Ott.GO.-III; 01.00.+11; 01.:W.Cv 

Typeset using REV1FX 

The reasons for adding to Einstein's action for gravitation a nonminimal fUllcti~)JJal  of a 

scalar field are manifold l . It is widely believed, moreover, that the actioll functional which 

describes the nonminimal interaction between the gravitational field gl'v and a fff'(" massless 

scalar field ¢J, is given by2 

As = I d4x v=g ~ (gI'V8AJ 8v¢> + >'R¢>2) 

where>. is an adimensional coupling constant which in principle may assume whatever value 

one wishes. Here the Ricci tensor is defined by Rl'v = -8or°l'v+'''' and the metric convention 

is gl'v = diag( 1, -1, -1, -1). Accordingly, let us focus our attention 011 tlJ(' gravitatiollal 

theories described by the action functiolIal 

(1)A [g, ¢>] =I d
4 
x v=g (2~ + ~ (gI'V81'¢>8v¢> + >'R¢>2) J ' 

with K = 81T"G in natural units. 

As it has previously been observed, the R¢>2 coupling between gravity alld tlJ(' ¢>-field 

can be eliminated from (1) by local field redefinitions3 . They are 

91'1' = (1 +K>'4?) gl'v , (2a) 

¢ =I d¢ Jl +K>' (1 +6>') ¢>2 (2b)
1+K>.¢2 ' 

where 1 +K>.¢2 is supposed to be positive. Under this transformation the A action of (I) 

becomes 

4A [g,~J =� Id x F9 [2~  + ~gI'Val'~ av~ I (3) 

Thus, at the classical level, actions A and Ii prescribre the same theory; furtherIllore, for a 

single massless scalar field, the R¢2 coupling may be transformeo away cOllIpletly. (We are 

assuming that 1 + ",>.¢2 > 0.) 

On the other hand, according to a well-established custom among quantulII field theorists, 

the S-matrix is supposed to be invariant under field redefinitions4 
• If this is so, th(,11 A and 
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Ii describe the same quantum field theory. Of course, actions A and A will lead to different 

off-mass-shell Green's functions in this case, but as long as we ask only physical questions, 

namely, on-shell S-matrix elements, the results will be the same. Moreover, if the S-matrix 

is indeed unchanged under the above field redefinitons, it must be that scattering amplitudes 

show no dependence upon the strenght of the R(p coupling. So, a formal argument that 

supports the equivalence based on the field redefinition is the explicit computation of on­

shell scattering amplitudes. Consequently, we show from the start that to lowest order in 

two body scattering on a flat space background the scattering amplitudes do not depend 

on the parameter .x at all. To keep things simple, we firstly carry out the computation in 

conformally flat spaces. 

In the particular case of those spacetimes the metric takes on the form 5 

glJlI(x) = 02(X)TJIJII , 

where H(x) is a position-dependent function and '11'11 is the flat space Lorentz metric. Let us 

then find what Einstein's constant for gravitational theories in conformally flat spaces is. To 

do that we compute the effective nonrelativistic potential for the gravitational interaction of 

two identical massive bosons of zero spin (see Fig. I). The aforementioned nonrelativistic 

potential is given by6 

l_! d3 kF(N R)eikorU(T) = _I , 
4m2 (27r)3 

whereupon F( N R) is the nonrelativistic limit of iM, where M is the invariant amplitude 

for the process shown in Fig. 1. 

Now, in conformally flat spaces, the action for the interaction of gravity with a free, 

massive scalar field </J, i.e., 

2Ag~  = ! lfx FiJ [2: + ~ (gIJIIBIJ</J BII</J - m </J2) ] 

turns out to be 

Ag~  =! d
4x [~~2  + ~2  (TJIJIIBIJ</J BII</J - m2</J2) 1 (4) 

:1 

whereupon 0:: TJIJIIBIJBII and K = -6B2, where K is the constant we are looking for. Note 

that K was chosen to be negative from the very start in order to avoid the presence of an 

abnormal scalar field. Of course, this choice of the sign for the constant in hand is not 

mandatory. 

In the weak field approximation 0 2 can be written as 

0 2 ::exp[2Bf(x)] , (5) 

where 12B fl « 1. For physical reasons, the position-dependent function f( x) is assumed to 

have the properties 

lim f(x)~O  Yx lJ 

x-t±oo 

Yx lJ 
x~~oo  BlJf(x) ~ 0 

Substituting (5) into (4) we obtain 

Ag1 = ! atx f~t  +! ~x Bf [Bp</> BIJ</J - 2m2</J2] (6) 

Note that the tensorial indices are raised (lowered) by TJIJII (TJIJII)' The action for the free 

scalar field <P was omitted from (6) for the sake of simplicity. 

The free propagator for the gravitational field is fixed by the quadratic part of the above 

action. In momentum space we have 

D=_l_ 
k2 + it 

On the other hand, the vertex function associated with the coupling </J(p) - </J(p') - f(k) is 

given by 

v (p, p') = -2iB [p, p' +2m2
] 

In this work, all momenta are supposed to be incoming as far as the vertex functions are 

concerned. 

In terms of the Mandelstam variable t P, the invariant amplitude for the process 

depicted in Fig. 1 becomes 

M = -4iB2 [mT 
4

+ m 2 + 4t1 
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Thlls, the nonrelativistic potential cau be expressed as 

z 
lJ(i:') = BZm 

471"T +... 

One will therefore get agreement with Newtonian theory if 8 z == 471"G, which shows that 

Einstein's constant in conformally flat spaces is given by K = -2471"G. 

Sinc.e the 2 ~ 2 processes concerning the action 

(7)AgRQI = ! d"x v0i [2~  + ~ (giJ1/O,,</J ov</J + ,\R</J2 - m2</J) J 

for which ,\ will very likely (~ntcr  tIle invariant amplitudes are only the scalar-scalar and 

graviton-scalar scattering, we shall calculate in the following the lowest-order invariant am­

plitudes for these processes. Of course, there is no need to consider the annihilation of 

scalars into ~ravitons  since, as is well known, the invariant amplitude for this process can 

he promptly inferred from the one concerning the graviton-scalar scattering. 

Combining the action for pure gravity 

AG = ! d4 
x [non-2Bz J 

with Eq. (5) yields 

- ! 4 [fDf B 2 1AG = d x - -2- - 2:f of +.,.� 

The trilinear gravitoll vertex is then given by� 

• f(kd - f(k2) - f(k3 ) 

Vfff = -i2B [k J • k2 +kl . k3 +k2 • k3] 

Repeating the reasoning that led previously to Eq. (6) we now find that the action for 

the R</J2 coupling between gravity and a massive, free scalar field, assumes the form 

2A.qR<f> =! d1x {Bf [(1 +6'\) oiJ4> 0"4> - 2m 4>z +6,\0} 

+ 8 z (J2f)I,4> fJl'4> - 4fzm2 4>2 +6,\4>2 fOf + ',J'\</Jzo"f oiJ f)} 

from which we obtain the vertex functions for the trilinear and quartic couplings: 

5 

• f (k) - 4>(Pl) - </J(PZ) 

Vfq,<f> = -i28 [PI' PZ + 3,\ (PI +Pz)Z +2mz} 

• f(kt} - f(kz) - </J(pt} - </J(pz) 

Vff<f>q, = -i4Bz [PI' pz +4m2 +3,\ (k: + k~ + kl . k2 )} 

Firstly we present the gravitational scattering of massive scalars with arbitrary R</J2 

coupling. The Feynman diagrams for the process </J(pt}</J(pz) ~ </J(P3)</J(]J4) in lowest order 

are displayed in Fig. 2. Introducing the usual Mandelstam variables 

S = (PI +P2)2 , t = (PI - P3)2 ,and u = (PI - P4)2 , 

the invariant amplitude becomes 

. 2 2[ 2(1 1 1) JM<f>q,-4<f><f> = -z4B m m ; + t + ~ +2 (2 +3'\) (1 +6'\) 

showing that for massless scalars, which is the case for the action (1), M<f><f>-4<f><f> is independent 

of '\. 

For the graviton-scalar scattering f </J ~ f 4>, the Feynman diagrams are shown in Fig. 3. 

The corresponding invariant amplitude is 

M!<f>-4!<f> = _i2B2m2[SU - m
2
(t +m

2
)] 

(s - m 2)(u - m Z ) , 

which is independent of ,\ even for massive scalars. The preceding results show clearly that 

in the massless limit the two body scattering amplitudes become totally independent of 

the strenght of the R4>z coupling. However, they just vanish! To convince the reader at 

least partially of the correctness of our reasoning we thus need some nonzero '\-independent 

amplitudes, To this purpose we extend our previous computation to arbitrary Riemannian 

spaces. Expanding now the action (7) around flat space through the expression gl'v(x) = 

"IiJl/ +2..jKh iJl/(x), where hiJv (x) is the graviton field, and proceeding in the same way as 

we have done in the case of cOllformally flat spaces, we arrive, IIsing Illuch algebra, at the 

following expression for the invariant amplitude concerning the gravitational scattering of 

identical massive scalars with arbitrary R</J2 coupling 
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2 2 
2 = ",2 [t2 + U2 + $2 + U + S2 + t

IM</J</J-+t/)(" 1 4 stu 

1' 1 1) 2 ]2
- 12m4 

( ~ + t + ~ + 8m
2 

- 8,xm (5 + 6,x) (8) 

It is clear that ill the massless limit which is the case for the action (1), the invariant 

amplitude becomes totally independent of the parameter,x. Eq. (8) with ,x = 0 agrees with 

the result of Peet7. 

The evaluation of the invariant amplitude for scalar-graviton scattering is rather involved. 

To calculate the helicity amplitudes in this case, we have made use of the formalism of Refs. 

8 and 9. The result is 

2 
IM</Jg-+</Jg( ++ )/2 = 1M</Jg-+</Jg (-- )1

",2 (su _ 1124 )4 

= 4 t2(s - m 2)2(u - 1122)2 ' 

1M </Jg-+</Jg (+- )1 2 
= /M</Jg-+</Jg( _+)12 

",2 m8t2 

4 ($ - m2 )2(u - 112 2 )2 , 

where the ± signs refer to the initial and final graviton helicities. We can see that even for 

massive scalars the invariant amplitudes are ,x-independent. Our result agrees with the one 

given by Berends and Gastmans lO, who have calculated the elastic scattering of gravitons 

on massive scalars for gravitational minimally coupled scalars (,\ = 0). 

Hence, we come to the conclusion that the tree-level invariant amplitudes for the 2 --t 2 

processes concerning action (1) (¢J- ¢J and ¢J- 9 scattering) are completely independent of the 

R¢J2 coupling parameters, which directly implies that this parameters cannot be measured 

at tree-level scatterillg in this case. 

Let us now turn our attention to on-shell divergences. In particular, we shall show that 

on mass-shell and for ,x = -1/6 (conformal coupling) the one-loop divergences of actions (1) 

and (3) coillcide. 

Using the method of background fields and the Schwinger-DeWitt generalized technique, 

which had already become standard,II,'2 we obtain the foHowing expression for the one-loop 

divergences of the theory (3) 

7 

Wdiv 1 f 4 ~ [43 -2 
I-loop [-:i.]g, If' = 1611"2£ d x y-g 60RCltJ 

+ ~  + 5",2 (VCI~ VCI~r + ~'" (VCI~ V(}~) R 

where £ == n - 4. 

On mass-shell we have 

div [- -] 203 - - 2 (9)f 4 
WI-loop g, ¢J = 64011"2£ d x FYR , 

which agrees with the result of t'Hooft and Veltman l3
. 

On the other hand, on mass-shell and for ,x = -1/6 the one-loop divergeuces of the 

theory (1) are given by 

2
Wdiv [ A-.] = 203",2 f d4x ~ (V A-. VOIA-.)2 ( 1 _ "'¢J )-4

I-loop g,If' 64011"2£ Y -g a If' If' 6 

The steps used to obtain this equation were: 

i) to transform the theory (1) from (glJ/I,¢J) to new variables (glJ/I'~)  by means of (2); 

ii) to compute the one-loop divergences using the Schwinger-De-Witt generalized technique; 

iii) to rewrite the result in terms of the old field variables glJ/I and ¢J using (2). 

But according to the transformation rule (2) 

2 
OI ¢J2 ) - ( d¢J ) 4yCg (VOI¢J V ¢J)2 = 1 - "'6 A d~  (gatJV OI~ VtJ~f( 

= A ( 1 - ~¢J2 r(Va~ VOI~f 

'" )4 R2 = H 1- _¢J2 ­( 6 ",2 

on using the on-shell condition it = -"'V(}~ V OI~' 

So, 

Wdiv [ A-.] - ~f 14 ~-2 (10)I-loop g, If' - 64011"2£ a x y -gR . 
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A comparison of (9) and (10) tllf'refore yields 

Wdiv Wdiv 
I-loop [-g, 'P1J = [ .J..)I-loop g, 'P 

Note that we are assuming that I - !!f > O. Thus the preceding computation of on-shell 

coullter-terms illustrates the quantum equivalence (to one-loop, at least) of the barred and 

ullbarrt'd systems for A= -~. We shall Ilot proceed any further the computation of on-shell 

divergt'llces, instead we discuss the physical meaning of the constraint I +1'i.)..¢2 > O. To do 

that we write the field equations obtained by variation of the action (1) in the suggestive 

form 

GIlV = 1-£ [A (gI'VO - V1n;;r) ¢2 

+ ~gl'l'V,,<p  '\l"'¢ - '\lll¢ VV¢J , (lIa) 

0/> - AR¢ = 0 , (lIb) 

wlw[t, 

I'i. 
1-£ ~ 1 +AI'i.¢2 

is an effective Einstein constant which will be positive if and only if 1 + )..1'i.¢2 > O. Thus, 

the adoption of the constraint in hand leads to Einstein's standard formula GIlV = 1lTllv, 

where 7'1'1' is given by the right-hand side of Eq. (lla) and 1l > O. This result has of course 

important consequences for cosmology and black holes. To conclude we analyse the appar­

ent anomaly concerning the classical and semi-classical results. The classical equivalence 

alld cOllsequently, the quantum one, are only valid for 1 + )..1'i.¢2 > O. The semi-classical 

equivalence, in turn, seems to be completely independent of the parameter A. The reason 

for that is very simple: the semi-classical results were obtained by expanding the metric 

around flat space, while to show that the barred and unbarred systems are equivalent at the 

c1assical(quantum) level we have made use of the full theory. 
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Figures Captions 

Fig. 1 Lowest-order graviton exchange force.� 

Fig. 2 Feynman diagrams for scalar-scalar scattering.� 

Fig. 3 Feynman diagrams for scalar-graviton scattering.� 
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