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Abstract 

Th.e gluon condensate is incor a .mens~lOnless scaling variable whiX rated III ~he definition of the di-
used III solving the partial different.Jara.m~tnzesthe characteristics 
?roup equation. We find the h . 1 equ~tlOn of the renormaJjzatio~ 
IS: positive for all real rno Pt YSfiIC~ runnmg coupling constant who h

l. t al' men a, mte a d al IC 
u Ity: space-like, time-like and II ' On sm I for an arbitrary vir-

constant ~ freezes out belo~ 0.5 ~:V ur physical ruuning coupling 
at p2 = 0, It takes the maxim al' and at the null virtuality i e 

u:h~ 0.3, or 0.2, depending on ::m:~which after dividing by,.. is ~i~ 
_ 331 MeV, or v = 0.5 GeV, respecti~:~.e of the gluon condensate: 
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The renormalization group equations for the one-particle irreducible ver
tex functions are usually solved by the method of characteristics(l). This is 
the standard method to solve the linear partial differential equations. One 
ingredient of this method is the ordinary differential equation for the running 
coupling constant a(t), where 0' :: g2 / (41r), and the variable t is the parame
ter along the characteristics. The ordinary differential equation for a(t), and 
the initial condition for t= 0, which is necessary to define the solution of the 
differential equation, are 

a(t=O)= l(p2/
AQCD )da(t) =a(t){3(a(t)), (1)

dt 41r 

The mass scale p. is an arbitrary mass, with the only restriction, that it has 
to be sufficiently large, so that g2(p.2/ AQCD )/(41r2

) « 1. In contrast to p, 

the mass scale AQCD is a very well defined mass, in any fixed renormalization 
scheme. AQCD provides a necessary "unit", to give a definite numerical 

meaning to the ratio p.2 / AbcD' for an arbitrarly chosen value of p,. We 

must know the numerical value of the ratio p2 / AQCD ' to verify wheather 

the demand g2(p.2/AQCD)/(41r2) « 1 is fulfilled. This is the necessary 

demand for using the perturbative calculations. 
Here, we concentrate on the modified, minimal subtraction scheme MS, 

in which the numerical value of AQCD, as determined from experiment(2), 

is 0.15 GeV. The MS scheme is such, that the (3-function, appearing on the 
right-hand-side of Eq.(I), is independent of the gauge parameter ~,  and of 
mass. The coefficients {3h and {32, of the perurbative expansion of {3(0') in 
powers of 0', are renormalization group invariants, and are given below, 

0' (0' )2{3(0') = {3I; +{32; + ... , 

1 2 1 (19 ) (2){3I =--
2 

{3o, {3o =11 - "3 n f , {32 == 4" 3" n f - 51 , 

where n f denotes the number of flavours, and the number of colours is set 
equal to 3. 

The numerical value of the physical mass scale AQCD does depend on the 
chosen scheme, and also an identity with respect to p" which AQCD obeys, 

does depend on the specific convention, which is used in the given scheme to 
write down the explicit solution of the differential equation for a(t). We show 
below an example of such identity in the case of the one-loop approximation of 
the f3 -function, and discuss the case of the two-loop approximation. Always, 
AQCD has a fixed value, which has a definite physical meaning. In contrast 
to that, the numerical value of the mass scale p, is arbitrary, and must be 
left arbitrary. The value of p, has no physical relevance whatsoever, and this 
is true in QCD in any scheme. The only condition which p, must obey is, 
that g2(p,2/AQCD)/(41r2) « 1, since this is necessary for the perturbative 

calculations. 
The parameter t along the characteristics is t=ln( >'), where the standard 

expression(1) for the scaling factor >., is 

.\ =V-p
, (3)

p,2 ' 

for the space like momentum p, with _p2 > p,2. 
Instead of the standard scaling factor >. we propose to parametrize the 

characteristics with a new scaling factor >'cond' which explicitly includes 
4the nonzero value of the gluon condensate 11 =<1 ~ : G:"G~" :1>, where 

the state I> is the full, nonperturbative, vacuum state, G~II  is the gluon 
field strength tensor, a/1r is the one-loop approximation of -{3/2g, and the 
normal ordered product: : refers to the perturbative vacuum, and amounts 
to an appropriate subraction. Our scaling variable is defined as follows 

p4 +114>.4 = _ (4)cond - p4 +114 

This is our assumption, that it is possible to change the parametrization of 
4the characteristics using the new parameter t::ln(>'cond) = ~ In((p4 + 11 ) / 

4
(p,4 + 11 )), and keeping the same numerical values of the constant coefficien ts 
{31, and {32, of the perurbative expansion of (3(0') in powers of 0', which are 
renormalization group invariants. 

We are here taking for granted, that the values of {3I, and {32, which in 
the perturbative calculation are renormalization group equation invariants, 
remain unchanged. Our only, a posteriori, verification of that is, that indeed 
for all values of the virtuality p2, including the null virtuality, as well as for 
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all values of the arbitrary mass scale 1-', including I-' = 0, the numerical value 
of 0/1r is small. 

In the temporary notation: 

4
1 (p4 + v ) 1 (_p2 )

te =tcond = In (Acond) = 4' In 1-'4 +v4 ' t =In(A) == 2" In 7 ' 
we find that the Jacobian dte / dt, which is necessary to pass from the differ
entiation d/dt, to d/dte , is 

dte { [� _l}-lJj = 1 - (1 +1-'4/V4)eXp(4te ) -1] . 

For large values of the new parameter te this Jacobian is practically 
equal to 1. However, for small values of te , in particular for te =0, we 

4have dte / dt=(l - v / 1-'4 r 1, which for small values of I-' is a very small neg
ative number. Therefore, for small values of te , and small values of 1-', i.e. 
in the nonperturbative, soft domain, our modification of the change of the 
parametrization along the characteristics is a nontrivial one. 

In the following, we shall come back to denoting by t the new parameter 
along the characteristics te , and another justification, for our choice of the 
new parametrization of the characteristics, is shown at the very end of this 
paper, where we calculate the integral over the low energy region, from 0 to 
1 GeV, of the couplant 0/1r, and get rather small value ~  0.2 GeV, in a very 
good agreement with the phenomenological estimates. Moreover, staying 
with the standard parametrization of the characteristics, we could neither 
use the perturbative framework, nor we could get any sensible result for the 
integral over the couplant, anywhere near 0.2 GeV. 

A priori, we may replace v4 in the above definition for Acond by the whole 
expression for the negative of the vacuum expectation value of the divergence 
of the Belinfante dilatation current(1,3.4) 

4� 
v� -+ <\ -

0 
: G:&lG~&I :1> -(1 +Im)Ejmj <I: tPjtPj :/>, (5)1r 

where 1m is the mass anomalous dimension, and E j is the sum over all 
flavours. However, the above terms added to v", play numerically an in
significant role. Aesthetically, the right-hand-side of Eq.(5) is more appealing 
than v4 itself, because there exists a proo{(3,4), that Eq.(5) is invariant under 
renormalization group, on the one-loop level. 

To defend the particular choice of Acond we offer five reasons: 

1.� For large space-like momenta, in practice for _p2 > 2 GeV2, Acond 
coincides numerically with the standard A, and _p2 = 1-'2 corresponds 
to Acond = 1, i.e. to t=O. 

2. For any real momentum the physical running coupling constant is posi
tive, and we have a trivial continuation from the space-like to the time
like momenta, without causing any nonzero absorptive part in the result 
for the QCD physical running coupling constant. The QCD nonzero 
value of the hadronic absorptive part of the current-current correlation 
is provided by the nonzero value of the absorptive part of thenonper
turbative photon-quark vertex function. It is neither given by the zero 
absorptive part of the QCD physical running coupling constant, nor by 
the zero absorptive part of the cut of the confined quark-antiquark pair. 
Physical cross section O"e+e- has only MULTIHADRONIC thresholds. 

3.� For small spaee-like, or small time-like momenta, and even for the null 
momentum, the numerical value of the physical running coupling con
stant, divided by 1r, is small, and we can allow ourselves to start even 
with I-' = 0, and still remain within the perturbative regime, as far as 

the condition g2 (1-'4 + v4)/AQCn) /(41r 2) « 1 is concerned. 

4.� An analog of the QED Landau singularity(S), in the QCD physical 
running coupling constant, is totally removed from the real momentum 
axis, and for QCD it is shifted to the complex plane, at four points: 
p = ±(v4 

- AQCD)l/4exp(±i1r/4). 

5. For� the null momentum, which can be also associated with the vac
uum state, our expression for t = In(Acond)' coincides with that given 
by Pagels and Tomboulis (6), in the one-loop approximation, when 
-f3/(2g) ~  o:f7r. 

It should be noticed, that it is necessary, for all of the above reasons to 
work, that we take the sum p4 +v·, and not any other function of momentum 
and the gluon condensate v4. A priori, the combination ap4 +bv,4, with a and 
b different from 1 is allowed, but it is an unnecessairly complicated variant 
of the above definition of Acond' Seting a=b=l, we specify our convention, 
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and coincide with Pagels and Tomboulis(6) for the null momentum. We are 
also perfectly tuned up to the standard convention for the large momenta. 

Another convention is needed(I), when we want to define the integration 
constant in the integral version of Eq.(I). To write down the solution for 
the running coupling constant, for any explicit form of the ,B-function, we 
must make a specific choice of the integration constant. Therefore, for the 
one-loop approximation of the ,a-function, we make some convention of the 
integration constant, and if we then consider the ,B-function which contains 
terms up to the two-loop order, then we can take another convention, in 
comparison with the former one. 

All these conventions must be explicitly defined, for writing down the 
unique expression for the physical running coupling constant. The final 
result for the physical running coupling constant, written in terms of the 
kinematical momentum, and the physical mass scale AQCD' which has a 
particular (numerical) value, should refer to the order of approximation of 
the ,B-function. 

Taking the ,B-function in the one-loop approximation, we specify the 
commonly used convention(1) by stating, that the prime function of the in
tegral Jdz/[z,B(z»), evaluated for the zero value of the parameter t along 

the characteristics, is equal to 47r [,Boln (p2 / AbcD) ) -1. This corresponds 

to the standard MS-convention(l) of fixing the integration constant in the 
one-loop approximation for the ,B-function: a(t = 0) == a(ln>. = 0) == 
9

2 (p2jA QCD ) /(47r) = 47r/ [,Boln (p2jAQCD ))' 
In the case of our scaling factor >'cond' we take the following convention 

for the integration constant 

_ _ 9
2 ((p4 + /14)/AQCD) [p4 + /14 ] -1 

cr(1n (>'cond) = 0) = = 87r ,Boln- (6)A447r QCD 

Corresponding to this integration constant convention, the one-loop solution 
of the differential equation (1) for the running coupling constant, with the 
initial condition stated in Eq.(l), and adapted to the convention written in 
Eq.(6), is 

a(t = 0)a (t = ! In (p4 + /14)) = (7)4 J.l4 + /14 1 + -:/; ,Bota(t = 0) 

The integration constant convention, written in Eq.(6), can be understood 
as the formal definition of AQCD' It corresponds to >'cond = 1.0, i.e. t=O,1 
and it means, that any extra integration constant is set equal to zero in the 
one-loop level of the approximation of the ,B-function, Le. we just evaluate 
the prime function at t=O. The form of Eq.(6), which is ready to use in 
Eq.(7), is 

aCt = 0) = 8~ [{JoIn (~~+c~ )]-1 (8) 

In turn, the last equation can be "inverted", i.e. we can write it as the 

expression for AQCD' in terms of p, and 92 ((p4 + /l4)/AQCD)' The result 

of this inversion is in fact an IDENTITY, with respect to the arbitrary mass 
scale J.l, and it takes the following form 

" (" ") [ 3211'"2 ] (9)AQCD = P + v exp ( ) . 
,B092 (p" +v")/AQCD 

If Eq.(8) is used as the expression for 92 ((p" + v4)/AQCn) /(47r), and we 

substitute it in Eq.(9), then we indeed find the trivial idendentity AQCD == 
This is the identity with respect to the arbitrary value of the unphysAQCD'� 

ical mass scale p, which must be considered as the arbitrary normalization� 
point.� 

Finally, we can use the initial condition stated in Eq.(8), and substitute 
it in the solution for the running coupling constant, written in Eq.(7). As the 
result of this substitution we completely eliminate the arbitrary mass scale p, 
and find the one-loop expression for the physical running coupling constant, 
expressed in terms of the kinematical momentum p, and the physical mass 
scale AQCD' As the argument of the physical running coupling constant we 
shall write now not the variable t, but rather the argument which appears 
explicitly under the logarithm. 

Therefore, we have the following form of the physical running coupling 
constant, corresponding to the one-loop level expansion of the ,B -function, 

_ p" + v4 . p4 + v4 
cr ( AbCD ) = 811" [ ,Boln ( A )] ' (10)

QCD 
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In the formal case, when we set v = 0, we recover the standard form of the 
physical running coupling constant, written in terms of the momentum p, 
and the physical mass scale AQCD' It should be noted, that we use the 
terminology the "running coupling constant" for any solution of Eq.(l), in 
particular that given in Eq.(7), but we name the "physical running coupling 
constant", the particular solution of Eq.(l), written in Eq.(lO), in which the 
arbitrary normalization mass scale p is totally eliminated. 

It is appropriate to emphasize the essential difference between Eq. 's (7) 
and (10). The former one is the solution of the renormalization group equa
tion for the running coupling constant, but it has the arbitrary mass scale 
p explicitly appearing in it. Therefore, it is of no use for physics, since it 
contains the arbitrary mass scale p. It is completely incorrect to try to fix a 
particular value for the mass scale p, since p is arbitrary, as corresponding 
to the normalization point p2 = _p2, and it must be left arbitrary, from the 
"first principles", as the arbitrary normalization point. 

In contrast to that, the expression for the physical running coupling con
stant written in Eq.(10), is also the solution of the renormalization group 
equation, but has the arbitrary mass scale p totally eliminated. It provides 
a physical, and nonperturbative, information, which is expressed in terms 
of the kinematical momentum p, and the physical mass scale AQCD' The 

numerical value of p2 is at our disposal in Eq.(lO), and in contrast to Eq.(7), 
we do not have to demand that in a calculation of a physical process we must 
allow ourselves an arbitrary variation of p2, what is necessairly demanded for 
the arbitrary values of the nonphysical p2. 

Moreover, if p denotes the gluon momentum in a loop, which undergoes 
an integration, then it is impossible to demand that I p2 I» p2, since the 
normalization mass scale p must be left arbitrary, and p can be always larger 
than the magnitude of any momentum in the loop, for any fixed point of the 
integrand. It is only possible to use a momentum, which is the momen
tum external to the loop, to split up the domain of integration in the loop. 
However, such an external momentum must not be identified with the ar
bitrary mass p, which appears in Eq.(7) through the parameter t along the 
characteristics, and through the initial condition for aCt = 0). 

An immediate consequence of the above remarks is the result, that it 
makes no sense whatsoever to try to fix a particular value of the arbitrary 
mass scale p, by demanding, for example, that either the derivative with 
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respect to p of a, or any function of a, is equal to zero, or that the derivative 
with respect to p of any physical quantity, e.g. AQcn, is equal to zero. 

There are two reasons for that: 

1.� the value of p can not, and must not be fixed, since it is a priori an 
arbitrary normalization mass scale, 

2.� a, or any function of a, expanded perturbatively in the powers of 
a/7r, can only depend on p superficially through the right-hand-side 
of Eq.(7), but in fact the dependence on p is only seeming, and it 
totally goes away if we use Eq.(8). The last point is reiterated by re
alizing, that Eq.(9) is indeed an identity with respect to the arbitrary 
mass variable p, and demanding that the derivative with respect to p 
of AQCD' or any other physical quantity, expanded perturbatively in 
the powers of a/7f, is equal to zero, is an empty statement, since all 
of these quantities are identically independent of p. Also, it is impos
sible to take Eq.(9), which is an identity with respect to p, and try 
to determine from it the arbitrary mass scale p, using as an input the 
experimental value for AQCD I or vice versa. 

For the two-loop approximation of the .a-function all of the above argu
ments can be repeated, but algebraically, we find a transcendental equation, 
instead of Eq.'s (7), and (8). Therefore, i) only an approximate algebraic 
solution can be written down, and ii) the inversion of the analog of Eq.(8), 
into an analog of Eq.(9), is only possible on the approximate algebraic level. 
Thus, due to these algebraic approximations, it is hard to see, in the approx
imate expressions, that the independence of the physical running coupling 
constant of the unphysical mass scale p does take place algebraically. Also 
the identity with respect to p, such as is seen from Eq. 's (8) and (9), taken 
together, is harder to verify, due to the transcendental character of the ap
propriate algebraic equations. 

Keeping however in mind, that the dependence on the unphysical mass 
scale p is only seeming, we can use the approximate algebraic results, and 
write down the result for the physical running coupling constant, in the case 
of the ,B-function given by the formula with the two-loop terms included in 
the calculation. In writing the integral version of the differential Eq.(l), 

8 
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we are free to specify a new convention for the integration constant, since 
the ,8-function is a new one, in comparison with the one-loop case. The 
standard MS choice(I}, for the two-loop approximation of the ,8-function, is: 

a(t = 0) == g2 (JL21AQCD) 1(47f) = 47f [,801n (JL21AQcD )] -1 - ~ In (-~ ). 

In our case, when the gluon condensate v4 is recognized to be not equal 
to zero, we use the following convention in defining the integration constant, 
for the case of the two-loop approximation of the ,8-function, 

4 
g2 ((JL4 + v )/AQCD ) [JL4 + v4 ] -1 ,82 (,81)

a(t = 0) == = 87f ,801n-- -21n -- .
47f 4 ,81 7fAQCD 

(11 ) 
Now, we can take the similar approximations, as they are done in the 

standard case(I}, but for v =J. 0 they are legitimate for any momentum, while 
for the case when we formally set v = 0 there are some lower bounds on Ip2 I. 
The approximate expression for the physical running coupling constant, for 
the two-loop approximation of the ,8-function, is 

p4 4 p4 4 
atwo-loop ( 4+V ) ~ aane-loop ( 4+ v )

AAQCD QCD 

4 4 
1 - A aane-loop (p44+v ) In (! In (p44+ v ))] , (12)

[ ,81 7f 4 .AQCD AQCD 

where acne-loop ((p4 + v4)1AbcD) is given by Eq.(10). 

For the null momentum p2 = 0, and nI = 3, the above two-loop cor
rection is positive, and it is on the level of 8%, while at I p 1= AQCD[e4 

(vIAQCD)4j1/4 ~ 2.4AQCD the two-loop correction becomes a small neg
ative term, added· to 1. Of course, our physical running coupling constant, 
given either by Eq.(10), or Eq.(12), is never negative, for any real momentum 
p. 

If in Eq.{lO) we would turn off the gluon condensate, seting formally 
v = 0, then for I p2 1< AQCD ' we would find a negative value for a. This, of 

course, has no physical meaning, since we put ourselves beyond the domain 
of the applicability of the perturbative calculations. However, this illustrates 

the point, that in the standard treatment, if we would take the momentum 
p, below the analog of the Landau(5} singularity, i.e. below p = AQCD' then 
a would become negative. 

The change of sign of a( t) seems to be, a priori, an unavoidable con
sequence of Eq.(7), since for the negative values of the parameter t along 
the characteristics, the result seems to change the sign, if I t I is sufficiently 
large. Moreover, if we take the normalization mass scale JL sufficiently large, 
in ~mparison  with AQCD' then it is perfectly legitimate to go to smaller 
momenta than JL, and remain in the perturbative regime, having negative 
values of t. This paradox is resolved by realizing, that in Eq.(7) we have 
only a formal solution of Eq.(l), in which the unphysical mass scale JL has 
not yet been eliminated. 

Therefore, we can not make a sensible statement about the sign of a, 
refering to the parameter t, which contains the unphysical mass JL. Only 
after we eliminate JL, Le. when we use Eq.(10) for the physical running 
coupling constant, instead of Eq.(7), then it is possible to discuss the sign of 
a, in terms of the physical quantities such as the momentum p, and the QCD 
mass scale AQCD' Unfortunately, in the recent discussions(7} of the infrared, 
and ultraviolet renormalons, Eq.(7) is used, with an incorrect identification 
of the arbitrary mass scale JL with the external momentum of the loop, carried 
by the electromagnetic current. 

For the nonperturbative calculations, in the domain of soft momenta, we 
need the expression for the physical running coupling constant for any value 
of the real momentum p. We have the physical, light-cone singularities in 
the momentum p of the gluon leg in the nonperturbative gluon-quark vertex, 
and also in the nonperturbative triple-gluon vertex, at p2 = O. Therefore, we 
must be able to reach the domain of the null virtuality, p2 = o. 

If two of the gluon-quark vertices are joined by the nonperturbative, trans
verse gluon propagator, which vanishes on the light-cone, then the Coulomb 
type interaction shows up in the colour-singlet quark-antiquark system, with 
the strength, at the pole p2 = 0, equal to 

~ (.!L) 2 = ~  a(p2 = 0) (13)
3 27f 3 7f 

Therefore, it is desirable to find a finite value of the physical running coupling 
constant for the null virtuality. 

9 10 



In accord with that, Dokshitzer(8) found rather small values for the es
imates of the maximum of the physical running coupling constant, divided 
y 11', 

(~ )max = 0.22 ± { 0.08, (14)
11' 0.05. 

The Dokshitzer estimates follow from a comparison of the measured heavy 
quark losses, with the expressions found, from the generalized perturbation 
theory, assuming, that the physical running coupling constant is frozen at 
small momenta. 

For AQCD = 0.15 GeV, as found in ref.(2), Eq.(10) gives the following 
numerical results for a(p2 = 0)/1r, for two values of the mass scale v, 

a(p2 =0) v = 331 MeV,= { 0.3, (15)
1r 0.2, /I = 500 MeV. 

These results remain numerically the same, if instead of v· in Eq.(10), we put 
the negative value of the vacuum expectation value of the whole trace of the 
Belinfante energy-momentum tensor. We also note, that both of the values 
for Ci(p2 = 0)/11', given in Eq.(15), are within the errors set up by Dokshitzer(8) 
in Eq.(14) for the maximum value ofthe physical running coupl.ing constant, 
divided by 11'. 

From Eq.(lO) it is easy to see, that the physical running coupling constant 
freezes out for small momenta, roughly below I p I~ 0.5 GeV. Another, 
interesting feature of Eq.(10) is, that for a given value of pot, we find the 
same value of the physical running coupling constant, independently of the 
space-like, or time-like character of the virtuality p2. 

Our change of the parametrization along the characteristics, from Eq.(3) 

to Eq.(4), gives us the finite, and small results for a ((p4 +v 4)/AQcn) /11', 
if the mass scale v of the gluon condensate is sufficiently larger than the 
QCD mass scale AQCD' The smaller value v = 331 MeV is the one, which 

is used by Shifman, Vainshtein and Zakharov(9) in their QCD sum rules. It 
is quoted as the "standard" value in ref.(10). It is also within 20-30 %limits 
set up by Eidelman, Kuradze and Vainshtein(ll) from the e+e--annihilation 
into hadrons below 2 GeV. 

The higher value of the gluon condensate mass scale v ~ 0.5 GeV, is 
proposed by Marrow and Shaw(I2), on the basis of the comparison of the 
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experimental value of the sum rule ratio for the S-wave charmonium with 
the theoretical estimates. On the level of v·, these two values of /I differ 
by more than factor 5. However, for the numerical results of a(p2 = 0)/1r, 
the large difference between the values of /I., has rather small effect, since 
we have the logarithmic dependence on Acond' Therefore, both values of 
v give for a(p2 = 0)/1r the results, which are within the errors set up by 
Dokshitzer(8) in Eq.(14). 

Independently of the above reasons, we need the running coupling con
stant for an arbitrary value of virtuality if we want to check the self- consis
tency of the basic ansatz for the inverse of the gluon and quark nonpertur
bative propagators. That is within the framework of a decoupled subset of 
Dyson-Schwinger equations, solved on the one-loop (nonperturbative) level 
by the method of nonperturbative logarithms(13). The expressions for the 
inverses of the gluon and quark nonperturbative propagators are given in 
terms of the gluon and quark condensates, respectively. The same values of 
these condensates, which we put for parametrizing the nonperturbative prop
agators, we have to retain from the loops, which are formed by closing up, in 
the position space, the begining and the end of the respective propagators. 

Such loops represent themselves the vacuum-to-vacuum transitions a~d  

naturally give these condensates. In evaluating these loops we need to include 
the renormalization group equation improvement factors, which are logarith
mic factors raised to the fractional, anomalous exponents. The presence of 

I these factors insures us the finite, and stable results of the physical mass 
scales of the respective condensates, independently of an arbitrary variation 
of the large mass scale J1., used for normalization at the large space-like mo

, mentum p2 = _p.2. The logarithmic factors in the improved propagators in 
theseloops are the same one, as they appear in the expression for the running 
coupling constant. In these loops we must integrate over all virtualities, and 
we must be able to reach the null virtuality. 

It is interesting to note, that Mattingly and Stevenson(14) found also the 
freezing ofa/1r at low energies, with the value 0.26, from the third-order cal
culation of R.e+e-. However, their calculations crucially depend on fixing the 
arbitrary mass scale J1. by the demand, that there is an infrared fixed point, 
where the p-function vanishes. Neither such demand is appropriate, since the 
normalization mass scale J1. must remain arbitrary, nor it is meaningfull, since 
a, considered as a function of the mass scale J1., is only seemingly depending 
on p.. If we would calculate a derivative with respect to J1., then we would 
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find identically the zero result, from which, of course, we can not determine 
the value of p. 

The argument that the physical cross section is independent of p, must be 
also understood as: "identically independent of p" , providing we include the 
hadronization part, which also contains the p-dependence, if for evaluating 
the hadronic wave functions we would use Eq.(7) for the running coupling 
constant. However, instead of using Eq.(7), we should rather take Eq.(lO) for 
the physical running coupling constant, and use it with p as the gluon mo
mentum. Then, including all loops, which are closed up by hadrons, we can 
expect, that these loop integrals are dominated by the external momentum 
which is carried by lepton, for example. Then, we can find the best value of 
such an external momentum from the MEAN VALUE THEOREM for these 
integrals, by the fit to the experimental data. 

The requirement, that the physical cross section should be fit in the best 
way, corresponds to the finding of the minimum of such integrals, and can be 
expressed by the vanishing of the derivative, with respect to this external mo
mentum. Such derivative can be equal to zero, and it is not identically equal 
to zero. The vanishing of this derivative, at a physical, external momentum, 
can therefore determine the value of this external momentum, which corre
sponds to the best fit to the experimental data. It is in this way, that the 
numerical value of AQCD = 0.15 GeV, in the MS is determined(2). 

For the a, expressed in terms of such an external momentum to the quark
loop, the vanishing of the derivative at one point(14), i.e. the vanishing of 
the ,a-function at this point would, of course, not mean the freezing in the 
mathematical sense, since at other points the derivative is not equal to zero. 
It is rather a numerical observation, that for the small momenta, the physical 
running coupling constant, evaluated from Eq.(lO), is practically constant for 
Ip 1< 0.5 GeV. 

To see other consequences of our expression in Eq.(lO) for the physical 

running coupling 'constant, we yet evaluate the integral fJ GeV d",a(",2)/1r, 
which was found as the model-independent prediction of Doks~itzer,  Khoze 
and Troyan (15), from the heavy quark energy losses in e+e- annihilation. 
The long-distance contribution to the QCD field energy of a heavy quark 
is given in Table below, for various values of the mass scale II of the gluon 
condensate, and also for cases· when either only 114 is kept, or the whole 
right-hand-side of Eq.(5) is taken. 
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In Table below the case with 114 , corresponds to the value of a parameter 
a=1.0, while the full right-hand-side of Eq.(5) to a=1.5. In the value a=1.5, 
gluons contribute with 1.0, the u and d quarks with 0.02, the s quark with 
0.3, and the c and b quarks with 0.09, each. For these calculations we take 
for the current s-quark mass 300 MeV, and for the chiral s-quark condensate 
the value -0.8(0.24 GeV)3. 

The difference between the expression with 114 , and with the negative of 
the vacuum expectation value of the trace of the energy-momentum tensor, 
repla.cing 114 , is numerically the same as between the Shifman-Vainshein
Zakharov(9) value 11=331 MeV, and the Reinders-Rubinstein-Yazaki(16) value 
11=360 MeV. 

Table 

1 GeV a (/(·1/ ) 8 (",4 +all4 )1 GeV 
d", =---- d",/ln A410o 1r 11 - 2nj /3 10o 

~  II ~  a=1.0 I a=1.5 ~ 
 

331 MeV 0.23 GeV 0.22 GeV� 
nj = 5.

360 MeV 0.22 GeV 0.21 GeV 
500 MeV 0.19 GeV 0.18 GeV 

The model-independent prediction of Dokshitzer, Khoze and Troyan(lS) for 

the value of the above integral is fJ GeV d",a.(",2)/1r :::::: 0.2 GeV. Note, that 
with the conventional expression for the physical running coupling constant, 
which formally is obtained from Eq.(lO) by switching off the gluon condensate 
(II = 0), it would be hard to get the above integral of the couplant from 0 to 
1 GeV around 0.2 GeV, if the analog of the Landau(5) singularity would be 
present on the real momentum axis at '" = AQCD = 0.15 GeV. 
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