
\" 
, ..---------------------..�
\~ LATTICE DATA AND 

GRIBOV-STINGL-ZWANZIGER GLUON~ PROPAGATOR 

J6zef M. Namyslowski SEP 

Institute of Theoretical Pbysics, Warsa!!- q?iversit~,; 

Hou 69, PL-Oo-681 Wals.1w, Poland rTf 

Abstract 

Several lattice data for the gluon propagator in the Landau gauge 
are compared with the predictions from the continuum form of the 
Gribov-Stingl-Zwanziger gluon propagator containing the renormal­
ization group equation improvement factor 

where 1/<4 =<1 ~ : C:.,C:" :1> is the gluon condensate with the 
Shifman- Veinshtein-Zakharov value for 1/ = 331 MeV, c is a gauge­
dependent constant with the value very close to one (slightly larger 
than 1) determined from the self-consistency demand that the above 
vaJue of the gluon condensate is obtained from the vacuum to vacuum 
transition by closing up the line of the gluon propagator what is equiv­
alent to taking the limit in tile position- space at the same space-time 
point. 

0. is the running coupling constant with its validity extended to 
an arbitrary real momentum and given explicitly by the expression 

0. =. ~ /In p4tt4 ,Po = 11- ~ nI, A is the QeD mass scale determined 
at large momenta, n, is the number of flavours, p is an arbitrary 
(larger than a few GeV) mass scale used as the renormalization point 
in the AI S renormalization scheme and the anomalous exponent 1/2 
corresponds to the Landau gauge. 

...IE.T/4L94� 



,T 

The best comparison with the lattice data can be made for the zero three­
momentum gluon propagator as the function of the Euclidean lattice time 
variable. This means the lowest possible value of the three-momentum and 
the position-space variation in the time variable. In contrast to that is the 
comparison of the lattice data for the full momentum-space dependence of the 
gluon propagagator which in the lattice calculations requires the evaluation 
of the Fourier transform from the whole position-space including the very 
small distances for which the lattice calulations have very limited validity. 
An ideal set of the lattice data for our comparison is provided by Fig.12 of 
the paper by Gupta et al(l). 

To make our considerations analytical we simplify the above form of the 
gluon propagator and for the following calculations we remove the ratio of the 
logarithmic factors raised to the anomalous exponent 1/2. In this simplified 
case we also set equal to one the constant c which is only slightly larger 
than 1. Then, the zero three-momentum transverse gluon propagator has 
the following pole expansion in the complex energy-plane 

2( 4 4)-1 I 1 [1 1 1 1 
p p + v p=O= 2" . (pOF _ iv2 + (pOF + iv2 = 4v 

-i7r/4 (1 1) i'W/4 (1 1)]
[e pO _ vei7r/4 - pO + vei'W/4 + e pO _ ve-i'W/4 - rfJ + ve-i'W/4 . 

(1) 
This is an even function of pO and if we go from the Minkowski pO to the 
Euclidean P4 by the relation po = ip4 then we only pick up the overall minus 
sign while the poles in the complex variable P4 remain at the same positions 
as they are in the complex variable pO. 

The Fourier transform from pO to the Minkowski time t we perform by 
integrating the above expression with the weighting factor exp( -ipOt), and 
for the Fourier transform from the Euclidean energy-variable P4 to the Eu­
clidean time-variable T we use the weighting factor equal to exp( -ip4T) with 
the Euclidean time-variable T equal to it = T. Altogether, we have the fol­
lowing relations between the Minkowski and the Euclidean energy and time 
variables and the exponential weighting factors in the Fourier transforms 

po = ip4, T = it, exp( -ip4T) = exp( -ipOt) I t=-i.,., I'D=il't' (2) 

Up to the overall sign the result for the Fourier transform is the same 
independently wheather we do it in the Minkowski or in the Euclidean space. 

If either t or T are positive we close up the contour of integration in the lower 
half-plane of the respective complex-planes pO or P4, while for the negative 
value of either t or T we close up the contours in the upper half-planes of the 
complex variables pO or P4, respectively. Including both positive and negative 
values of the time-variable T the result written for the Fourier transform in 
the Euclidean case is 

4 t 1Fourier transform(p2(p4 + v h;o] = =.!.. e- III.,.I/hsin (?:.: - ±l)
I' 2v 4 v'2 

_ -1 -vl.,.l/h [ (VT) . (v ITI )]---e cos - -sm -- . (3)
2/2v /2 v'2 

This is a continuous function of T with a non-zero value at T = O. How­
ever, its derivative with respect to T is discontinuous at T = O. In the 
expression for the derivative of such function normalised to +1 at T = 0 we 
obtain the step-function i(T) 

~ [V2e-vl"'l/hsin (?:.: - ~)]  = -i(T) vV2e- lIlr1/hcos (!!..) (4)
dT 4 /2 J2 ' 

where the step-function i(T) has the value -1 for the negative values of T 
and +1 for the positive values of T. Note, that both for the positive and the 
negative value of T the absolute value of this derivative decreases with the 
absolute value of T. 

The effect of the discontinuity of the derivative with respect to T at T = 0 
is related to the too slow decrease of the integrand of the Fourier transform 
at large energies when we calculate this derivative by the Fourier transform. 
If instead of the function -pV (p~  + v 4 ) we would consider for example the 
function _v2/(p:+v4 ) then its Fourier transform is again the function of I T I 
but its derivative with respect to r is continuous at T = 0 and the value of this 
derivative is zero at T = O. The original gluon transverse propagator having 
in it the logarithmic renormalization group equation improvement factor is 
still too slowly decreasing at very large energies. However, if we multiply it by 
an extra factor a,,(p), i.e. by the first power of the running coupling constant 
mentioned in the Abstract, then such a product decreases sufficiently fast 
at large energies and gives a convergent integral in the expression for the 
derivative with respect to T of the Fourier transform of the product of the 
gluon propagator and a,,(p). 
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There are still two analytical issues which we have to consider before 
making the comparison with the lattice data. First is the time derivative of 
the logarithm of the Fourier transform of the gluon propagator since usually 
the lattice data are presented in the plot with the logarithmic· scale for the 
correlation function and with the linear scale for the time-variable. Second, 
is an interesting additional notion of the "effective gluon mass" introduced 
by Mandula and Ogilvie(2), denoted as M(r), and defined in the region where 
the Fourier transform normalised to +1 at r = 0 is different from zero. M(T) 
is defined by the following expression 

e-M(T)T == he-vITI/V2sin (i _v j; ') . (5) 

There are three interesting results concerning the analytical predictions. 

1.� The time derivative of the Fourier transform of the gluon propagator 
. itself is negative for the positive values of the time variable T and the 

modulus of this derivative decreases with time. 

2.� The time derivative of the logarithm of the Fourier transform of the 
gluon propagator is for the positive values of the time variable also 
negative but its modulus increases with time. 

3.� The "effective gluon mass" M(r) also increases with the increasing 
value of time r. 

The explicite expressions for the time derivative of the logarithm of the 
Fourier transform of the gluon transverse propagator, and for the "effective 
gluon mass" M(r) are, respectively, 

i.. {In [he-lIITI/V2sin (~  _ d2J)]}= -1IV2 ,
dr� 4..fi 1 - tan( liT / J2) 

v 1 [ ( vr ) . (vr))A1(r) = V2 - ;In cos ..fi - sm V2 . (6) 

In Table 1 below we show the absolute values of the decreasing deriva­
tive with respect to time of the Fourier transform of the gluon transverse 
propagator normalised to + 1 at r = O. The lattice time intervals shown 

in the first row of Table 1 correspond to the following times in the lattice 
units: 0, 2a, 4a, 6a, 7a, and 8a. For a-I == 2.5 GeV taken by Gupta et al 
these intervals are the following Euclidean times T: 0,0.16 fm, 0.32 fm, 0.47 
fm, 0.55 fm, and 0.63 fm. In the second row of Table 1 there are given the 
numerical values of this derivative calculated from an enlarged copy of Fig.12 
of Gupta et al.(1). In the third row of Table 1 there are given the analytical 
predictions for the absolute values of the derivative of the gluon propagator 
for the Shifman- Veinshtein- Zakharov(3) (SVZ) value of II == 0.331 GeV. In 
the fourth row of Table 1 there are shown the analytical predictions for the 
Marrow and Shaw(4) (MS) value II == 0.5 GeV. . 

Table I I ~ Fourier transform [P'(p'+V')-1 I""oll= Vhf-vlTl/heos (~)  

T 0 0.16 fm 0.32 fm 0.47fm 0.55 fm 0.63 fm 
Gupta 0.22 GeV 0.24 GeV 0.21 GeV 0.20 GeV 0.19 GeV 0.14 GeV 
SVZ 0.47 GeV 0.38 GeV 0.30 GeV 0.23 GeV 0.19 GeV 0.16 GeV 
MS 0.71 GeV 0.51 GeV 0.34 GeV 

At time intervals 0.47 fm, 0.55 fm and 0.63 fm we left blank spaces for the MS 
case since for such large value v == 0.5 GeV the value of the time-variable TO 

at which the Fourier transform of the zero three-momentum gluon propagator 
is equal to zero is T~S == 0.44 fm. The same time-variable where the Fourier 
transform of the zero three- momentum gluon propagator vanishes is for the 
SVZ case equal to r!VZ == 0.66 fm. 

Note, that at the value of the time-variable r = 0.55 fm = 7a the 
agreement between the lattice data of Gupta et al. l ) and the SVZ(2) value 
is perfect. Usually, at the first few time intervals of the lattice data there 
are some distortions due to the finite size effects and higher masses, so the 
agreement at the time interval around 7a == 0.55 fm should be considered 
as the safe one. It is also worthwhile to notice from Table 1 that except 
for the first value of the derivative at r = 0 all the lattice data show 
systematically the decreasing values of the time derivative in accord with the 
predictions of the analytical formula. If we would include the renormalization 
group equation improvement logarithmic factor then the value of ro where the 
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Fourier transform of the gluon propagator at zero three-momentum vanishes 
moves slightly towards larger values. (Such calculations have to be done 
numerically. ) 

The curve shown in Fig.12 of Gupta et al.(l) exhibits the CONVEX char­
acter what corresponds to the fact that Gupta et al. (1) in order to fit their 
data had to use a superposition of two exponentially decreasing terms, one 
with a positive and the other one with the negative (screened ghost-like) 
coefficient. The masses in these decreasing exponentials are 600 ± 90 MeV 
for the positive definite contribution and 1250 ± 80 MeV for the screened 
ghost- type term. 

As Gupta et al. (I) emphasize the transverse gluon " correlator can-not be 
fit by a sum of contributions from positive-definite states only". In the above 
analytical formula for the Fourier transform of the zero three-momentum 
transverse gluon propagator there are also two exponentially decreasing terms 

first with the positive coefficient cos (~ ) and the second with the negative 

coefficient -sin (7f ) for T < TO. This also indicates the CONVEX char­

acter of the curve shown in Fig. 12 of Gupta et al. Note however that 
the trigonometric coefficients in the analytical formula multiplying the expo­
nentially decreasing terms themselves vary with the time-variable and either 
increase or decrease the same exponential fall off of both exponents in the 
analytical expression. 

The CONVEX character of the curve drawn in Fig. 12 of Gupta et al.{l) 
corresponds directly to the increasing value of the time derivative of the 
logarithm of the Fourier transform of the transverse gluon propagator at the 
zero value of the three-momentum. At the same time intervals as in Table 
1 there are given in Table 2 the increasing values of the time derivative of 
the logarithm of the Fourier transform of the gluon transverse propagator at 
the zero three- momentum. Finally, in Table 3 there are given the increasing 
values of the "effective gluon mass" at the same time intervals as in Tables 
1 and 2. 
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Table 2 I d~ Logarithm Fourier tr. [P2(p4+ 1I4)-1 Ip'=o] 1= 1 _ tan{IIT/V2) 

T 0 0.16 fm 0.32 fm 0.47 fm 0.55 fm 0.63 fm 
SVZ 0.47 GeV 0.58 GeV 0.71 GeV 1.26 GeV 2.02 GeV 6.65 GeV 
MS 0.71 GeV 1.00 GeV 1.94 GeV 

II 1 [ ( liT ) . (liT)]Table 3 M{T) = .j2 - ;In cos V2 - SIn V2 

T 0 0.16 fm 0.32 fm 0.47 fm 0.55 fm 0.63 fm 
SVZ 0.47 GeV 0.52 GeV 0.59 GeV 0.72 GeV 0.84 GeV 1.16 GeV 
MS 0.71 GeV 0.83 GeV 1.09 GeV 

Note, that the "effective gluon mass" for the SVZ(2) case ranges between 
two values 0.5 GeV and 1.2 GeV which roughly correspond to the two mass 
scales 0.6 GeV and 1.3 GeV used by Gupta et al.{l) for the fixed exponential 
masses in the positive-definite and the negative-definite terms, respectively. 

It is also important to recognize from Table 3 the steady increase of the 
"effective gluon mass" in accord both with the CONVEX character of the 
curve in Fig. 12 of Gupta et al.{l), and with the increasing absolute values of 
the time derivative of the logarithm of the Fourier transform of the transverse 
gluon propagator, as well as with the decreasing absolute values of the time 
derivative of just the Fourier transform of the transverse gluon propagator 
at the zero value of three-momentum. 

The spontaneous generation of the non-zero mass scale for gluon makes 
also the physical sense of going to the frame of reference where the three­
momentum is equal to zero. 

There are two papers by Mandula and Ogilvie(2,5) in which the lattice 
gluon propagator is calculated in the Landau gauge. The lattices used in 
these papers are: 43 x8, 43 xlO, 43 x8, and 44 which are much smaller than 
the lattice 183 x42 of the Gupta et al calculations. The lattice results of 
Mandula and Ogilvie(2.5) do show the increasing values with time of the 
"lattice effective gluon mass" which in the continuum is equivalent to the 
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negative of the time derivative of the logarithm of the Fourier transform of 
the zero three-momentum gluon propagator. For the 43x8 lattice in Mandula 
and Ogilvie(2) the value of the "lattice effective gluon mass" is 0.38 ± 0.04 
GeV at the time equal to 0.7 fm what corresponds to 6.0a-1 = 1.69 GeV. 

Very recently Bernard, Parrinello and Soni(6) presented"A Lattice Study 
of the Gluon propagator in Momentum Space". There, the pure glue QeD 
was studied on the 163 x40 lattice at (3 =: 6.0, on the 244 lattice at f3 = 6.3 
and on the 163 x24 lattice at f3 = 5.7. Their gluon propagator at the zero 
three-momentum presented in their Fig.2 for the lattice 163 x40 at f3 = 6.0 
and a-I =: 2.1 GeV also shows the increasing "lattice effective gluon mass" 
however with the values smaller than the one corresponding either to the 
lattice data of Gupta et aUI) or to the analytical expression with the SVZ(2) 
value for v = 0.331 GeV. In Fig. 2 of Bernard et al.(6) the "'lattice effective 
gluon mass'" starts from the value 0.22 GeV at T = 0 and at T = 2a ~  0.2 
fm it is ~ 0.42 GeV, at T = 4a ~  0.4 fm it is 0.57 GeV, and at T ~ 0.6fm 
is approximately equa.l to 0.65 GeV. All of these values are determined with 
rather large errors. 

In Fig. 6 of Bernard et al. (6) for the 244 lattice at f3 = 6.3 and a-I = 3.2 
GeV the "lattice effective gluon mass" has the value 0.21 GeV at zero time, 
the value 0.45 GeV at 3a = 0.18 fm, the value 0.55 GeV at the time equal 
to Sa = 0.31 fm, and a slightly smaller value equal to 0.54 GeV at the 
time 8a = 0.49 fm also with very large errors. The values of the "lattice 
effective gluon mass" of Bernard et al. (6) either in their Fig. 2 or in Fig. 6 
are much smaller than the values of the time derivative of the logarithm of 
the Fourier transform shown in Table 2 particularly at the times between 0.4 
fm and 0.6 fm which are sufficiently far away from the zero time. Also in Fig. 
6 of Bernard et al. (6) the "'lattice effective gluon mass" starts to decrease for 
the increasing time at around 0.4 fm in conflict both with the lattice data of 
Gupta et al.(1) and with the predictions of the analytical continuum formula 
of Gribov-Stingl-Zwanziger. 

Some source of errors in the results of Bernard et al. (6) is shown in their 
Fig. 1 where the results for one gauge-fixed configurations of the time­
component of the gluon field which should remain constant in time in the 
Landau gauge show a large variation from the zero time up to the time­
variable around Sa ~ 0.5 fm and only then remain constant until around 1 
fm where they start growing up very rapidly. In contrast to this largely vary­
ing behaviour of the one gauge-fixed configuration of the time-component of 
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the gluon field of Bernard et aU6) the time-time gluon correlation function 
shown in Fig. 12 of Gupta et al.(l) remains very much time-independent, 
slightly decreasing with time at around T ~  1Oa ~ 0.8 fm. Over 20 lattice 
spacings the variation of the time-time gluon correlation is around 4 % in 
Fig. 12 of Gupta et al. (1) while in Fig. 1 of Bernard et al. (6) the variation of 
one gauge-fixed configuration of the time-component of the gluon field is 33 
% with a very similar lattice spacing a-I = 2.1 GeV for Bernard et al.(6) 
and a-I = 2.5 GeV for Gupta et al(l). 

Bernard et al. (6) show also the lattice results for the gluon propagator in 
the momentum space. For small momenta they are able to fit their results 
in Fig. 4 with the analytical expression corresponding to the Gribov-Stingl­
Zwanziger gluon propagator with the value v =: 0.333 ± 0.012 GeV which is 
practically the Shifman- Veinshtein- Zakharov(2) value. The large momentum 
behaviour of their lattice gluon propagator for momenta abov,e 1 GeV can 
not be fit by the analytical formula of the Gribov-Stingl-Zwanziger gluon 
propagator but instead requires a power law fall off of the form 1/p2+-r with 
I ~ 0.7. 

Such fast fall off is not in accord with the much slower fall off of the 
Gribov-Stingl-Zwanziger gluon propagator together with the renormalization 
group equation logarithmic factor raised to the anomalous exponent. In the 
domain of momenta between 1 and 2 GeV this logarithmic term increases 
the l/p2 fall off of the Gribov-Stingl-Zwanziger gluon propagator but only 
approximately by the factor l/po.23 in this range of momenta. There is how­
ever a problem of taking the lattice data results for such large momenta in 
the presence of the lattice ultra-violet cut off. In general the lattice data 
are much more reliable in the position space than in the momentum space 
where one needs all informations for the gluon propagator also at the very 
small distances which are correlated with its high momentum behaviour and 
therefore effected by the ultra-violet cut off. 
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