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Abstract 

We show that the following elementary geometric properties of the mo
tion of a curve select hierarchies of integrable dynamics: i) the curve 
moves in an N -dimensional sphere of radius R; ii) the motion is non
stretching; iii) the dynamics is independent of the radius of the sphere. 
For .tV = 2 we obtain the modified Korteweg-de Vries hierarchy, for 
•..." = 3 the nonlinear Schrodinger hierarchy and for ]V > 3 we obtain 
integrable multicomponent generalizations of the above hierarchies. 
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1 A hJstorical introduction 

One of the classical problems of the XIX-century geometers was the study of 
the connection between differential geometry of submanifolds and nonlinear 
PDE's. For instance, Liouville found the general solution of the equation 
(known now as the Liouville equation) which describes minimal surfaces in 
£3 [1]. Bianchi solved the general Goursat problem for the sine-Gordon 
(SG) equation [2], which encodes the whole geometry of the pseudospherical 
surfaces. Moreover the method of construction of a new pseudospherical 
surfa.ce from a given one, proposed by Bianchi [3], gives rise to the so-called 
Bianchi-Backlund transformation for the SG equation [4J. 

In 1967 Gardner, Green, Kruskal and Miura [5] discovered a method (now 
called the inverse-scattering (or spectral) transform (1ST) method) that can 
be used to solve the Cauchy problem, for rapidly decreasing data, of several 
PDE's, like the Korteweg-de Vries (KdV), the modified Korteweg-de Vries 
(mKdV), the nonlinear Schrodinger (~LS)  equations, and of the SG equation 
as well [6]. 

The 1ST method, as well as the finite gap method which generalizes it in 
the context of periodic boundary conditions [7], is based on the association 
of the given PDE with a spectral problem, which plays a centrar role in 
the theory. Actually, to each spectral problem one can associate a whole 
hierarchy of integrable PDE's generated by a recursion operator, as it was 
shown by Ablowitz, Kaup, Newell and Segur [8]. 

After these achievements, the connection between geometry and inte
grable PDE's became even deeper and reappeared many times. It was Hasi
moto [9] who found the transformation between the equations governing the 
curvature and torsion of an isolated nonstretching thin vortex filament mov
ing in an incompressible inviscid fluid and the NLS equation. Lamb [10] used 
the Hasimoto transformation to connect other motions of curves to integrable 
equations like the mKdV and SG equations. Lund and Regge [llJ observed 
that the Gauss- \Veingarten equations of the surface created by a particular 
motion of a relativistic string can be viewed as a pair of spectral problems 
whose compatibility gives the so-called Lund and Regge system. 

Lakshmanan et al. studied the dynamics of a flexible string of constant 
length in £3, deriving the Zakharov-Shabat (ZS)-Ablowitz-haup-:'\ewell-Segur 
(AKNS) spectral problem [12]; an integrable NLS equation with .T-ocpf'ndent 
coefficients was also derived. from the motion of a suitable nonlinear string [13]. 
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Sasaki [14] gave a geometric interpretation to the ZS-AKNS spectral problem 
in terms of pseudospherical surfaces. Chern and Tenenblat [15] characterized 
the mKdV hierarchy as relations between local invariants of certain foliations 
on a surface of constant non-zero Gauss curvature. In the papers [11]-[15] 
the spectral parameter, which plays a crucial role in the identification of the 
hierarchies of integrable PDE's~  was introduced either identifying it with the 
(constant) curvature or torsion of the string, or using gauge and/or space
time invariances of the resulting PDE's. 

Almost at that time Sym introduced the"soliton surfaces approach" [16], 
in which the powerful tools of the 1ST method are used to construct explicit 
formulas for the immersions of one-parameter families (labeled by the spectral 
parameter) of surfaces corresponding to given solutions of integrable PDE's 
[17]: see also the recent developments of Bobenko [18]. 

Barbashov, Nesterenko and Chervyakov studied "the world surface gener
ated by the motion of a relativistic string, obtaining and solving an integrable 
generalization of the Liouville equation [19]. 

More recently Langer and Perline [20] showed that the dynamics of a non
stretching vortex filament in R3 gives rise, through the Hasimoto transfor
mation, to the recursion operator of the NLS hierarchy. Similarly, Goldstein 
and Petrich [21] showed that the dynamics of a nonstretching string on the 
plane produces the recursion operator of the mKdV hierarchy, and Nakaya
ma, Segur and Wadati [22] explained this result observing that the Frenet 
equations for the curve are equivalent to the ZS-AKNS spectral problem with 
zero spectral parameter. 

The absence of the spectral parameter in the papers [20][21][22] does not 
allow one to select integrable dynamics of a curve from a purely geometric 
point of view, without prior knowledge of the theory of integrable systems. 
. One of the goals of our paper is to show that there exists a very elemen
tary geometric characterization of the motion of a curve, which selects only 
integrable dynamics. 

2� An elementary geometric characterization 
of integrable dynamics 

The mathematical objects of our investigation are curves; the main result of 
our investigation consists in the identification of the following three elemen
tary geometric properties of the motion of a curve which select, among 
all possible dynamics, integrable dynamics. 

Property 1. The motion of the curve takes place in the N-dimensional sphere 
of radius R, denoted by SN(R), N > 1. 

Property 2. The curve does not stretch during the motion. 

Property 3. The dynamics of the curve does not depend explicitly on the 
radius R.· 

We remark that the set of dynamics satisfying Properties 1-3 is not empty; 
for instance it obviously contains the rigid motion of the curve on the sphere, 
described by the trivial evolutions 

/\'j,t = 0, j = 1, ... , N - 1 ,� (1) 

and the motion of the curve along itself, described by the linear wave equa
tions 

Koj,t = CKoj,. , j = 1, ... , N - 1 (2) 

for the geodesic curvatures /\,j of the curve, where s is the arc-length param
eter. 

We shall see in the following sections that the rigil motion and the mo
tion along itself are just two of the infinitely many integrable dynamics of 
the curve, selected by Properties 1-3. These dynamics are described by in
tegrable commuting nonlinear evolution equations in 'I+1 (one spatial and 
one temporal) dimensions for the geodesic curvatures of the curve. More 
precisely, for N =2 we obtain the mKdV hierarchy for the curvature /\'. For 
N = 3 we obtain a hierarchy of evolution equations for the geodesic curvature 
Ko = Ko] and torsion T ::;: /\'2, which can be transformed, through the Hasimoto 
transformation, into the NLS hierarchy. For N > 3 we obtain integrable 
multicomponent generalizations of the above hierarchies. 

It is very important to remark that Properties 1-3 not only select inte
grable PDE's, but also provide their integrability scheme; in other words, in 
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the process of deriving the dynamics selected by Properties 1-3 one discovers 
"for free" the integrable nature of such dynamics! In particular, the spectral 
problem is given by the Frenet equations of the curve and is a consequence of 
Property 1, and the spectral parameter is given by the inverse of the radius 
of the sphere. 

\Ve expect that Properties 1-3, when applied to the motion of n-dimen
sional submanifolds of SN, will select integrable PDE's in n +1 variables: this 
problem is presently under investigation by the authors. An example of sys
tem of integrable PDE's in an arbitrary number of variables connected with 
geometry was found by Tenenblat and Terng [23] and solved by Ablowitz, 
Beals and Tenenblat [24]. 

The Reader could wonder why spheres should be so important for integra
bility. The embedding of a curve in a space of constant non-zero curvature, 
instead of a flat Euclidean space, has the great advantage of introducing in a 
natural geometric way the spectral parameter, without having to use scaling 
properties of the resulting PDE's. Furthermore spheres are not only sim
ple objects, but they are also the universal covering spaces for manifolds of 
positive constant sectional curvature [25]; therefore they are generic for local 
purposes. 

\Ve hope that our work, motivated by the results of the papers [15][21], 
will give a contribution to a deeper understanding of the elementary geomet
ric nature of an integrable dynamics. 

The paper is organized as follows. In Section 3 we show in detail how 
PropErties 1-3. for 1\7 = 2, select the mKdV hierarchy; moreover we stress the 
basic role played by the rigid motion and we discuss the geometric meaning 
of the mKdV and SG equations. In Section 4 we show how Properties 1-3, 
for A = 3. select the NLS hierarchy and we give a geometrical meaning to 
the Hasimoto transformation. In Section 5 we extend the above results to 
higher "\~'s.  

The curve on S2(R) and the mKdV hierar
chy 

Property 1. If the curve lies on S2( R). the unit tangent vector i to the string 
is related to the geodesic curvature /(, of the string and to the unit vector ii, 
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normal to the string and tangent to the sphere, by the Frenet equations [26] 

[f] [0'\ O][f] 
: = ~,\ ~K ~ ~ (3) 

,$ 

where ,\ = ~ and f = Ar is the unit vector in the radial direction. 
The Ftenet equations (3) are nothing but the matrix spectral problem of 

the theory of integrable systems. More precisely: 
i) the Frenet frame (i.e. ~he  orthonormal basis {f, i, il} defined along the 
curve) corresponds to a 3 x 3 matrix eigenfunction; 
ii) the inverse of the radius of the sphere is the spectral parameter ,\: 
iii) the geodesic curvature K is the "direct datum" or "potential". 
\\le remark that this spectral problem is equivalent to the 2 x 2 ZS-AK:\S 
spectral problem 

<PI ] i [,\ If] [ tPl ] (4)[ </>2 ="2 K -,\ 4>2 
,s 

using the well-known isomorphism between su(2) and 80(3) Lie algebras. 
Let us consider the velocity field v along the curve which gives us the 

kinematics. Then Property 1 implies that v has no component in the radial 
direction: 

r.t = v= vf +Uii . (.5) 

Property 2. If the curve does not stretch during the motion, the distance 
between any two points of the curve (measured along the curve) does not 
vary in time. then 8 and t can serve as local coordinates on the sphere, and 

asat = ata" . (6) 

Since the Frenet frame is orthonormal, its time evolution is governed by an 
antisymmetric matrix: 

~] _ [ 0 ,\V ,\U] [ ~ ]t - -,\V 0 A. t (7)
[ ft -'\U -A 0 il 

,t 

Futhermore the commutativity condition (6), applied to equations (3) and 
(7), specifies the coefficient A 

A = C,s + /(,~;  (8) 
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and implies the time evolution of the geodesic curvature 

K.t = (U,s +KV),s + ).2U (9) 

with the condition 
\~s  = KU . (10) 

Equations (9) and (10) can be written in the following way 

K,t = RU + ).2U (11 ) 

in terms of the recursion operator 

R = a; + K
2 + K,sa;l K (12) 

of the mKdV hierarchy [8][27][28]. For). = 0, the case of the curve on the� 
plane. we recover the result obtained in (21).� 
Property 3. Equations (9) and (10) show that the dynamics of the curve,� 
subjected to Properties 1-2, depends explicitly on the curvature ).2 of the� 
sphere.� 

A drastic way to satisfy Property 3 is to choose the normal velocity U as 
the real eigenfunction of the recursion operator R for the eigenvalue _).2: 

RU = _).2U . (13) 

This velocity field generates the rigid motion of the curve on the sphere, 
described by the equation 

K.t = 0 . (14) 

Therefore: 
the rigid motion of a curve on the sphere of curvature ).2 is gen
erated by a normal velocity being the real eigenfunction of the 
recursion operator of the mKdV hierarchy, corresponding to the 
eigenvalue _).2. 

\Ve remark that. equation (13) plays a central role in the theory of inte
grable systems and it is satisfied by the so called "squared eigenfunctions" of 
the spectral problem (4) [8J. From simple geometric considerations one can 
show that the solution U of equation (13) is given by any linear combina
tion of t he Cartesian components of the unit tangent vector t, which can be 
expressed in terms of ¢J1 and 02 in the following way: 

~ r -21 2 -2 7' .1 
t = ,Im($l - (2) . Re«h + <PI ). 2Im<Pl<7>2J (15) 

i 

This representation is a direct consequence of the already mentioned isomor
phism between 80(3) and 8u(2). 

It is known that one can find the explicit expression of the solution U 
of equation (13) in terms of K only for special curves, like multisoliton and 
finite gap solution type of direct data. For). = 0 (the case of the curve on 
the plane) such int.egration gives rise to the explici t formula 

U = KerR = asin(O - 00 ) (16) 

where 0 is the incomplete total curvature 

0= a;lK (17) 

If the coefficients a and 00 are time indepenJ~nt,  the corresponding velocity 
field 

v= a (sin(O - Oo)ft - cos(O - Oo)t) (18) 

generates a rigid translation on the plane. 
The linear dependence on ).2 of equation (11) suggests that Property 3 

can be satisfied also looking for velocity fields given by suitable Laurent 
expansions in ). 2 

mz 

u= 2:: -).2 j Uj ,ml, m2 20. (19) 

j=-ml 

Substituting equation (19) into (11) and requiring independence of )., one 
obtains a class of integrable dynamics in the form 

g(R)K,t = h(R)K,$ , (20) 

where 9 and h are arbitrary entire functions of their argument. The simplest 
three exampl~s  are the following. 
i) If 9 = h = 1 we have 

v::::t K,t = K,s ; (21) 

therefore:� 
the motion of the curve along itself is described by the linear wave� 
equation.� 
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ii) If 9 = 1 and hex) = x we have 4 The curve in S3(R) and the NLS hierarchy 

v = K,,,n + (_,\2 + ~K2)i  (22) In the case of the curve inS3 the Frenet equations read 

3 2 
K,t = RK,,, = K,,,.. + 2K K,6 , 

therefore:� 
the motion of the nonstreching curve under a normal velocity pro�
portional to the s-variation of the curvature is described by the� 
mKdVequation.� 
iii) If g(x) = x and h =0 we have� 

v= A-2 ( sin 0 ft - cos 0 i ) (23) 

'R1\"t = 0 ~ I\,t = sinO ~ O,,,t = sinO 

\Ve remark that the s-derivative of this velocity field has no components in 
the tangent and normal directions; then the corresponding dynamics gives 
rise to the so called "Tchebyshev net". Therefore (see also [29]): 
the A-independent dynamics of a curve which gives rise to a Tcheby
shev net on the sphere is described by the SG equation. 

It is important to remark that, although the integrable dynamics (20) we 
derived from Property 3 do not depend explicitly on ,\, the corresponding 
motions on different spheres are not in general equivalent, in the sense that, 
if two curves on concentric spheres form initially the same cone, this property 
will be lost during the evolution. However if we consider only a single element 
of the hierarchy, say the equation 

I\"t = nnl\"" (24) 

its scale invariance with respect to A: 

S~A-lS, 1\,-+ AI\, , t~A-(2n+l)t  (25) 

implies that the corresponding motions on different spheres are equivalent, 
provided that the time used on the sphere of radius A-I is A-(2n+l) times the 
one used on the sphere of radius 1. 
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-A A OO][f]0 ~ (26)[f]~ = [0 0 K 

nO-I\, 0 T n 
bOO 0 b

," 
-T 

where the new ingredients are the torsion T of the curve and the binormal 
vector b. The kinematics is now described by 

r,t = v = vi +Un + Wb . (27) 

As before, Property 2 implies equation (6); moreover the time evolution of 
the Frenet frame is given in terms of an antisymmetric matrix: 

AV 

[ 

-~V  o ,IX ,I:] [;] 
[U" 

(28)-AU -A o C n 
-AW -B -C 0 b 

The commutativity condition (6) allows to express the coefficients A, B, C 
in terms of the velocity field and of the data: 

A = U,,, + K V - 7" ~r 

B = ~,V,"  + TU (29) 

C = -1 
(TA+ B.s + A2~V)I\, 

and it also implies the time evolution of the data: 

[ ~ ] ,I = ~2 [ ~, ] + ,I2~, [ ~  ] (30) 

Vs = I\,[J , 

where 

"f,. _ [ 0; + Os 1\,0; 1 I\, - ,2 -03 T - TOs J' 
'*'2 - . 1 - t t:2 2 .' . (3i)

Os-;, (T(Os + 1\,8s K) +8aT) + KT 8s -;,(8s - T ) + Kf}s 
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~,  = [~  a~~] 

As in the previous Section Property 3 will be satisfied by the rigid motion, 
obtained solving the eigenvalue problem 

[ U] 2 [U] (32)~2  IV = ->.. ~1 W ' 

and also by suitable Laurent expansions of U and W in terms of >..2. In order 
to obtain recursively the coefficients of such expansions one has to rewrite 
equation (30) in the following form 

",-1 [ Ii, ] [I\,t] [ U ] 2 [ U ] , R = 4>11 4>2 . (33)'!'1 i ,t = "'8-;1 i,t = R W + >.. W 

For>.. = 0, the case of the curve in E3 
, we recover the formulas of [20]. The 

final result is the following hierarchy of integrable dynamics 

"'.t '] ,( ( ] K i.8 +2i K ,8 ] )[K ,8 [ )g(R)[ ~-1  = h R) CI +C2 (",2 2) • (34,
Kus i,t Ki -K,u - K T - i 

As it was shown in [20] this hierarchy can be transformed into the NLS 
hierarchy using the Hasimoto transformation 

1/.' = Ke 
iu 

, = 8;l i (35)(j 

Here we explain the simple geometric meaning of it. Motivated by the case 
of the planar curve, one can partially integrate the Frenet equations (26) for 
the curve in 83 introducing the following new basis of the normal plane 

ill = cos a Ii - sina b , (36) 

ni =sin (j n+cos a b 
This allows us to represent any vector 'of the normal plane as a complex 
number: 

; = Rut> n1 + fmq> ill ¢:} 0 = Re0 + i Im6 (37) 

In ter!IlS of the new orthonormal frame {r, t, n1, nil we have the equations 

A o Re'lj; Im1/J ~t 
>.. 

o 0] [ f ] (38)
-Re¢ o 0 nl[i: t= [ i -Im1jJ o 0 ni 

0 >..v 
>"Re~ >"Im<1>.~] [ ~ ]->..v o Imt/> -Re0 t 

(39)
->"Re¢ -Imc/; o ~T n1[[{ ],,
->..Im¢ Rec/; -V 0 ni 

where 
~ = Un + ~Vb  ¢:} <P = (U + ilV)eia 

. (40) 

l':5 = Re( 6;;'), 1> = i( <P,5 + V 1t», ~':s = Re( J>~~) (41) 

and 
'l/.),t = >..2<1> - Q2q; , (42) 

where 
Q<P = i(q>,5 + lj)a;lRt(~<fJ)) (43) 

is the recursion operator of the NLS hierarchy [8}[27]. By using Property 3 
we obtain the following class of integrable equations: 

(44)g( Q'l'P, = h(Q') (CJ'!'" +c, ('P." + ~1~'I'i)  ) 

In particular:� 
i) if g = h = l~ CI = 0 and C2 = 1 we obtain� 

v = Kb (4.5) 

K.t 2iK'5 + KT. s. ) , 11 '1 2 zu,' t = 1]) 55 + - W 'lJ,' ¢:} .. , 2'
I 

{ K05 

-1 
T,t -(K.55 + ~K3 - Ki ) 

therefore: 
the motion of the nonstretching curve subjected to a binormal 
velocity field proportional to the curvature is described by the NLS 
equation. 
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where Kj = Uj = 0 for j < 0 and KO = >., uO = V. Equation (6) also impliesi) If 9 = 1, h( x) = x, Cl = 1 and C2 = 0 we obtain the following time evolution of the curvatures 

v = 0<2 - ,\2) i +<,.6 +"b (46) Kj,t = (Mj+l,i+2 )," + Kj-ll\!j,j+2 - Kj+I.Mj +l,i+3' j = 0, ... 1 N - 1 . (50) 

",,,,,s + ~K2~,s - 31'2"." - 3K77,,, 
Like in the previous Section, these equations are in the form

K,t, ' 3, '1 2 {1,;',1 = It',ss''+"2 tJ). 'ljJ,,, ~ KO;1 7,t = 31'11:,,,,, + 3",,,1',,, + KT,,,,, - KT
3 + ~K31' (51)~,t = 4>20 + >.24>10 , 

therefore:
the nonstretching motion of a curve subjected to the velocity field 

where the vectors K and 0. have respectively components "j and U
j 

for j =
(46) is described by the complex mKdV equation. 

1, ... , i\/ - 1. Th~ procedure to obtain the hierarchy of integrable dynamics
from Property 3 is the same as in the previous Sections. 

5 The curve in SN (R) Acknowledgements 
In the case of the curve in SN the Frenet equation reads 

V"le acknowledge useful discussions with A. S. Fokas and A. Sym. 

0 ). 0 i-r
t -). 0 Kl t� 

iiI = 0 0 \ \ IiI (47)�
-Kl� 

0 KN-I�o I I DN-liiN-I I 
.S 

\ 0 -KN-l 

and the kinematics is described by 

N-l 
(48)r,t =v=vi + L [fjiij 

;=1 

The time evolution of the Frenet frame is described by an (N + 1) x (N + 1)
antisymmetric matrix M: the commutativity (6) allows one to express the
coefficients of this matrix in terms of the velocity field and of the curvatures: 

Afl,j = ).Ui - 2
, j > 1 (49) 

M'+I,j = _1_ (M;"" - ,. _,M;,j+l + <j-2M;,j-l + <i-2 M;-I,,) , j > i + I
Ki-l� 

Mi,j = -l\1j,i ,� 
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