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INTRODUCTION
The use of light front coordinates has now a long history. Suggested first
by Susskind [1], Bardakci and Halpern [2] and Cheng and Ma [3], they led
to important simplifications in such areas as current algebra [4] and deep
inelastic processes [5]. Also Kogut and Soper [6], Bjorken, Kogut and Soper
[7], Neville and Rohrlich [8] and Chang, Rost and Yan [9] showed that one
can formulate consistently quantum electrodynamics and other theories on
the surface z+ = z + t = const, called the light front. Dynamics is assumed
to develop in this variable, rather than in {. Those authors showed also
that the first few terms of the z* ordered perturbation theory reproduce
automatically Weinberg rules [10], i.e. important simplifications of the "old
fashioned” time ordered perturbation theory in the infinite momentum frame.

This is the illustration of an early and prophetic work by Dirac [11], who
showed that constant time surface is not the only possibility for formulating
Poincare invariant theories and attracted attention to x+ = const dynamics.
He emphasized the fact that in this form dynamics has only 3 interaction
dependent Poincare generators as opposed to 4 in the case of t = 0 dynamics.

The usual approach to the quantization of fields was to make use of
the Schwinger quantum action principle [12], which permits one to guess
the commutation relations of the fields and the construction of Poincare
generators. Those problems are nontrivial on the light front: in general the
dynamics has constraints; the fields have half as many degrees of freedom
‘compared with ¢ = 0 dynamics and often the commutation relations are non
local. ;

In the case of gauge theories additional difficulties appear: in the natural
axial gauge the Feynman propagator for the photon (gluon) has additional
singularitics and one has to face the problem of proper regularization. While
several prescriptions exist in the literature [13,14,15,16], for the time being
there is no consensus. In this work I decided to investigate quantum field
dynamics in a systematic and the most conservative way possible: looking
for classical canonically conjugated variables and quantizing by passing from
Poisson brackets to (anti)commutators. For all cases investigated (scalar,
Dirac, photon) except the non-abelian gauge field the technique used was
to exploit the translational invariance to decompose fields into independent
Fourier components. As each component presented a finite dimensional prob-
lem, the analysis was much simplified. The problem of constraints was solved

in a new and simple way, based on the observation that constraint variable
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lacks time derivative in the Lagrangian. The usual treatment is to use the
complicated formalism of Dirac brackets [17,18]. In my treatment one writes
the transition amplitudes in the form of Feynman path integral and one
integrates over constraints: this is always possible to do explicitly since inte-
grations at different times are independent. For scalar and Dirac fields one
recovers known results. For the electromagnetic field one finds the results of
the Coulomb gauge in the case of t = 0 dynamics and of A = 0 gauge in the
case of light front dynamics. In both cases this way of treating gauge degrees
of freedom produced gauge invariant Hamiltonians. The spurious singularity
was to be understood in the principal value sense.

In the important case of non-abelian gauge fields, studied for simplicity for
the SU(2) group, new and unexpected results emerged: the final hamiltonian
is explicitly gauge invariant and there are indications that the Faddeev-Popov
determinant is free of Gribov ambiguities. In the first chapters I present the
notation, kinematics and the analysis of a classical particle and free scalar,
classical field. Next scalar and Dirac fields are quantized. To elucidate the
complications of gauge degrees of freedom photon field is studied by my
method both in ¢t = const and z+ = const cases. Least not last SU(2)
Yang-Mills field is studied. '

1 Notation

We shall define our null-plane coordinates as follows

1
Po= ri=—(t+2
z ﬁ( )
1
mo= b= (t—2z
¢ = i=12 (1.1)

In those coordinates the metric tensor is

0100
1 000

gl“’ = g#l’ - 0 0 1 0 (1-2)
0 0 01



with Greek indices g, v = (p,m,1,2). Latin indices of vector quantities will
take only the values (1,2). We use indices p (plus) and m (minus) instead of
the more customary +, — for improved legibility of the formulae. With our
metric tensor (1.2) we have the scalar product of two four-vectors

a*b, = a®b™ + ™V — o't | (1.3)

since the covariant components are

z, = ™
Ty = P 7
x; = —:‘ci (1 4)

Notice that we also have, due to non-diagonal nature of (1.2)

oV av
PP = o o o
V== (1.5)
N .
R (1.6)

In what follows we shall use the usual methods of mechanics (Lagrange and
Hamiltonian functions etc.) to analyze various systems. The coordinate 7
eq. 1.1 will be the new time. We must of course have the crucial property of
time: each world line of a particle should cross once and only once the plane
T = const, Our variable 7 fulfills this requirement. with a single exception:
a massless particle travelling in the z direction. Since it is but one direction
from a 2-dim continuum one does not expect difficulties associated with this
point. We first check the feasibility of such an approach by looking at a
classical free particle.

2 Classical particle

Let us write the world line element in our variables

ds? = dz,dz* = 2drde — (dz')? = dr?(26 — &) (2.1)



where the dot over a variable means differentiation with respect to 7. The
usual action now is

b T i .
S = ——'m/ ds = —-m/ dr(2¢ — z%)2 (2.2)

so the Lagrangian is

L=-m(2-i?)? (2.3)
and we have the canonical momenta
oL AL —m
= ——— == — = —,-———-—-———-— < 0 2.4
pp axnt 6€ (2£ - )1/2 ( )
i _OL _ _mat P (2.5)

0% (26 —47)

Notice that the momentum p? i1s always negative. The Hamiltonian takes the
form

—(m?+p1)
2p?
This gives us the correct equations of motion, the simplest way to see this is

to consider the Hamilton-Jacobi equation which follows from (2.6)

(m + (5?,,_)2) oS
+ —

H=p¢+pii,~L= (2.6)

=0 | (2.7)
2%—? or
which can be rewritten in the form
as\* _9sas '
—m? | = hintifiad T
m (6“) +2 3¢ m?+ S5, S 0 (2.8)

We sce that in this case, the unfamiliar form of L, H notwithstanding, we
reconstruet the dynamics of a free relativistic chrtlcle We can now proceed
to the analysis of the massive scalar field.



3 Free real scalar field

It is well known [9] that a field, when analyzed on the null plane exhibits
only half of the degrees of freedom as compared with the usual formalism
i.e., at t = 0. We demonstrate this first for a classical, scalar field with the
Lagrangian density

L= %(auwwp — m?a?) (3.1)
The Euler-Lagrange equations
3"5(%%65 - %% (3.2)
lead to the Klein-Gordon equation
9"9,% + m*® =0 (3.3)
Using time as evolution parameter we can write this
%le -V +m?® =0 (3.4)
If we now seek the solutions in form of plane waves
o(x,t) = exp(—ik*z,) = exp(—iEt + ika) (3.5)
the Klein-Gordon eq. (3.3) leads to the constraint
Kk,—m*=E*~k-k—m?=0 (3.6)

which, when solved for E gives an ambiguity of sign

E =4+Vm? 4+ k? ’ (3.7)

As a consequence we have a Fourier analysis of the field ®(«,t) which has
two terms

O(x,t) =
- 1

— (27r)2/3/dsk(cl(k)e—-let-{-ika‘,+cz(k)eiEt+ik-’D) (38)
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and, in order to determine ¢;(k) and c;(k) , we also need the time derivative
of &(z,1)

00(z,t)
ot
1

N W/d:’k(*iEcl(k)e—im“kw + iEcz(k)eiEtJrik:v (3.9)

In eflect let us introduce the Fourier transforms of the initial conditions which
we takeat t =0

O (L) — 1 ~ikx .

q)o(lu) = W/dsfl?ﬁ C[)(:c,t) |t=0

2 1 x()

Po(k) = W/dsv ~ik a(f( );t) le=o (3.10)

Comparing eq’s (3.8) and (3.9) we obtain

‘?’0(’*) = a(k)+ (k)
do(k) = iEci(k) —iEcy(k) (3.11)

which determines ¢;(k) and ¢;(k).

The same procedure carried on a null-plane is rather different. Firstly we
note that the Klein-Gordon eq. (3.3) in the null-plane variables is linear in
our new "time” T

('32
=P -Vio+m*d =0 3.12
d‘r()ﬁ tm (3.12)
Second, looking again for plane wave solutions which we write in our new
variables ‘
O(€,xy;7) = e = exp(ik™r + ikPE — ik x)) (3.13)
we obtain a linear constraint for k™, the variable associated with 7
—2k"KP 4+ k2 4+ m? =0 (3.14)
or, explicitly
m > ki + 7"’2 « ~
‘ k (kl,kl) = —2—];—,)—“‘ (3.10)

which uniquely determines £™. In fact the negative energy solutions obtained
at 7 = 0 map into our new solutions with k* < 0 while the positive energy
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solutions correspond to solutions with & > 0. The field at arbitrary "time”
7 can now be expressed in terms of Fourier components ¢(k?, k)

q)(f,illl;T) =
1 0
- (_27)775/ AR dyky c(k?, k1)
exp ( (m 2;’“) ik”§+ikal> (3.16)

The field at 7= 0
&,z ;7=0) =
1 o0 . . ,
- (27‘-)2/3/ dkp/dszC(kp, ki )exp(—ikP€ +ikyx,) (3.17)

determines the function c(k?, k)

C(]Cp, k.L) = ) ]
= ZTZ-W—I)EF}' \/dfd')xlq)(f'aml;’r = 0)6517])(1}54?6 - ik_]_ilf_L) (318)

We see that in this case we need the field only at 7 = 0, without any reference
to its time derivative; as we shall subsequently find on the quantum level this
implies halving of the degrees of freedom.

4 Equations of motion for Fourier
components

Before attempting the quantization of various fields to be discussed later
we will simplify the problem as for as possible, by using the translational
invariance. This will reduce the problem of the field (infinitely dimensional)
to the far simpler problem of a few degrees of freedom. The interaction will
couple the various modes, but will not have any influence on the quantization
process itself. Let us start by decomposing a classical scalar field into its
Fourier space components, with the "time” 7 playing the role of evolution



parameter,

1 Hoo H(kPx™ — kI 29
o(e;7) = L / dkPd k) e'FPeT-K =)

X k(1) |
1 * : .
= g | k() + L))

z2_1F1537; j[dk](c"kzﬁpk +ke""."'kztp_ik) S | (4.1)

i

in obvious notation. ' ' , _
The free field Lagrangian (3.1) can now be written as

L= '1" / (k] {ikP(prep-s —,¢k90-k)r'-’#2(k"lc")ipxktp_y;} (4.2)}

As expected Fourier transform decoupled modes w1th dliferent k’s, leavmg _
coupled modes k and —k only. Introduce t;be customa.ry nota.t:ons 1

K = z (4.3)
m: = u+EE (4.4)

The Lagrangian for the mode k is now
Ly = 1"’(991:90—:: — PrP-k) (4.5)

where it is to be noticed that the dyualmca,l degrees of freedom @i, p_j are
complex. Since the field ¢(z,7) is real we have S

Pk = W_k | ‘ (46)

We can therefore restrict ourselves to the momenta with positive k? > 0. It is
convenient to treat real, non complex degrees of freedom; let us use therefore
the real and imaginary parts of ¢ explicitly :

er = ap+ib ,
Pt = a;,_.—-—ibk . (47)



Dropping the index k from now can we obtain finally the Lagrangian to be
analyzed

L= z(ab — ba) — m7§'(a2 + b?) (4.8)

This does not look familiar at all! .Had we performed the same procedure
at t = 0 we would have obtained for a and b decoupled harmonic oscillator
Lagrangian; notice that a and b are symmetric and antisymmetric parts of
the field respectively. In our case a and b are coupled and exhibit a kind of
gauge symmetry '

a — acosa—bsina (4.9)
b— asina + becosa (4.10)

which mixes symmetric and antisymmetric parts of the field.
The canonical momenta are

o _
0a
ac

wy, = a—:ma . (4.11)

and we obtain the equations of motion

Ty = —zb

2
. m
b = —ta
2r
—-mi
2z

’

b (4.12)

The equations (4.11) represent one oscillator with frequency

mi

w= = (4.13)
We have equations representing a harmonic oscillator but the canonical Hamil-
tonian is not available since eq’s (4.10) would be incompatible with canonical
Poisson brackets. It is possible to analyze this situation by using the Dirac
brackets [17 ,18 ] but we will follow a simpler and better route. The con-
strained system a la Dirac will be illustrated in chapter 9. The problem with
the Lagrangian (4.8) is that b seems to be proportional to 7, and vice versa.
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in order to obtain a simple, conventional hamiltonian formalism I choose to
modify the Lagrangian (4.8) without modifying the equations of motion by
adding to (4.8) a total derivative

5 d
L=L+ E‘;(zab) ;. (4.14)
l.e.
~ . m2
L =2zab— —-EL—(«a2 + b?) - (4.15)
We now have only one canonical momentum
A ac
T=— =2za (4.16)
ab

and the canonical Hamiltonian is simply
H = nb—L=m2@*+b) ,

2 2
H %*— (4—7;; + b’) . (4.17)

Thus we have obtained one harmonic oscillator with correct frequency (4.13)
and it will be our starting point for quantizing the scalar field. It is to be
stressed that the Hamiltonian (4.17), although obtained by a route not fol-
lowed in usual treatment of the light front quantization [9], is fully in accord
with other treatments. The approach pursued here is the most conservative
one, from Lagrangian to Hamiltonian, identifying canonical variables etc.

In order to recover the full field Hamiltonian let us reintroduce momentum
indices and use eq. (4.16)

2
He=mi(a}+5) = 2L | ou I (4.18)
and . .
H= /[dlc]H,c = /[dk]—z—(p’ + KK | o 2 (4.19)
and returning to configuration space via eq. (4.1)
= [ disiion o tu2o?
H= (13“:2((Pv! Py THp ) (420)

This is the well known form of the 7-translation generator [9]
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5 Canonical Quantization

In order to quentize our system we wiil use the Hamiltonian (4.17),

2 2
m s
H=—"%(—+b 5.1
2 (4:1:2 _ (5.1)
with 7 and b being the canonically conjugated varlables I therefore impose
the natural commutation relations

[b,7] =i | | (5.2)

from which it is easy to find the commutation relatlons of the field itself; we
have, by using eq. (4.16) _
1
bya] = — ' 5.3
[be] = 5 (5.9

and by using eq. (4.7) we obtain

[ors p—a] = — (5.4)

In configuration space is convenient to compute the equal 7 commutator

2

() m

,so(y,r)]

1 . T —ikz iqx —iqT
Jakida@w) [+ oo, g, + e

2”_.)3
= -—%83(33 - y) (5.5) -

Integrating this over z™ we have the well known [7,8,9] non local commuta-
tion relation

o, 7). (. 7)] = —0(z — ) (5.6)

whicl is usually postulated heuristically by the use of the Schwinger varia-
tional principle [12]

Notice that field components ¢, have commutation relations, eq. (5.4)
without z, characteristic of creation and annihilation operators. It follows
that the field components ¢ with momenta having their ”plus” component
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positive &7 > 0 are proportional to creation operators, while negative ”plus”
compoient field A7 < 0 is proportios:al to anmlulatlon operator.
Let us tatroduce new operato =

Ay = V207 o (5.7)

Al = \f2q7 ¢, . (5.8)
We have now
40, 4}] = (g~ ®) (5.9)

The ficld 1itself has a simple decomposition

= dqp —igx t _igx
o(z) = 3/2 d2qi(Age™ + A ') (5.10)

Compared to equal time formalism we notice halving of degrees of freedom
in our system; in eq. (5.10) we integrate only over momenta having positive
"plus” component. Field hamiltonian eq. (4.19) is now simply

H = /[dq] (-’f—%;"i) (Ald,+3) (5.11)

Another important difference between equal time and light front is that the
relations (5.7,5.8) between the field ¢(z) and the creation and annihilation
operators does not depend on the mass u of the field. On one hand this makes
the relations (5.7,5.8) mass renormalization independent, on the other hand,
however, it makes impossible to use Ritz variational principle estimates. In
effect in this approach [19,20] one uses the renormalized mass as a variational
parameter to construct a vacuum wave functional for the interacting field
and to obtain the non-perturbative mass-gap estimate. Fortunately methods
liave been developed [21] to perform correctly variational calculation on the
light-front.

6 A novel way to eliminate constraints

In thi~ chapter T will present a new alternative to Dirac treatment of con-
strafnts. ‘This mathematical trick will allow me, as T will show later, to
quantize gaage ficlds without gauge fixing. This procedure is in a sense the
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.eversal of the one used to »:udy held condensates where one introduces a
fictitious field, whose value is equal at all times to the condensate itself. I
w-ll illustrate this approaci: »n the example with one degree of freedom =z

with the Lagrangian -
-2 2

= _9 4
L—-2 75 (6.1)

this is the well known quartic oscillator and we have the classical equation
of motion

i = —g%2® (6.2)
Let us introduce a fictitious vartable o with the Lagrangian

2

@ g 4, 0
L. = "2" + Ea‘x + "é— (6.3)
The equations of motion are now
g 2
0 = —=2"+4+0 6.4
v (64)
i = V2goz =—gz® (6.5)

i.e. the Lagrangians (6.1) and (6.3) give the same classical equations of
motion. Morecover the variable ¢ is now proportional to z? at all times.
Notice that the Lagrangian (6.3) has constraints since the time derivative
of o does not appear, so o lacks its conjugate momentum. We have to use
Dirac’s procedure [17,18] or, alternatively, proceed as follows. I will use the
Feynman path integral to define the transition amplitude [22]

U = / ’D[x(t)]'D[a(t)]exp{i /0 ‘C(x,i,a)dt}

¢ 5:2 g 9 02

= Dlx(t)|D]o(t)]ex i/dt[—+——ax +——]} 6.6
enplolear {i [ a5+ Lo+ S| 66)

As usual I will skip the details of the normalization. In the expression (6.6)
it is possible to integrate out independently the variable o(t) at each point
of the time because the time derivative of o is lacking. The time derivative
couples ¢’s at diff=rent iimes. Therefore the source of difficulty for canonical
treatment in Lagrangian (6.3) simplifies the Feynman path integral approach!

14



In effect after integrating at each ¢ the variable o(t) (a simple task : the
integral is Gaussian) we obtain

U= / ’D[x(t)]exp{z' /0 dt [323— 924‘”2]} O (6T)

i.e. an amplitude corresponding to the starting Lagrangian (6.1). This proce-
dure of integrating out the constraint has permitted us to recover the original
unconstrained Lagrangian (6.1). Applying the same treatment to the scalar
field Lagrangian (4.15) we have ' t

v = [ Do)
y ea:p{'i /” dr [xab—%i(aubz)]} | ©9)

We can now integrate at each 7 (the light front time”) the variable a(7)

U= / Dlb(r)]exp {i / T' dr [%bz - -722—1-62] } 69

Therefore the Lagrangian (4.15) is equivalent to the harmonic oscillator La-
grangian

22, m?
L= =% — —Lp? - (6.10)
m? 2
with the Hamiltonian
m? (x? 2
H = 'Tz— 4_:0 +b (6.1 1)

We can now quantize canonically the Hamiltonian (6.11); one recovers all the
results of sec 5. ‘

7 The Dirac Field

Let us write the Dirac field Lagrangian density

£ = $(2)(i7*9, — M)p(x) (1.1)

15



in the light front variables

L=1 (i'y”% + i'y’"(% — iy VI — M) () (7.2)

where I have introduced v matrices with ”plus” and "minus” indices

ol = \/Li(v°+73) (7.3)

oy B )
Before proceeding in our now usual way a few remarks are in order. The
halving of degrees of freedom we observed earlier on the light front as com-
pared with ¢ = 0 dynamics is the consequence of the fact that the Einstein
energy-momentum relation :

pup* = m’ (7.5)
has two solutions for the normal energy E = po

E = +\/5 + m? (7.6)

while on the light front the "energy” £ = p” is unambiguous

gt
2p™

For the scalar field this had the consequence that the equations of motion
(3.12) were of the first order in the "time” 7. In case of the Dirac field the
equations of motion are linear in normal time; this was, incidentally, the very
reason for their introduction. Nevertheless in view of the universality of the

relation (7.5) in this case too we expect halving of degrees of freedom.
In order to simplify our analysis let us introduce the Fourier transform of

the field 1(z,7) defined by

(1.7)

1
‘(/)(.’L‘,T) = W /dppdgki_ .
X exp(ik”{ - ik_LxJ_)'ll)k(T) (78)

The Lagrangian for one mode k is now
_ d o
Li =} (w"v”d— = k™ — K0y - Mv“) Pk (7.9)
T
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Introducing

A® = V29°%° , c=pm (7.10)
and o
My =4 (M + K+ (7.11)

it is easily checked that with the definitions (7.3,7.4) the Dirac matrices
satisfy anticommutation relations '

{*,7"} =29"" , p,v =p,m,i (7.12)

with the metric tensor given by (1.2). Matrices A° are in fact projection
operators

AA? = A°6% | ¢,d =p,m (7.13)
and they have simple commutation relations with M
AMy = M A%, (7.14)

where bar on the index means the replacement p — m , m — p. The
Lagrangian (7.9) is now

Li = ¥} (ix/iA"% ~ VZPA™ Ml) i (7.15)
which prompts us to define 2 component quantities
V=AY , c=pm (7.16)
so that eq. (7.15) is
Lo = VAWM i (sp)tup
— (WD) ML — (i) Mo} (7.17)

where we have made use of eq. (7.14). We recognize that ¥}* does not have
a time derivative in eq. (7.17); it is therefore a constraint variable, not a
dynamical one. The equations of motion are

V2P = — () ML (7.18)
0 = V2R - ()M, (7.19)
0 = VR (7.20)
0 = = V20748 = Mgy (7.21)
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Dynamics is contained equations (7.18) and (7.20), equations (7.19) and
(7.21) can be used to eliminate ¥J* and (1/)"‘ i,

Yy = fkr =7 (7.22)
t = p\t M '
= - 7.
(¥&) (¥h) \/—kp (7.23)
We have the equations of motion for dynamical quantities 9% , ,':"f
. M?
Wi = -5 v (7.24)
i 2
—iDt = (it (7.25)

2kp
These equations are indeed correct since they predict oscillation with fre-
quency (M + k%)/2kP, as seen by looking for the eigenvalues of the matrix
M. Let us also notice that in the case of a gauge coupling to a vector field
A* obtained by the replacement (minimal coupling)

8, — 8, — ieA, (7.26)

the term k? would be modified by A?, the "plus” component of A,, which
would complicate the inversion (7.24,7.25). For this reason gauge fields are
quantized almost uniquely in the "axial” gauge

AP(z) =0 (7.27)

The passage to Hamiltonian form is straightforward. The only non zero
canonical momentum is

0Ly
7} = 5?,’: = iv2(y})’! - (7.28)
We obtain
= 7Py — Ly = in} 3kl ¥ (7.29)

where I used eq.’s (7.24,7.25) to eliminate ¥} , (¥)!. It is now natural to
impose the canonical anticommutation relations

(%, Y8} = —iAP&s(k — K (7.30)
{mi, 7} = 0 (7.31)
{vi, ¥} = 0 (7.32)

18



Returning to configuration space we have
1
{@")(z,7), ¥*(3,7)} = 7= -v) (7.33)

with other anticommutators vanishing
Total Hamiltonian is obtained by integrating eq. (7.29) over all k’s. One

can eliminate M? /2kP by the use of eq.’s (7.19,7.21) ‘
We finally obtain .

/ ds7iv/2 {z/»*( )a'/’(””) a’”t(“’)«b( )} (7:34)

This is precisely the Hamiltonian (P~ generator) and the antlcommuta.tlon_- |
relation postulated in [9].

8 Electromagnetic field in the temporal
gauge | ' o

I will present the quantization of the gauge fields starting with electromag-
netic field quantized at the ¢ = 0 surface. In general gauge fields have a large
group of symmetries: gauge transformations. In the canonical approach ' i
gauge symimetry can be used to obtain a si‘mple canonical scheme without
constraints; on the level of the Feynman path integral approach this symme-
try was.a source of difficulty solved only by Faddeev-Popov theory {23]. The
whole story can be summarized by the "equation”

2=4-1-1 - (8.1)

In effect vector field A# has 4 degrees of freedom at each point in space; on
the other hand 2 degreeq only are physical. We will see different ways of
eliminating those 2 spurious components. Consider the electromagnetic field
A¥(x) coupled to a conserved current j*, whose exact nature need not be
specified at this point. The Lagrangian is

1 _ o
L= / (-—ZF’“’F,,,, - A"J#) dsz | (8.2)
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where ' : _
Fuu = Av.p - Ap, . s (8 3)

is the usual electxomagnetlc tensor. Lagrangian density (8. 2) has a gauge
symmetry, it is namely invariant under the replacement

AR ARy O (84)

where x is an arbitrary function. The term coupling A* to j* i.s not invariant
under (8.4); it picks up a piece

Xoud* (8.5)
however, if a current is conserved .v
=0 )
we can'add eq. (8.6) multiplied by x to eq. (8._5) | | _
Xoud* + X3% = 8u(x5*) (8.7)

So the transformed Lagrangian differs from the original one by a total di-
vergence which does not -affect the equations of motion. It is convenient to
introduce non-covariant notation since we will use ¢ = 0 formalism anyway.
Let us denote

@:=A° (8:8) .
and :
pi=j° (8.9)
We have the Lagrange density (8.2) in new variables
1 ..
L = Z‘Pu' ®,j o, A’
' 1.... 1 . . .
+ -2-A'A' — §A‘,J- (A'); —A)

This can be partially diagonalized by the use of modes (Fourier components)

o(k,t) = @%m/daxe"kx<p(m;t) (8.11)
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and similarly for other quantities.
Our Lagrangian (8.2) is now a sum over modes

L= /d;;kLk (8.12)

with
k2 B S,

Ly = (?) o(k)p(—k) + ip(k)(kaA:(_k))
+§A'(k)A'(—k) : 7
(K ; 0 1o iAi
~ (T ) (AR AT (=) + 2 (K A(R) (A (— )

+p(k)(=k) + (k) A(~E) | (8.13)
We can decompose various vector quantities into components parallel to the
vector k o o

KA =kA; , KK = K , (8.14)

and components perpendicular to it
EA, =0 ~(8.15)

The Lagrangian (8.13) splits into 2 independent parts

Le= L+ L} (8.16)
with
n_ K : ~
Ly = S p(k)p(—k) + ikp(k) Ay (=F) + p(k)p(~F)
1., .
+5 A(R) Ay (=k) + 3y (k) Ay (=F) (8.17)
and
L 1. - k? :
Remembering that our field A* is real i.e.

A¥(—k) = A*(k)* (8.19)
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we recognize immediately in (8.18) 2 harmonic oscillators with frequency
w=k (8.20)

coupled linearly to the current j,.
This is exactly the physical content of (8.2): for each momentum k we have
2 degrees of freedom A, (k) (representing,say, two helicities).

The formalism has somehow to get rid of the spurious components ¢ and
Aj- In order to analyze the Lagrangian (8.17) let us write explicite the real
and imaginary parts of the fields, exactly as we did with the scalar field (cf.
eq. 4.7); we will also drop the momentum index

e(k) = a+1ibd
o(—k) = a—1ib , (8.21)

Ayk) = A+iB
Ay~k) = A-iB (8.22)
In the same manner the current is now

p(k) = fo+ 190
p(—k) = fo—igo (8.23)
and
k) = fi+ig
n=k) = fi—1g (8.24)

Current conservation, eq. (8.6) links longitudinal and temporal components
only

p—ikiji =0 (8.25)
or
p—ikj=0 (8.26)
With the help of our definitions eq. (8.24) it can be written
fo = kg ,
go = —kfy . (8.27)
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The Lagrangian to be analyzed, eq. (8>.17) is now

k2 . .
L = §{ﬁ+ﬁﬁ+k@3—wAy-ha—@b
A2 22

+ ot +hHA+gB .  (8.28)

We notice lmmedlately that the tempora,l variables a, b lack time derivative:
they are constraint variables.
One obtains usually the simplest dynamics by choosmg a gauge which makes
‘the passage to Hamiltonian dynamics simplest possible, i.e. without con-
straints. Hele it is obviously A .

a=b=0 (8.29)
which can be written .

A%z) =0 (8.30)
By this gauge fixing we have then eliminated one degree of freedom (A®) The
residual Lagrangian is now

A B?

L=—-+~5+fid+qB (8.31)

The gauge fixing eq. (8.29) is not complete, we have freedom to perform
a time independent gauge transformation. It follows that Lagrangian eq.
(8.31) has an additional symmetry, whose generator is the Gauss law

VE—p=0 (8.32)
where FE is the electric field
E=-Vo+A (8.33)
In our gauge ¢ = 0, so we can write eq. (8.32) in Fourier components
kA+go=0
—fo=0 (8.34)

In order to exhibit this symmetry let us replace in eq.(8.31) f; and g by
time derivatives given by eq’s (8.27)

A2 goA B2 fOB
L= (7—7) + (7+T) | (8.35)



We modify now Lagrangian (8.35) without changing the equations of motion
by adding a total derivative :

d d
Li =L+ —(Ago) — —(Bfo) -, o (8.36)

AZ goA B2 7 foB | :
Li=|—+—F7 _— .
1 (2+k)+(_2 - (8.37)
In this form we see that L, is translation invariant. Time independent gauge
transformation is

we have

Al = A+ Vix(z) : (8.38)
~or, in momentum representation

A() = Ay(k) + ikx (k) (8.39)
and in terms of A and B

A=A — kImyx(k)
B — B + kRex(k) (8.40)

so it is indeed an arbitrary translation of variables A, B. Passing to the
Hamiltonian we have

_ L, 41, 9
and oL F
M _p Jo

8= F P - (8.42)

1 g2, 1 fo)
H—E(‘IFA—k) +§(7TB+—E-> (8.43)

It is clear that this is translation ihvari_ant. The appropriate generator of this
symmetry is of course the momentum. Notice that the Gauss law, eq. (8.32)
states that

ta=7mg=0 (8.44)
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This cannot, of course, be understood as an operator equation, it would

conflict with commutation relations. We must therefore impose the Gauss
law as a condition on the wave function.

TalY>=mp|p>=0 (8.45)

We therefore see that the Hamiltonian (8.43) has many eigenstates, but
the only physically relevant are those fulfilling eq. (8.45). A different way
of stating this fact is to say that the wave function of the system has to
be invariant under time-independent gauge transformations, Those remarks
are valid for every momentum k, so we have in reality an infinity of conditions
for the whole wave functional.

With condition (8.42) the Hamiltonian is simply the Coulomb energy of
charge distribution p,

2 2 2
95 + J k)|
Hopu = ¢ b o) _ Lo gkz (8.46)

and any reference to longitudinal degrees of freedom A, has disappeared.

9 Dirac treatment of constraints

Dirac’s approach to the canonical Hamiltonian function of singular
Lagrangians [17,18] is presented here not only for the sake of completeness
but above all to underscore that this sophisticated approach is a fancy way
to fix the gauge. Additionally, while excellent treatments of the subject ex-
ist [18], I believe that treating simple system described by Lagrangian (8.28)
is a transparent and amusing application of this machinery. Examining eq.
(8.28) we notice that it splits into two independent parts, one coupling a (real
part of ¢(k)) to B (imaginary part of Ay(k)) and a second part coupling b
(imaginary part of ¢(k)) and A (real part of A(k)). Treatment of both is
identic, we choose for definiteness
k2. . A?

L= E—bl—kbA—_(]ob-}--?—"l'f”A (9.1)
In order not to be confused by the fancy footwork to follow, let as examine
the physical content of eq. (9.1). The Lagrange equations are

b_A) = %
(kb — A) ;



%(A—kb) = N (9.2)

Firstly, the only physically observable quantity is the longitudinal part of the
electrical field -

E(k) = —ikp(k) — A(k) (9.3)
whose imaginary longitudinal part is exactly kb — A. Equation (9.2) states
then

ImEy(k) = lk‘l (9.4)

i.e. this is the electric field generated by change distribution go. Differenti-
ating eq. (9.2) over time and inserting in second eq. (9.2) we obtain

~Ro g )

So this is simply the current conservation (cf. eq. 8.27). It is also follows that
the system of equations (9.2) is in reality only one equation for quantities b
and A. We can for instance choose to take b(t) to be completely arbitrary,
we have then ' '

At) = [ d [kb(t’) - 2"-(5-)-] (9.6)

Returning to the canonical analysis of eq. (9.1) we compute the canonical
_momenta

oL

T4 = —=A—kb
oA
and
’ aL
= — =0 ‘ 9.7
T 90 (9.7)

The m, momentum vanishes weakly, giving the first primary constraints, ob-
viously incompatible with canonical Poisson brackets

{A,?TA} = 1
{b,m} = 1 (9.8)

Using eq. (9.7) we see that the equation (9.2) is also a weak equation
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The canonical Hamiltonian is

Hc = 7r1114‘*‘”'(;?7—[1
2
T
= ?A-*'kbm + gob — fjA (9.10)

We have also two first class constraints (their Poisson bracket vanishes)

P = m=0
Y2 = kma+go=0 (9.11)

The most general Hamiltonian, according to Dirac, is the canonical one with
constraints added with arbitrary coefficients

H = H.+ vy + vath,

T
= —2—kb7rA + gob — f||A

+ v+ vo(kma + go) (9.12)
The equations of motion are

A = {AH)=ms+kb
b = {b,H} =v
Ta = {ma,H} = fj + kvs
m = {m,H}=—kms—go— v (9.13)

One can set therefore vy, = b and v, = 0 and the final Hamiltonian is

2
H = 22+ kbra + gob — fiA + by (9.14)
Here bis essentially an arbitrary function, to be eliminated only after a choice
of gauge has been made.
Now I will show that the radiation gauge recovers our previous results.
I will use the freedom of gauge to make constraints (9.11) second class (i.e.
non commuting among themselves). Since 7, = 0 it is logical to choose

by =bm0 (9.15)
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similarly eq. (9.11) suggests |

The matrix of Poisson brackets of constraints 1y, 12, 3, ¥4 is

0 0 1 0
0 0 0 k2 :
Ci; = {¥i 1/’1} = -1 0 0 0 (9'17)
0 —-k2 0 0
The inverse is :
0 o -1 0
-1 _ 0 0 -0 1/k?
C,-j = 1 0 0 0 (9.18)

0 1/—k*2 0 0
and the Dirac bracket between two any dynamical quantities 7,5 1s
{r, s}r={r, s} - Z {7') Pn}Crm{¥m, s} - (9.19)
nm=1
At this stage we can set our constraints ; strongly to zero (i.e. identically).

The Hamiltonian (9.14) reduces to

2
H=14 = (9.20)
) ,
which in view of the eq. (9.14) is just the Coulomb energy of the charge p

g
H=2% (9.21)

Finally let us remark that the Dirac brackets (9.19) imply
{b, 1r;,}* = {A, WA}* =0 (9.22)

so these variables should not be quantized (we have ellmmated them in our
final Hamiltonian (9.20)).
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10 Quantization of the electromagnetic
field without gauge fixing

The material presented here, due to the remarkable simplicity of the method
will be short but, in view of the importance of the result presented, it is -
felt that it deserves a separate chapter. Recall that the electromagnetic
Lagrangian (8.10) after decomposition into modes split into a transverse part
(eq. 8.18) wholly conventional and a longitudinal part (eq. 8.17) where A°
component played the réle of constraint. Instead of fixing the gauge, we will,
as advertised in chapter 6, integrate over all possible A® (a and b variables
in eq. (8.17)). The transition amplitude for the longitudinal part is defined
by the Feynman path integral

U = [ Dl DBEIDAMIDBO)

k2 : ,
exp {i/(lt [-?2—((12 + 0 + k(aB — bA) — foa — gob

| 0.

Again we can easily integrate over a(t) and b(t) at each time independently.
The result is an effective Lagrangian.

X

A? B2
+ —2—+7+f||A+g||B

v - 2 1d
L=l 9 1S g ag) (10.2)

It contains simply the Coulomb energy (eq. 8.46) and a total derivative not
changing the equations of motion. The longitudinal variables A, B have been
eliminated. In this simple manner we have decomposed the electromagnetic
field into dynamical transverse components and an instantaneous Coulomb
interaction. No gauge was singled out: we have integrated over all gauges.
The form of the final dynamics (i.e transverse degrees + Coulomb energy)
was the consequence of choosing ¢ = 0 hyperplane for quantization, or, in
other words, singling out the ¢ integration in the action appearing in the
amplitude eq. (10.1). The total amplitude for a field is the path integral of
amanifestly covariant quantity

emp{i/d4:v£(<p,A“,etc)} (10.3)
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It is the splitting of the integration in (10.3) into time (the evolution pa-
rameter) and position variables (enumerating the degrees of freedom) which
breaks the manifest Lorenz invariance of (10.3). On the level of canonical
quantization it corresponds to imposing the commutation relations on hy-
perplane t = 0. What has been achieved here is the demonstration of the
fact that for electromagnetic field this suffices for quantization without any
gauge fixing. In this particular case we recover the results of quantization in
A® = 0 gauge. We will show later that for non-abelian fields we will discover
new, nontrivial way of quantizing gauge fields.

11 Electromagnetic field on the light front

We will quantize the electromagnetic field with the Lagrangian (8.2) which
in the light front coordinates takes the form

|1
L = /d(li—dg.’l," [E(Am,m )2 - Am,m Ap,p
. 1 .
+ AT (AP AN, + '2_(Ap’p )+ AP AT,
. A T

+ At,m A"p _EAHJ(A".J' - Aj'i)

+ AP+ APjn — AT} (11.1)
when we have suppressed the arguments of the field A* = A*(z*,z~,z*) and
1 = 1,2, we have also included the coupling to a conserved current j#. In order

to simplify the formulae to follow we shall write the Fourier transform of the
field A# with indices below and with the momentum dependence suppressed

Az, ) = @;1):,7 [ w dkP dyky AP(k)e W7 ~K =) (11.2)
with
AY(k) = a,+1b, , k>0
= a,—1b, , kP <0 (11.3)
With the introduction of the notation
x = Kk
ko= [k + ()7 (11.4)
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eq. {.1.1) y.ves us ihe mode Lagrangian

Lo = S(@ B + 2(buiy — any)
+ aw(k’a, — zkay) + bn(k*b, — zkby)
+ ;—(aﬁ + b2) ~ kayby + kbydy
+ x(ayb— byy)

. . k?
— z(agdby —byay) — ?(ai +b%)

+ apfm + bpgm + amfp + bmgp

= ayfy=bygy —arfL —bigy (11.5)
where we have also used the Fourier components of the current
7#(k) = fu +ig, (11.6)

and introduced components parallel (¢;) and perpendicular (ay) to the 2
dimensional vector (k?, k?). The dot means the x” derivative ("time” deriva-
tive). The continuity equation for the current takes now form

f:p = zgnx—'kg" y

The Lagrangian (11.5) looks and is considerably more complicated than its
equal time counterpart (eq. 8.17,8.18). One component only is uncoupled
from the others, the Lagrangian for this perpendicular component is

. .2
L_L = :E((l_l_b_L -—-b_l_(.l_l_) - —é—((li +I)i)

— arfi—bigs (11.8)

This is simply the Lagrangian for the scalar field analyzed in chapter 4 and
5. 1t displays the halving of degrees of freedom (a, is conjugated to b, , cf.
eq. 5.3). Note also that the continuity equations (11.7) do not restrict f,
and g;.

The remaining variables are coupled. The variables a,, and b,, lack
the time derivative: those are constraint variables and the analogue of the
Coulomb gauge at the light front is the gauge

A™ =0 (11.9)
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a fact known [18] but seldom used. The variables qj and b have their time
derivatives entering linearly to the Lagrangian (11.5) as expected from light-
front formalism since this leads to the halving of degrees of freedom. The
variables @, and b, are the most surprising, since their time derivatives enter
quadratically so, a priori, no halving of degrees of freedom is apparent. The
canonical analysis would base on the gauge A™ = 0, which eliminates the
constraint variables. However the resulting Lagrangian has still a large group
of symmetries corresponding to time independent gauge transformations; the
variables a,, b, and @) and by enter asymmetrically and, last not least, if the
vector field is coupled to the Dirac field, important simplifications occur
when AP = 0, as noted earlier. Again integrating out the constraint variables
clarifies the situation completely. After integrating out variables a,, and b,,
we are simply left with ' '

. . k2
L = a(anby— bui) ~ (ap +7)

k k
+ an(fy = =Sf5) + balgy — - 95)

f2+42
- — 11.1
22 ’ (11.10)
where we have introduced new variables
a, = a’“ + ;ap
k
b, = b” + ;bp (11.11)

It is seen that a, and b,, are the natural counterparts of ay, b, : they represent
the other photon polarization. We have also obtained the light front Coulomb
term: the last line of (eq. 10.10). The most remarkable is the coupling of
@y, b, to the current: the coupling is only to the combination

. k.
= ;JP (11.12)

There is no coupling to 3™ components, and in the case of Dirac field all the
simplifications of A = 0 gauge occur. Our procedure has therefore permit-
ted us to identify the correct dynamical variables for quantization. We can
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project out these variables from the full field A#(k) by using 2 polarization
vectors e,(A), A=1,2

As(E) = eu(1)A(K)
A (k) = eu(2)A*(k) (11.13)
where
Kt k2
e#(l) = (0,0,—?, -Z:—)
k kKl k2
6#(2) = (;,07 ”k—:', _ic_) (11.14)
If we introduce the vector
7)“'—’(1,0,0,0) ) (11.15)

and the on shell photon four momentum

i k2 1 1.2 »
LR NN (11.16)

we see that e () are purely transverse
n'e (X)) = ke (M) =0 (11.17)

We can express the projection operator on the physical degreés of freedom
(the polarization sum)

du(k) = Y es(Nes(N)
A=1,2
n.k, +n,k,

-z (11.18)

= —Yu
This is precisely what one uses to define Feynman rules [6]. Equation (11.18)
has a spurious singularity at 7,k* = 0, i.e. when K = 0. At this point
relations (11.11) become also singular and the light front energy eq. 3.15
becomes infinite. Therefore it is an infinite energy endpoint problem. In
the variational approach to field theory on the light front [21] this point
is excluded. From the point of view presented here, since all quantities
are taken at positive kP the singularity is of end point type. At the level
of Feynman graphs it means that this singularity is to be regulated by
principal value prescription.
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12 Yang—Mills gauge field, canonical
treatment

We will consider here, for simplicity the SU(n) Yang-Mills fields without
quarks; when needed the generalization is immediate. The Lagrangian den-
sity is
1 v a
L= —-ZF;‘ F, o, | (12.1)
where, in addition to summation over Lorentz indices g, v additional sum-
mation over group index a is implied. We have by definition

FM = gAY — 0¥ A» — gl AL AY (12.2)

The group index takes values a = 1,2--- (n?—1) for SU(n), g is the coupling
constant and f2¢ are structure constants of the SU(n) group defined in terms
of (n? — 1) generators T,

i[Tﬂa Tb] = —f:b Tc (123)
We will use mostly SU(2) as illustration, we have then
fabc —= gabc (124)

where £ is the totally antisymmetric symbol in 3 dimensions (for n = 2
n? — 1 = 3). The Lagrangian density (12.1) is invariant under infinitesimal
gauge transformations

A,
Oz,

where A,(z) are (n? — 1) arbitrary functions. Since F** (eq. 12.2) is anti-
symmetric in g, v the time derivatives of A*=% do not enter the Lagrangian:
we have again constraints. The dynamical content is best discussed in the
temporal gauge ‘ \

Al = AL+ g f2°No(2) Al(2) + (12.5)

A=0(z) =0 - (12.6)
This is a partial gauge fixing since (12.5) allows still time-independent gauge

transformations. It 1s now easy to get the canonical Hamiltonian. The canon-
ical momenta
i oL
T =

IS

at

(12.7)
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are clearly given in terms of time derivatives of the potentials. The canonical

Hamiltonian density is
i (048
H = =, ( 5 ) -L

1 . )
H = (miri+BiB) (12.8)

where we have introduced
N
B = Eg'JkF“""‘ (12.9)

The theory can be simply quantized, on the formal level, by imposing the
commutation relations

(A2, ©]] = 636 (12.10)

The system has still an infinity of symmetries corresponding to time inde-
pendent gauge transformations whose generators are

G (x) = ;6.-11'? + fo Abge (12.11)
i.e. we have a conservation law in every point of space
| [H,G*(z)] =0 (12.12)
The generators themselves satisfy
[G*(2), G* ()] = is(= ~ y) f**G*(2) (12.13)

Setting all G*(x) to zero is obviously incompatible with the commutation
relations (12.10). We have then to impose on the wave functional | 3 > that
for every z we have

G*(z) |9 >=0 (12.14)

This condition will be preserved in time and is compatible with relations eq.
(12.13). It is often called "the Gauss law” and serves to reduce the number of
degrees of freedom at each point & from 3(m? —1) (A?(z) are the dynamical
variables) to 2(n? —1). In the abelian case (electromagnetism) this eliminates
the longitudinal degrees of freedom. Thus presented the theory is very simple
but one has to regularize it without destroying gauge and Lorentz invariance.
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Changing to other gauges is best accomplished by using the Feynman
path integral. This, as well known [23,24] introduces ghosts in some gauges.
We present here the approach of Feynman in order to underscore the fact
that standard quantization in other gauges is simply the change of variables
in the path integral written in A2 = 0 gauge. The Feynman path integral in
this gauge is

/ exp{—i / d.,xF;‘"F;;} §(A3(z,t))D[A% (2, 1)] (12.15)
where 8§( A3(z,t)) is a shorthand notation for

oI §(A=,t))

a,z,t

(12.16)

In the expression (12.15) the action is manifestly gauge invariant. Integration
measure

D[AL] = N, (AL (2, 1)d AL d AL (12.17)
is also gauge invariant, since in the transformation (12.5) we have a trans-
lation and a rotation in the group space and both transformations preserve
the volume element (12.17). It appears then that the only object in (12.15)
which changes with gauge is the § functions (12.16).

For illustration purposes let us transform eq. (12.15) to the Landau gauge

0, AL = (12.18)
The § eq. (12.16) get now an infinitely dimensional Jacobian

A(9.AL)

0. A%) = 84

(12.19)

The determinant in eq. (12.19) is difficult to compute directly since it involves
a finite gauge transformation. The trick [23] is to calculate it using infinites-
imal gauge transformations only. The idea is to use an indirect technique:
computing the change of both 9,A* and A? under the same infinitesimal
gauge transformation
AY = A§+BoA® + EAAS
9, A% = 9"A%+ 8"9,A°
+ E°AN(9"A3) (12.20)
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where A® is the transform of A® under the finite gauge transformation which
transforms A§ gauge to 9,A% gauge. By the rule of chain differentiation we

have then
A(9,A48) _ 8(8.48) A(Al)
A(AY) A(A)  9(A9)
The second factor is a constant (i.e. field independent) since it is the Jacobian
of a translation of A2 by 9A®; the second term in (12.20, first line) disappears
because A§ = 0. The first term is genuinely field dependent. It can be shown

that it is exactly the result of an integration over grassman (antlcommutmg)
complex variables P,(x,t) of a gaussian

§(3.A8) )
6(/~\a) - /D(Pa( )t))

(12.21)

X e:z:p{2 /d4zP+((9 OH8,c — abcA“@,‘)P} (12.22)

Thus we have introduced new scalar Dirac fields to the path integral (12.15).
Those are, of course, the famous Faddeev-Popov ghosts. In general if we
want to transform the gauge A = 0 to a gauge

f(4z) =0 | (12.23)
we first expand to first order
F(AS + DuA%) = [(A3) + 500 <Dl A% (12.24)
| (A3)
where we used the gauge derivative
D%, = (600" + g€abc Ay) | (12.25)

and this leads to the replacement
§(A3) — 8(f(AD)
af

x D[P(z, t]emp{zfd4a:P+ [8(A°)DZ] Pc} (12.26)

In cases when 9f/8(A¢2) is field independent (e.g. A} = 0 gauge) the inte-
gration over P,(x,t) can be made independently of A“. we have a ghostless

gauge.
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This treatment is perfectly correct for perturbative expansions. In effect
the path integral (12.15) must operate on states which fulfill the Gauss law
(cf. eq. 12.14). In the perturbative approach the state is usually the pertur-
bative vacuum which fulfills eq. (12.14). Stated differently, even after gauge
fixing we have 3(n? — 1) variables in each point in space instead of 2(n? — 1)
we have to choose appropriate ”transverse” varlables In A% = 0 gauge a
popular choice is the Coulomb fixing

PAT=0 | (12.27)
This choice is obviously correct for small A%: this is the usual transversality
condition for abelian field. For nonperturbative approach eq. (12.27) presents
a difficulty. As noted by Gribov [25] there are fields satisfying eq. (12.27) and

eq. (12.6) which are gauge transform one of another, the so called Gribov
copies. This problem appears whenever the operator

A, = 0;Diy(AY) (12.28)
has zero eigenvalues .

Axy =0 (12.29)
where x, has to have correct boundary conditions. The set of all A*’s which
allow zero eigenvalue (eq. 12.29) is the Gribov horizon. Gribov has shown
that there exist fields A* being gauge transforms one of another which lie on
both sides of the horizon. Worse still, Singer [26] has shown that this holds

-true for any reasonable generalization, hence recent attempts to modify the

path integral (12.15) to include only these A%’s which lie inside the Gribov
horizon [27,28].

13 Yang-Mills gauge field without gauge
fixing

I will present here new results which follow from the method of chapter 9.
In this case the treatment seems to be genuinely new and leads to expression
which, albeit tantalizingly close to these obtained by Zwanziger [27]; are
nevertheless different. As noted by everyone in the field the obvious simple

path integral
U= /"D(A’;)ewp{ 4/(1 :cF“"VF;“’} (13.1)
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in meaningless since there are directions in Aj(x,t) space along which the
exponent of (13.1) is constant giving as a result infinity. In my approach, re-
call, one integrates first over constraints, i.e. the components which iack time
derivative in the Lagrangian. Then one notices that some variables disappear
from the Lagrangian and, of course, one does not integrate over them. The
effective Lagrangian was therefore expressed solely in terms of physical vari-
ables (e.g. in constant time electrodynamics the transverse variables). In the
present case we shall follow exactly the same route The crucial observation
is that the Yang-Mills Lagrangian eq. (12.1), although in general it contains
the fields A% up to quartic terms, the constraint fields (i.e. without time
derivative) appear at most quadratically. Therefore our idea of integrating
over constraints is perfectly doable: the integral is a Gaussian. In the case
of Yang-Mills fields the use of Fourier components does not diagonalize the
Lagrangian eq. (12.1). So we have to use matrix notation. Recall that for -
a general quadratic form with coefficients M,;, 7,7 = 1... A and a constant
vector b; we have '

1
/ dyy exp {"EyiMijyj - b,«y,-}

= Det(M)/? exp {+—é—b;M§'jlb]~} (13.2)
Let us discuss first the ¢ = 0 case. For clarity of notation introduce
o (2, 1) = ALz, 1) (13.3)
and the gauge gradient |
D2 = 0;6% 4 g€ A! (13.4)

The Lagrangian eq. (12.1) is then given in terms of electric fields

Ef = F& = A — D (13.5)
and magnetic fields
B} = i Fjj; (13.6)
where in our notation
a a a abc A4b Ac
Fjj = Aj; — AL — g€ A A] (13.7)
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so eq. (12.1) 1s simply
1
£ = (BB} — BLEBY) (13.8)

We notice immediately that time derivatives and the fields ¢* occur in the
electric field (eq. 13.5) only. Furthermore the electric field depends on ¢*
only linearly hence L is quadratic in ¢®. In order to integrate, at each point
in time the amplitude (13.1) it is therefore necessary to take into account
electric field only

I = / Dl (x,1)] exp {—% / d,,m(E?E,f‘)} (13.9)
The exponent is now, at each ¢
1(¢8) = —2(As - ¢"DI)(As - D) (13.10)
By using eq. (13.2) we obtain
I = Det[D}* D 1/?
X exp {—% / d.,xE;':(a:,t)Efr"(a:,t)} (13.11)
where the "transverse” electric field is defined
By = A — DL, [DLDJ; (D} 4)) (13.12)
The field E{° is transverse in the sense that it fulfills
DLEN =0 (13.13)

as easily seen from (13.12).

We see that exactly as in abelian case the integration over constraints (¢®
fields) eliminated (n? — 1) variables at each point. The condition (13.13) is
the natural generalization of the Coulomb condition

8E; =0 (13.14)

of the electromagnetic field. In contrast to usual treatment [23,28,27,29]
where one imposes (13.14) on the fields in order to eliminate the unphysical
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variables, the formalism presented here dictates the condition (13.13) which
explicitly depends on A’ though the gauge derivative D,. Similarly the
usual Coulomb gauge has the unsymmetrical Faddeev-Popov determinant

Det[0: D) (13.15)
whereas in our treatment the relevant determinant is
Det[ D! D;] (13.16)

The passage to Hamilton function is facilitated by the fact that the operator
appearing in eq. (13.12) is a projection operator. To see this notice first that
the gauge gradient eq. (13.4) is purely antihermitian and can therefore be
diagonalized (its eigenvalues are purely imaginary). The eigenvalue equation
for our operator is ( v' is the eigenfunction )

Diy[DL D5 DY vi = (13.17)
and by multiplying by DI;,
DY vi = DI v} (13.18)
So either A = 1 or A =0, in the latter case v* fulfills a simpler equation
Dhvi=0 (13.19)
The kinetic part of our final Lagrange density is (cf. eq. 13.11)
Liin = -;.E;'jE;;‘ (13.20)

By going to a basis which diagonalizes the operator (13.17) we derive the
canonical Hamiltonian density.

H, = %x;‘,‘w;‘ (13.21)
where ‘ ' ' o
we = 7' — Doy [ DLD); (DY) - (13.22)
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and 7'* are variables canonically conjugated to A™ (cf. eq. 12.10 ). The final
Hamiltonian density which, let us stress it once again, depends on transverse,
i.e. physical variables, can be written in following form

H = c[rizi+ B.Bi]

N =

1 ' atl - i 3
- —i(chab)[DzD"]bc](DIiw;) (1323)

The last term eliminates "longitudinal” variables and it can be written in
terms of gauge transform generators G* (12.11)

Lo} pzic (13.20

The effect of this term is zero on gauge invariant wave functionals, it is also
gauge invariant.

In the case of non-abelian fields we observe that our formalism forced us
to use curvilinear coordinates F,, and B, similar to those used in rigid body
dynamics. The other difference with the Coulomb gauge is that, although
the non-abelian field carries charge, no explicit Coulomb interaction appears
due to this charge.

In the light front formalism the situation is somewhat more complicated.
There are 3 types of variables

@® = AT (13.25)

which is a constraint, A? whose time derivatives appear quadratically and
Al i = 1,2 whose time derivatives appear linearly leading to halving of
degrees of freedom. In the abelian case the integration over A™ restored the
symmetry between AP and A‘. In the present case we have explicitly

F*F,, = 2F™F,, +2F"F,

+ 2F™F,+ FYF; (13.26)
Introducing gauge derivatives
D2 = [80cOm + g€ A) (13.27)
and
D = (6,0 + g€ AY) (13.28)
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we can write
Fa, = —FP™=A2— Dy
F:i = _me = Ai’ _ D?b(Pb
F2. = —FP=_0;A" — D®A} (13.29)
and
a _ pij _ pyab 4b ab 4b
F‘-J- = F) = D AJ- - Dj A; (13,30)

Notice that in eq's. (13.29 last line) and (13.30) neither time derivatives nor
¢’s appear. The Lagrange density (12.1) is now

£ = 5 (Ar- D)) (A’—D“°cp°)
Fe, (A;—-D?bgob) ! e s (13.31)

' a

In order the integrate the above expression over ¢’ it is judicious to make
first a shift

¢ =X+ (D7) AL (13.32)
We have now
£ = SxDLDJ™ ~ (FD)x
. 1 ..
~ FilAi— (DD} A7) - A Fafd (13.33)
The integration over x* produces a Faddeev-Popov determinant
Det(D! D,,]'/? (13.34)
and a Coulomb energy term
Ecou = ~F“ J{DI(D},Dy) " D;|*F; (13.35)

The second line of eq. (13.31) remains unchanged and is the new Lagrange
density Notice that now all time derivatives A?, AP appear linearly and
that they are projected on a 2 dimensional subspace by contraction with
2-dimensional vector F2.. These results are therefore the generalization of

me*
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the abelian case studied in chapter 10. Compared with ¢ = 0 approach no
decisive simplifications occur. The Faddeev-Popov determinant (13.25) is
somewhat easier to study since it contains derivatives over ™ only. Whereas
in ¢ = 0 case the Faddeev-Popov determinant can be studied only perturba-
tively in the present case because eq. (13.25) depends only on one variable
a WKB (semiclassical) analysis seems possible.

14 Infrared region of non-abelian fields

Our previous results can be analyzed on two extreme cases according to
whether in the gauge transform eq. (11.5) dominate

- oA
a) the gradient term -

b) the non-abelian term gf**¢A*A*

The first case is evidently important when the gradients are important: this
the high momentum region of the theory. One can treat the non-abelian
additions as perturbation; the transversality condition eq. (12.13) becomes
the usual Coulomb gauge, a situation often discussed in the literature [29].
The second and very interesting case is b): the fields AY are large and
slowly varying: this corresponds to the infrared region of the theory which
.we will discuss in the extreme case of constant fields. In this case we have
important simplifications. The gauge "derivative” now becomes

Dy = g™ At (14.1)
The Lagrangian is, as before -
1 2 2 ‘
L= 5((E:)" +(B:)°) (14.2)

where we use the vector notation in the group space. We have now

B = A-Dy (14.3)
= A;—gA; X ¢ (14.4)
and

B; =& Ajx Ay (14.5)
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The potential (i.e. the square of magnetic field) is now

3

> (B} = % (Z A?) = (A:4;)° (14.6)

i 1j=1

This potential is quartic in fields and it depends on relative positions of
vectors A; only: it is invariant against global notations in group space. It
is also highly anisotropic it attains its minimum (0) for all fields parallel to
each other, o ’

Al A | A (14.7)

The integration over ¢® projects out the ”longitudinal” part of the velocities
A;. We have ' “

D,’A; = gA X A,‘ (14.8_)
(i.e.) this is proportional to the rotation as a whole of the 3 vectors A;.
Therefore, : - this case also, the integration over constraint eliminated the
unphysical variables: the Euler angles defining the notation of Lab frame to -
the body frame. The whole Lagrangian depends only on absolute magnitude -
of the vectors  A; and their relative angles. This is also the case for the
determinant eq. (12.16), which is now, explicitly

A+ A |, -A.Ay |, —A Az '
det]D;D;]* = | —A1A;, , A2+ A2 | —-A,A3 (14.9)
—A1A3 ) “A2A3 y A:"'AZ

It is a rather complicated function of the fields. However it has two important
properties: ’ ‘

a) it is zero for parallel fields, i.e. fields fulfilling eq. (14.7)

b) for non parallel fields it behaves as 1'6. where r is a order of magnitude

of the fields.

To discuss the physical implications it is convenient to write the transition
amplitude after Wick rotation, i.e. ¢ — it. We have then

U= [ D[A;(t)]Det[D;D,-]l/zexp{———;— fo ! dt(E?+B?)} (14.10)
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The determinant is local so we can add its logarithm to the exponent of
(13.9). We obtain in this way an effective potential

1 ... Af

-2-3‘ B} - ?ln Det[D;D;] (14.11)
The arbitrary constant A had to be introduced for dimensional reasos s: it
depends explicitly on the way we normalize the integration in (14.10). The
appearance of a scale A is the well known dimensional transmutation [30].
The most important fact about the effective potential (14.11) is that it has
no more a minimum at A? = 0 ! since the determinant then is zero. Our
effective theory has not only correct variables but predicts also that

Vers =

< B!B! >#0 0 (1412)

Without making any detailed calculation we see immediately that it implies
that 7 ' o
< FAF™ >4£0 (14.13)

and is of the order of A4.

15 CONCLUSIONS

“The method of integrating out the constraint variables in the Feynman path
integral is a powerful one. It has permitted us not only to find all previously
known results in a simple way, but, in the case of non abelian gauge theory,
to write down explicitly the gauge invariant hamiltonian. This can be of use,
e.g., to analyze the theory in strong coupling regime by the use of Ritz vari-
ational methods. Preliminary estimates indicate that in case of non-abelian
gauge theories the vacuum is spontaneously broken by infrared modes.
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