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INTRODUCTION 

The use of light front coordinates has now a long history. Suggested first 
by Susskind [1], Bardakci and Halpern [2] and Cheng and Ma [3], they led 
to inlportant simplifications in such areas as current algebra [4] and deep 
inelastic processes [5]. Also Kogut and Soper [6], Bjorken, Kogut and Soper 
[7], Neville and Rohrlich [8] and Chang, Rost and Yan [9] showed that one 
can fonnlllate consistently quantulll electrodynalnics and other theories 011 

the surface x+ = z + t = const, called the light front. Dynalnics is assulned 
to develop in this variable, rather than in t. Those authors showed also 
that the first few tenns of the x+ ordered perturbation theory reproduce 
autOinatically Weinherg rules [10], i.e. inlportant silnplifications of the "old 
fashioned" tillle ordered perturbation theory in the infinite UlOlnentunl fralne. 

This is the illustration of an early and prophetic work by Dirac (11], who 
showl~d that constant tilne surface is not the only possibility for fonnulating 
Poincare invariant theories and attracted attention to x+ =const dynamics. 
He elnphasized the fact that in this fonn dynamics has only 3 interaction 
dependent Poincare generators as opposed to 4 in the case of t = 0 dynamics. 

The usual approach to the quantization of fields was to make use of 
the Schwinger quantulll action principle [12], which pennits one to guess 
the cOllunutation relations of the fields a.nd the construction of Poincare 
generators. Those problclns are nontrivial on the light front: in general the 
dynatnics has constraints; the fields have half as lllany degrees of freedom 
'colllpared with t = 0 dynanlics and often the conn11utation relations are nOll 

local. 
In the cast~ of gauge theories additional difficulties appear: in the natural 

axial ga.uge the FeyIII11an propagator for the photon (gluon) has additional 
singularities a.nd one ha.s to face the problelll of proper regularization. While 
seVt~ra.1 pres(~riptions exist in the literature [13,14,15,16], for the tiule being 
tlwre is no consensus. In this work I decided to investigate quantmn fidd 
dynamics in a. systel11atic and the Blost conservative way possible: looking 
for classical canonically conjugated variables and qua.ntizing hy passing frOJn 
Poisson brackets to (allti)collullutators. For all cases investigated (scalar, 
Dir(u~, photon) except the non-abelian gauge field the technique used was 
to exploit tlw tra.nsla.tional inva.riancc to decOl11pose fields into independent 
1'<'Hlrier conlpOllclltS. As ea.ch component presented a finite dilnensiollal prob
l(~m, tll<~ a.na.lysis wa.s nmch simplified. The problenl of constra.ints was solved 
in a lWW a.nd sinlple way, b(t~o.;('d on the obs(~rvation that constraint varia.ble 
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lacks time derivative in the Lagrangian. The usual treatnlent is to use the 
cOlnplicated fonnalisnl of Dirac brackets (17,18]. In my treatment one writes 
the transition alnplitudes in the fonn of Feynman path integral and one 
integrates over constraints: this is always possible to do explicitly since inte
grations at different times are independent. For scalar and Dirac fields one 
recovers known results. For the electromagnetic field one finds the results of 
the Coulo1l1b gauge in the case of t = 0 dynamics and of A+ = 0 gauge in the 
case of light front dynamics. In both cases this way of treating gauge degrees 
of freedo111 produced gauge invariant Halniltonians. The spurious singularity 
was to be understood in the principal value sense. 

In the ilnportant case of non-abelian gauge fields, studied for simplicity for 
the SU(2) grotlp, new and unexpected results emerged: the final hamiltonian 
is explicitly gauge invariant and there are indications tha.t the Faddeev-Popov 
deternlinant is free of Gribov ambiguities. In the first chapters I present the 
notation, kinelnatics and the analysis of a classical particle a.nd free scalar, 
classical field. Next scalar and Dirac fields are quantized. To elucida.te the 
cOlllplications of gauge degrees of freedom photon field is studied by my 
Inethod both in t = const and x+ = const cases. Least not last SU(2) 
Yang-Mills field is studied. 

Notation 

We shall define our null-plane coordinates as follows 

1
xl' - T := y'2(t + z) 

1 
x m - e:= y'2(t - z) 

xi - xi i = 1,2 (1.1 ) 

In those coordinates the Inetric tensor is 

(1.2) 
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with Greek indices fl., v = (p, m, 1,2). Latin indices of vector quantities will 
take only the values (1,2). We use indices p (plus) and m (minus) instead of 
the Inore customary +, - for improved legibility of the formulae. With our 
metric tensor (1.2) we have the scalar product of two four-vectors 

(1.3) 

since the covariant cOlllponents are 

X'P = x m 

X m = x'P 

Xi = _xi (1.4) 

Notice that we also have, due to non-diagonal nature of (1.2) 

(1.5) 

am'll = a\J! = a'll (1.6)
8xm ax'P 

In what follows we shall use the usual methods of 111echanics (Lagrange and 
Halniltonian functions etc.) to analyze various systems. The coordinate l' 
e,q. 1.1 will be the new tinle.V/e lnustof course have the crucial property of 
titne: each world line of a particle should cross once and.ouly once the plane 
T = const. Our variable T fulfills this requirement. with a singlee:xception: 
a Inassless particle travelling in the z direction. Since it is hut oue direction 
froll} a 2-ditn continuum ()lledoes not expect difficulties associated with this 
point. We first check the feasibility of such an approach by looking at a 
cla.ssical free pa.rticle. 

Classical particle 

Let us write the world line elelnent in our variables 

(2.1 ) 

4 
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where the dot over a variable means differentiation with respect to r. The 
usual action now is 

(2.2) 

so the Lagrangian is 

(2.3) 

and we have the canonical 1l10lnenta 

(2.4) 

. at rnx i 1/2 

p. = aXi = (2e - x~J (2.5) 

Notice that the 11lOIuentulll pP is always negative. The Hamiltonian takes the 
fOrIn 

(2.6) 

This gives us the correct equations of Inotion, the sin1plest way to see this is 
to consider the Hall1ilton-Jacobi equation which follows fronl (2.6) 

(tn2 + (:x~) 2) OS 
(2.7)2Q2 + ar = 0 

ae 

which can be rewritten in the fonn 

2 8S )2 as as 2 
-711. - -- +2--=-m +5 5'~=O (2.8)( oX.J.. 8~ 8r ,~ 

'vVe s('(~ t.hat ill this case, the unfaIl1iliar fornl of L, if notwithstanding, we 
reco!lstruct t.lw dynanlics of a free relativistic particle. We can now proceed 
l,u the <llliLly::-;is of the Inassive scalar field. 

5� 
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Free real scalar field 

It is well known [9] that a field, when analyzed on the null plane exhibits 
only half of the degrees of freedom as conlpared with the usual formalism 
i.e., at t = O. We delnonstrate this first for a classical, scalar field with the 
Lagrangian density 

L == ~(a,.<I>a"<I> - m 2<1>2) (3.1 ) 

The Euler- Lagrange equations 

a~ aL aL (3.2)8(a~4» = a4> 

lead to the Klein-Gordon equation 

(3.3) 

Using tiule as evolution parameter we can write this 

(3.4) 

If we now seek the solutions in fOrIn of plane waves 

4>(x, t) = exp(-ik~x~) = exp( -iEt + ikx) (3.5) 

k

the Klein-Gordon eq. (3.3) leads to the constraint 

lJ k~ = E 2 2- Tn 2 - k . k - m = 0 (3.6) 

which, when solved for E -gives an alnbiguity of sign 

(3.7) 

As a consequence we have a Fourier analysis of the field 4>(:1:, t) which has 
two tenus 

4>(x,t) =� 

== (2"\2 Jd3 k (c\ (k )e-/eHik:IJ + C2 ( k) eiEHik:IJ ) (3.8)�13 

6 



and, in order to detennine Cl (k) and C2 (k) , we also need the tilne derivative 
of <1> (x, t) 

8<1>(x,t)� 
8t� 

== 1 Jd k(-iEc (k)e-iEt+ikx I iEc. (k)eiEt+ikx (3.9)(211'" )2/3 3 1 I 2 

In effect let us introduce the Fourier transfonns of the initial conditions which 
we take at t == 0 

- ( 1 -ikxJ�<1>0 k) == (211'")2/3 d3xe <I>(x; t) It=o 

- 1 -ikx 8<1>J�
<l>o(k) - (21r)2/3 d3:re 7it(x); t) It=o (3.10) 

COlnparing eq's (:3.8) and (3.9) we obtain 

<1>0 ( k) == Cl (k) + C2 (k) 

<l>o(k) - iEcl(k) - iEc2(k) (3.11 ) 

which detenllilles CI (k) and Cl (k). 
The sanle procedure carried on a null-plane is rather different. Firstly we 

note that the Klein-Gordon eq. (3.3) in the Bull-plane variables is linear in 
our new "tilHe" T 

(3.12) 

Second, looking again for plane wave solutions which we write in our new 
variables 

<1>((, :r.L; T) == eik,.x 
lA == exp(ikmT + ikP~ - ik.Lx.L) (3.13) 

we ohtain a linear constraint for km
, the variable associated with T 

(3.14) 

or, explicitly 
k2 7n2 

k m (kP k ) = .L I
I 

(3.15), .L 2kp 

v': h i..h 1111 iq udy <ktcl"Ini BC'S k111 III fact the negative energy sol utions obtained• 

at T ::-..:: U llUl}) into our new ~olutions with kP < 0 while the positive energy 

7� 
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solutions correspond to solutions with k" > o. The field at arbitrary "titne" 
T can now be expressed in terms of Fourier components c(k", k.l) 

~(~, x.l; T) 

exp (3.16) 

The field at T = 0 

~(e, ;';.l; T = 0) = 

= (2:)2/3 1: dk" Jd2kl.C(k", kl.)exp( -ikP~ + ikl.xl.) (3.17) 

detennines the function c( k", k.l) 

c(k", k.l) = 

= (2:)2/3 Jd~d2Xl. <1>«(, xl.; T = O)exp(ikP~ - ikl.xl.) (3.18) 

We see that in this case we need the field only at T = 0, without any reference 
to its tin}(~ derivative; as we shall subsequently find on the quantU111 level this 
inlplies ha.lving of the degrees of freedOln. 

Equations of motion for Fourier� 
components� 

Before attelnpting the qua.ntization of various fields to be discussed later 
we will sirllplify the pr()hl<~1l1 as for as possible, by using the translational 
illvariallC(~. 'T'his will rf~dll('e the prohlelll of the field (infinitely dinlensional) 
to the far Sil11pl(~r probklll of a. few degrees of frcedorn. The interaction will 
('011pl<.., the va.riot1~ nlOdf~~, hut will not have any influence on the quantization 
process itself. Let liS start by dccOJnposing a classical scalar field into its 
Fourier space COlnpOIlCIlb, with the "tillIe" T playing the role of evolution 



paralneter, 

(4.1) 

in obvious notation. 
The free field Lagrangian (3.1) can now be written as 

As expected Fourier transfonD decouple<! mode~ with.ditferenrk's, leavin,g 
coupled 1110des k and -k only. Introduce the customary Jl9ta.t!Oll$ . 

k P = x (4.3) 
mi _ J.t2 + ktki (4.4) 

The Lagrangian for the lllode k is now 

(4.5) 

where it is to be noticed that the dynalnical degrees of freedolnep", ep-k are 
cOluplex. Since the field cp(X,T) is real we have 

(4.6) 

We can therefore restrict ourselves to the 1l10lnenta with positive kP > o. It is 
convenient to treat real, non cOlllplex degrees of freedonl; let us use therefore 
the real a.nd ilnaginary parts of 'P explicitly 

'Pk - ak + ib" 
'P-k - ak - ibk (4.7) 

9 



Dropping the index k from now can w~ obtain finally the Lagrangian to be 
analyzed 

. . m 2 

.c=x(ab-biL)- 21.(a2 +b2 
) (4.8) 

This does not look familiar at all! ·Had we performed the saIne procedure 
at t = 0 we would have obtained for a and b decoupled harmonic oscillator 
Lagrangian; notice that a and bare symnletric and antisynunetric parts of 
the field respectively. In our case a and b are coupled and exhibit a kind of 
gauge synunetry 

a -+ acosa - bsina (4.9) 
b -+ a sina + bcos a (4.10) 

which luixes synunetric and antisyuunetric parts of the field. 
The canonical 1l10lllenta are 

a.c 
1ra - -=-xb 

aiL 
a£ 

1C'b = -. ==xa (4.11 ) 
ab 

and we obtain the equations of lllotion 

171,2
b == -1:.a 

2x 
2

-Tn1. b 
a == (4.12) 

2x 

The equations (4.11) represent one oscillator with frequency 

We have equations representing a hannonic oscillator but the canonical Hamil
tonian is not ava.ilable since eq's (4.10) would be incOlnpatible with canonical 
Poisson brackets. It is possible to analyze this situation by using the Dirac 
brackets [17 ,18 ] but we will follow a silllpler and better route. The con
strained systenl a la Dirac will be illustrated in chapter 9. The problem with 
the Lagrangian (4.8) is that b seelllS to be proportional to 1ra and vice versa. 

10� 



III order to obtain a silnple, conventional halniltonian formalism I choose to 
Inodify the Lagrangian (4.8) without modifying the equations of motion by 
adding to (4.8) a total derivative 

- d 
£, = £, + dr (xab) , (4.14) 

I.e. 
_ . m 2 

£ = 2xab - ---:h(a 2 + b2
) (4.15)

2 
We now have only one canonical nlOlnentum 

8£ 
1r = -. = 2xa (4.16) 

8b 

and the canonical Halniltonian is silnply 

H = 1rb - .c = m~,.(a2 + b2) 

22H _ ";i (4: +b2
) (4.17) 

Thus we have obtained one harmonic oscillator with correct frequency (4.13) 
and it will be our starting point for quantizing the scalar field. It is to be 
stressed that the Halniltonian (4.17), although obtained by a route not fol
lowed in usual treatInent of the light front quantization [9], is fully in accord 
with other treatInents. The approa.ch pursued here is the most conservative 
one, froIll Lagrangian to Haluiltonian, identifying canonical variables etc. 

In order to recover the full field Halniltonian let us reintroduce momentum 
indices and use eq. (4.16) 

(4.18) 

and 

H = j[dklHk = j[dk1"i(p2 + k;k;) I 'Pk 1
2 (4.19) 

and n>turning to configuration spa.ce via eq. (4.1) 

(4.20) 

This is tite well known fonn of the r-translation generator [9] 

11 
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Canonical Quantization 

In order to qUctlltize our systeIll we wiil u;:,e the Hailliitonian (4.17), 

(5.1 ) 

with 1( and b being the canonically conjugated variables. I therefore impose 
the natural COllullutation relations 

[b,1(] = i (5.2) 

froln which it is easy to find the conullutation relations of the field itself; we 
have! by using eq. (4.16) 

z 
[b, a] = 2x (5.3) 

and by using eq. (4.7) we obtain 

(5.4) 

In configuration space is convenient to COIllpute the equal T COlllmutator 

8<p(;r" T) ( T)]�
[ iJx tn ' <P Y,� 

- 2:)'1 J ,[dk][dqJ(ikP) [eikxI.pk +e-ikxI.p_k eiqxI.pq +e-iqxq_q] 

z = -2b3(X - y) (5.5) 

Integra.ting this over xtn we have the well known [7,8,9] non local COlllllluta
tiOll rela.tion 

z
[lp(:r-, r), lp(y, r)] = -20(x - y) (5.6) 

which is usua.lly postulated heuristically by the use of the Schwinger va.ria
tional principle [12] 

Notic<~ that fi(·ld cornponents 'Pk have cOlnlllutation relations, eq. (5.4) 
without i, c1wract.eri:;tic of creation and annihilation operators. It follows 
that the field CUll1IHJl1Cllts <.pk with 1l101l1cnta having their "plus" cOJnponent 

12� 



pU;-l tlV(' 1,1> > 0 are proportional to cn~atioll operatOl s, while negative" plus" 
cornpoil(,llt field kP < 0 is proportio:;aI to annihilation operator. 

Ld. HS i Itrodl1c(' new operata:;; 

Aq - .j2qP <P-q (5.7) 

A: - .j2qP <pq (5.8) 

We have now 
[Aq,Al] = 63 (q - k) (5.9) 

The field itself has a silnple decoluposition 

(5.10) 

COInpared to equal tilue fonnalislll we notice halving of degrees of freedom 
in our systenl; in eq. (5.10) we integrate only over momenta having positive 
"pIns" COlllpollcnt. Field halniltonian eq. (4.19) is now simply 

(5.11 ) 

Another iluportant difference between equal time and light front is that the 
relations (5.7,5.8) between the field <p( x) and the creation and annihilation 
operators does not depend on the lnass Il of the field. On one hand this Blakes 
the relations (5.7,5.8) Blass renoflnalization independent, on the other hand, 
however, it rnakes ilnpossible to use R.itz variational principle estinlates. In 
effect in this approach [19,20] one uses the renonualized Blass as a variational 
paranleter to construct a VaCtlUlll wave fUllctional for the interacting field 
and to obtain the non-perturbative Blass-gap estinlate. Fortunately IIlethods 
h(Lve been developed [21] to perfonn correctly variational calculation on the 
light-front. 

A novel way to eliminate constraints 

III thi' dtctplf'l" I will present a new alternative to Dirac treatInent of con
:,ll'<l:llt~. 'lIds lllat1\('rncLticitl trick will allow me, as I will show later, to 
Q\l;llltiz(' ~a,l\.e;(~ iidds without gal1,~e fixing. This procedure is in a sense the 

1:3� 
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,('versal of the one used to :..,~.udy held condensates where one introduces a 
fictitious field, whose value is equal at all times to the condensate itself. I 
w·1l illustrate this approac1. '!i1 the exaulple with one degree of freedom x 

wIth the Lagrangian 
:i;2 92 

L = - - -x" (6.1)
2 4 

t his is the well known qu<ut ic oscillator and we have the classical equation 
of ITIotion 

x = _g2x 3 (6.2) 

Let us introduce a fictitious variable u with the Lagrangian 

(6.3) 

The equations of Illotion are now 

0 - .JLx 2 +u (6.4)
vf2 

x - V2gux = _g2x 3 (6.5) 

i.e. the Lagrangians (6.1) and (6.3) give the same classical equations of 
nlotion. Moreover the variable u is now proportional to x 2 at all titnes. 
Notice that the Lagrangian (6.3) has constraints since the time derivative 
of a does not appear, so u lacks its conjugate mOIllentum. We have to use 
Dirac's procedure [17,18} or, alternatively, proceed as follows. I will use the 
~FeynlTIan path integral to define the transition ainplitude [22} 

As usual I will skip the details of the nonnalization. In the expression (6.6) 
it is possible to integrate out independently the variable a(t) at each point 
of the titne because the titne derivative of a is lacking. The time derivative 
\collPles ,,'s at dirL,-.,n! times. Therefore the source of difficulty for canonical 
treatlIlent ill LagrangialJ (6.3) sinlplifies the Feynnlan path integral approach! 

14� 



In effect after integrating at each t the variable 0'(t) (a simple task : the 
integral is Gaussian) we obtain 

u=JV[x(t)]exP{i l' dt [x; -g2t]} (6.7) 

i.e. an alnplitude corresponding to the starting Lagrangian (6.1). This proce
dure of integrating out the constraint has permitted us to recover the original 
unconstrained Lagrangian (6.1). Applying the same treatment to the scalar 
field Lagrangian (4.15) we have 

u - JV[a(r)]V[b(r)] 

x eXP{i 1~ dr [xab- n;i(a2 + b2 
)]} (6.8) 

We can now integrate at each r (the light front "time") the variable a(r) 

(6.9) 

Therefore the Lagrangian (4.15) is equivalent to the harmonic oscillator La
grangIan 

(6.10) 

with the Haluiltonian 
H = mi (1t"2 + b2) (6.11 ) 

2 4x 

We can now quantize canonically the Haluiltonian (6.11); one recovers all the 
results of sec 5. 

The Dirac Field 
Let us write the Dirac field Lagrangian density 

(7.1 ) 

15 
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in the light front variables 

-(a a .. )�£ = 1/J� i'"Y1' - + i'"'(m_ - i'"'('V' - M t/J(x) (7.2)ar� a~ 

where I have introduced '"'( matrices with "plus" and "minus" indices 

1 
'"'(1' .-� _('"'(0 + '"'(3) (7.3)

V2 
m� 1 

.- -('"Yo - '"'(3)� (7.4)'"Y� V2 
Before proceeding in our now usual way a few remarks are in order. The 
halving of degrees of freedoln we observed earlier on the light front as com
pared with t = 0 dynaluics is the consequence of the fact that the Einstein 
energy-llloluentulll relation 

p~p~ = m 2� (7.5) 

has two solutions for the nOfIual energy E = Po 

2E = ±Jp;. + m (7.6) 

while on the light front the "energy" E = pP is unambiguous 

m2 +p2
E = L� (7.7)

2pm 

For the� scalar field this had the consequence that the equations of motion 
(3.12) were of the first order in the "time" r. In case of the Dirac field the 
equations of lllotion are linear in nonllal time; this was, incidentally, the very 
reason for their introduction. Nevertheless in view of the universality of the 
relation (7.5) in this case too we expect halving of degrees of freedom. 

In order to silnplify our analysis let us introduce the Fourier transform of 
the field 1p(X, r) defined by 

.p(x, r)� := (21r\3/2Jd'jl'd2kJ. 

x exp(ik1'~ - ikLxL)tPk(r) (7.8) 

The Lagrangian for one lllode k is now 

L k = !/Jl (i.l')'P d~ - kP"hm 
- ki')'o')'i - M')'O) .pk (7.9) 

16 



Introducing 
, c=p,m (7.10) 

and 
Mol = ,O(M + ki ,../) (7.11) 

it is easily checked that with the definitions (7.3,7.4) the Dirac matrices 
satisfy anticoIllIllutation relations 

(7.12) 

with the llletric tensor given by (1.2). Matrices Ac are in fact projection 
operators 

ACAd = ACfJdc , C, d =:: p, m (7.13) 

and they have siluple COllllllutation relations with Mol 

ACMol = Mol Ac ; (7.14) 

where har on the index nleans the replacement p -+ m , m -+ p. The 
Lagrangian (7.9) is now 

Lk = tPt (iViAP d~ - VipAm - MJ. ) tPk (7.15) 

which prOlnpts us to define 2 cOlnponent quantities 

(7.16) 

so t.hat eq. (7.15) is 

(7.17) 

where we have made use of eq. (7.14). We recognize that 1/Jr: does not have 
a. tilue derivative in cq. (7.17); it is therefore a constraint variable, not a 
dynamical one. The equa.tions of nlOtion are 

( j 
Ut \ ,. < 

1iV2(-lj{)t = -1 k J'.i/L..!.- (7.18) 
o - \/2kf\d'~,") t - Cl!,n tM.L (7.19) 
o -- i .f21,;,:; -- A.-A L i,'/' (7.20) 

(7.21 ) 

!7� 



Dynalnics is contained equations (7.18) and (7.20), equations (7.19) and 
(7.21) can be used to eliminate tP'k and (tP1n )t: 

1/Jf// M 1. tPP (7.22)- -.J2kP k 
" 

(1/J~n)t _ _(1/JP )t M1. (7.23) 
m ~kp 

We have the equations of Inotion for dynamical quantities t/J~ , 1/J7:t 
• 

".i,p Mi .I,P
~'Yk - - 2kp 'Yk (7.24) 

-i(J,nt = (",nt~~ (7.25) 

These equations are indeed correct since they predict oscillation with fre
quency ±(M +ki)/2kP, as seen by looking for the eigenvalues of the matrix 
M 1.. Let us also notice that in the case of a gauge coupling to a vector field 
All obtained by the replacenIent (Inininlal coupling) 

all --+ all - ieAIl (7.26) 

the ternI kP would be n1.odified by AP, the "plus" component of All' which 
would conlplicate the inversion (7.24,7.25). For this reason gauge fields are 
quantized altnost uniquely in the" axial" gauge 

AP(x) = 0 (7.27) 

The passage to HaIl1iltonian forol is straightforward. The only non zero 
canonical lUOIuentuul is 

P _ aLk _ . Jn2("I,P)t (7.28)1rk - 8~Z - ~v.to 'Yk 

We obtain 
P •PL' pM i .I,pHk = 1rk tPk - k = ~1rk 3kp 'Yk (7.29) 

where I used eq.'s (7.24,7.25) to elilninate 1/J1n 
, {1/Jr)t. It is now natural to 

inlpose the canonical anticol1uuutation relations 

{1rZ, 1/J:,} = -iAP~3(k - k') (7.30) 

{7r: , 1r:,} = 0 (7.31) 

{1/Jr , 1/J:,} - 0 (7.32) 
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Returning to configuration space we have 

(7.33) 

with other anticolnnlutators vanishing 
Total Halniltonian is obtained by integrating eq. (7.29) over all k's. One 

can eliluinate M'i./2kP by the use of eq. 's (7.19,7.21) 
We finally obtain 

(7.34) 

This is- precisely the Halniltonian (p-generator) and the anticommntatiQn 
relation postulated in [9]. 

Electromagnetic field in the temporal 
gauge 

I will present the quantization of the gauge fields starting witbelectromag
netic field quantized at the t = 0 surface. In general gauge fields have a la.rge 
group of syllllnetries: gauge transfornlations. In the canonical· approach 
gauge synirnetry can be used to obtain a simple canonical scheme without 
constraints; on the level of the Feynlnan path integral approach this symme:
try was.a source of difficulty solved only by Faddeev-Popov theory [23]. The 
whole story can be sununarized by the "equation" 

2=4-1-1 (8.1 ) 

In effect vector field AIJ has 4 d~grees of freedom at each point in space; on 
the other hand 2 degrees only are physical. We will see different ways of 
eliminating those 2 spurious cOlnponents. Consider the electromagneticfield 
AJl(;1:) coupl(~d to a conserved current jJ\ whose exact nature need not be 
specified at this point. The Lagrangian is 
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where 

F~v ~ Av,~ ;.-. A~,v (8.3) 

is the usual electrOlnagnetic tensor. Lagrangian density (8.2) has ·a gauge 
sylll111.etry, it is nalnely invariant under the replacement -

. A~~A~+a~X (8.4) 

where X is an arbitrary function. The tenn coupling A~ to j~ is not invariant 
under (8.4); it picks up a piece 

(8.5) 

however, if a current is conserved 

(8.6) 

we can "add eq. (8.6) lnultiplied by X to eq. (8.5) 

.~ .~ .~)a (
x,~ J + XJ ,~= ~ XJ (8.7) 

So the transfonned Lagrangian differs frolll the original one by a total di
vergence which does not ·affect the equations of motion. It is convenient to 
introduce non-covariant notation since we will use t = 0 formalism anyway. 
Let us denote 

and 
P :=J

'0 (8.9) 

We have the Lagrange density (8.2) in new variables 

1 .. 
£, = "4<p,j <p,j +<p,j A' 

~AiAi _ ~Ai . (Ai . .....:Aj .)+ 2 2 '3 '3 ,I 

P<P + /Ai (8.10) 

This can he partially diagonalized by the use of nlodes (Fourier components) 

(8.11 ) 
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and sinlilarly for other quantities. 
Our Lagrangian (8.2) is now a slim over modes 

L = Jd3 kLk (8.12) 

with 

Lk= (~2) 'I'(k)cp( -k) + i'l'(k )(P;ij(-k)) 

1 .. . . 
+2A'(k )A'(-k) 

_(~2) (A'(k )A'(-k)) + ~(k' A'(k))(PAj(-k)) 

+p(k)<p(-k) + /(k)Ai(-k) . (8.13) 

\Ve can decolllpose various vector quantities into cOlnponents parallel to the 
vector k 

kiAi = kAII , kiki = k2 
: (8.14) 

and cOlnponents perpendicular to it 

kAJ.. =0 (8.15) 

The Lagrangian (8.1:3) splits into 2 independent parts 

L k = L~ + L; (8.16), 
with 

k2 •
L~ = 2<P(k)<p( -k) + ik<p(k)A II (-k) + p(k)<p( -k) 

1· . 
+2"AII(k)AI/( -k) +jl/(k)AII(-k) (8.17) 

and 

Hemf'Jnbering that our field A~ is rea.l i.e. 

(8.19) 
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we recognize itnmediately in (8.18) 2 harmonic oscillators with frequency 

w=k (8.20) 

coupled linearly to the current j .i.� 
This is exactly the physical content of (8.2): for each momentum k we have� 
2 degrees of freedolll A.1(k) (representing,say, two helicities).� 

The fonnalisIll has somehow to get rid of the spurious components <p and 
All. In order to analyze the Lagrangian (8.17) let. us write explicite the real 
and itnaginary parts of the fields, exactly as we did with the sc:alar field (cf. 
eq. 4.7); we will also drop the InOlnentulll index 

ep(k) = a + ib 

cp( -k) = a - ib (8.21 ) 

AII{k) = A+iB 

AII {-k) = A-iB (8.22) 

In the saIne lllanner the current is now 

p(k) - 10 + igo 

p(-k) - 10 - igo (8.23) 

and 

jll{k) = III + i911 
ill (-k) = 111- i91l (8.24) 

Current conservation, eq. (8.6) links longitudinal and temporal components 
only 

(8.25) 

or 
p- ikjll = 0 (8.26) 

With the help of our definitions eq. (8.24) it can be written 

10 = k91l ,� 

go = -kIll (8.27)� 
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The Lagrangian to be analyzed, eq. (8.17) is now 

k2II 2 2 ••
L - 2(a + b ) + k(aB - bA) - foa - gob 

A2 iJ2 
+ T+T+f"A+g"B (8.28) 

We notIce inllnediately that the temporal variables a, b lack time derivative: 
they are constraint .variables. 
One obtains .usually the simplest dynamics by choosing a gauge which makes 
.the passage to Haluiltonian dynamics simplest possible, i.e. without con
straint·s. Hei'e it is obviously 

a=b=O (8.29) 

which can be written 
AO(x) = 0 (8.30) 

By this gauge fixing we have then eliminated one degree of freedom (AO) The 
residual Lagrangian is now 

(8.31 ) 

The gauge fixing eq. (8.29) is not complete, we have freedoln to perform 
a tilne independent gauge transfornlation. It follows that Lagrangian eq. 
(8.31) h~ an additional sylnlnetry, whose generator is the Gauss law 

VE-p=O (8.32) 

where E is the electric field 

E=-Vep+A (8.33) 

In our gauge ep = 0, so we can write eq. (8.32) in Fourier components 

kA + go = 0 

kB - fo = 0 (8.34) 

In order to exhibit this synuuetry let us replace in eq.(8.31) f" and gIl by 
tilHe derivatives given by eq's (8.27) 

L= ( ~2 _9~A) + (~2 + j~B) (8.35) 



We Inodify now Lagrangian (8.35) without changing ·the equations of motion 
by adding a total derivative 

(8.36) 

we have 

A2 gOA) (iJ2 foiJ)L1= -+- + --_. (8.37)( 2 k 2 k 

In this fOrIn we see that L I is translation invariant. Time independent gauge 
transformation is 

(8.38) 

or, in InOlnentU111 representation 

(8.39) 

and in ternlS of A and B 

A ~ A k1mX(k)� 

B ~ B + kReX(k) (8.40)� 

so it is indeed an arbitrary translation of variables A, B. Passing to the 
Halniltonian we have 

aLI. . go 
1rA = -. = A+- (8.41)

8A k 
and 

1rB = a~I = i3 _ fa (8.42)
aB k 

and the Haluiltonian is 

. 1 ( go ) 2 . 1 ( fo) 2
H = 2" 1rA - k + 2" 1rB + k (8.43) 

It is clear that this is translation invariant. The appropriate generator of this 
syuunetry is of course the Inomentunl. Notice that the Gauss law, eq. (8.32) 
states that 

(8.44) 
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This .canI~ot, of course, be understood as an operator equation, it would 
conflIct wIth cOInnlutation relations. We must therefore impose the Gauss 
law as a condition on the wave function. 

1rA I t/J >= 1rB I t/J >= 0 (8.45) 

We therefore see that the Hamiltonian (8.43) has many eigenstates, but 
the only physically relevant are those fulfilling eq. (8.45). A different way 
of stating this fact is to say that the wave function of the system has to 
be invariant under tiIlle-independent gauge transformations. Those remarks 
are valid for every 1l10Illentum k, so we have in reality an infinity of conditions 
for the whole wave functional. 

With condition (8.42) the Hamiltonian is simply the Coulomb energy of 
charge distribution p, 

2(g5+f~) Ip(k) 1 

RCoul = 2k2 = 2k2 (8.46) 

and any reference to longitudinal degrees of freedom An has disappeared. 

Dirac treatment of constraints 

Dirac's approach to the canonical Hamiltonian function of singular 
Lagrangians [17,18} is presented here not only for the sake of completeness 
but above" all to underscore that this sophisticated approach is a fancy way 
to fix the gauge. Additionally, while excellent treatments of the subject ex
ist [I8}, I believe that treating siInple systenl described by Lagrangian (8.28) 
is a transparent and anlusing application of this machinery. Examining eq. 
(8.28) we notice that it splits into two independent parts, one coupling a (real 
part of <p(k)) to B (iInaginary part of AIl(k)) and a second part coupling b 
(ilnaginary part of <p(k)) and A (real part of AII(k)). Treatment. of both is 
identic, we choose for definiteness 

k2 2. A2 
L = -b - kbA - gob + - + JiIIA (9.1 )

2 2 
In order not to be confused by the fancy footwork to follow, let as examine 
the physical content of eq. (9.1). The Lagrange equations are 

(kb - A) = go 
k 
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d . 
-(A - kb) = III (9.2)
dt 

Firstly, the only physically observable quantity is the longitudinal part of the 
electrical field 

E(k) = -ikep(k) - A(k) (9.3) 

whose itllaginary longitudinal part is exactly kb - A. Equation (9.2) states 
then 

90 ( )ImEII(k) = k 9.4 

i.e. this is the electric field generated by change distribution 90. Differenti
ating eq. (9.2) over tilne and inserting in second eq. (9.2) we obtain 

90--=/11 (9.5)
k 

So this is sinlply the current conservation (cf. eq. 8.27). It is also follows that 
the systenl of equations (9.2) is in reality only one equation for quantities b 
and A. We can for instance choose to take b(t) to be completely arbitrary, 
we have then 

A(t) = 1.' dt' [kb(tl 
) - gO~/)] (9.6) 

Returning to the canonical analysis of eq. (9.1) we cOlnpute the canonical 
1l10lllenta 

8L . 
7l"'A - -. = A-kb 

8A 
and 

aL 
7l"'b = -. ::::::0 (9.7)

Db 

The 1f'b nlolnentlun vanishes weakly, giving the first priInary constraints, ob
viously incolnpatible with canonical Poisson brackets 

{A,1f'A} = 1 

{b,7l"'b} = 1 (9.8) 

Using eq. (9.7) we see that the equation (9.2) is also a weak equation 

1f'A +90/k:::::: 0 (9.9) 
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The canonical Halniltonian is 

(9.10) 

We have also two first class constraints (their Poisson bracket vanishes) 

tPI - 1rb ~ 0� 

tP2 - k1rA +90 ~ 0 (9.11)� 

The nlost general Haluiltonian, according to Dirac, is the canonical one with 
constraints added with arbitrary coefficients 

H - He + VI tPI + V2tP2 
2

1rA 
- 2 kb1rA + 90 b - filA 

+ VI 1rb + v2(k1rA +90) (9.12) 

The equations of Illotion are 

A - {A, H} = 1rA + kb 

b {b, H} = VI 

1rA - {1rA, ll} = iii + kV2 

1rb = { 1rb' H} = -k1rA - 90 - VI (9.13) 

One can set therefore VI = band V2 = 0 and the final Hamiltonian is 

(9.14) 

Here b is essentially an arbitrary function, to be elilninated only after a choice 
of gauge has been nlade. 

Now I will show that the radiation gauge recovers our previous results. 
I will use tIlt:' freedOill of gauge to lllake constraints (9.11) second class (i.e. 
Jlon COllllll1lting aillong thelllselves). Since 1rb ~ 0 it is logical to choose 

(9.15) 
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similarly eq. (9.11) suggests 

tP4 = kA ~ 0 (9.16) 

The matrix of Poisson brackets of constraints tPh tP2' tP3' tP4 is 

o 1 0]o 0 k2 

(9.17)o 0 0 
_k2 0 0 

The inverse is 

Ci/ = [. ~ ~ ~l (9.18) 

o 1/-k2 0 

and the Dirac bracket between two any dynamical quantitiesr, s is 

{r, s}* = {r, s} - L
4 

{r, tPn}C;~{tPm, s} (9.19) 
n,m=} 

At this stage we can set our constraints tPi strongly to zero (i.e. identically). 
,The Haluiltonian (9.14) reduces to 

2 
H = 1F'A (9.20)

2 

which in view of the eq. (9.14) is just the Coulomb energy of the charge p 

9~ (9.21 )H = 2k2 

Finally let us relnark that the Dirac brackets (9.19) imply 

(9.22) 

so these variables should not be quantized (we have eliminated them in our 
final Haluiltonian (9.20)). 
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10� Quantization of the electromagnetic 
field without gauge fixing 

The lnaterial presented here, due to the remarkable simplicity of the method 
will be short but, in view of the importance of the result presented, it is 
felt that it deserves a separate chapter. Recall that the electromagnetic 
Lagrangian (8.10) after decomposition into modes split into a transverse part 
(eq. 8.18) wholly conventional and a longitudinal part (eq. 8.17) where AO 

cOll1ponent played the role of constraint. Instead of fixing the gauge, we will, 
as advertised in chapter 6, integrate over all possible AO (a and b variables 
in eq. (8.17)). The transition alnplitude for the longitudinal part is defined 
by the FeynIllan path integral 

U =� JD[a(t))D[b(t))D[A(t)]D[B(t)] 

x exp {i Jdt [~' (a' + b') + k(aB - bA) - loa - gob 

+ ~2+~'+IIIA+9IIB]}	 (10.1) 

Again we can easily integrate over a(t) and b(t) at each tiule independently. 
The result is an effective Lagrangian. 

- - fo 95 1 d 
L = 2k2 - 2k2 + k dt (B fo - Ago)� (10.2) 

It cont.ains sirnply the Coulolnb energy (eq. 8.46) and a total derivative not 
changing the equations of Illotion. The longitudinal variables A, B have been 
elilninated. In this silnple Inanller we have decolnposed the electrolnagnetic 
field into dynalnical transverse cOlnponents and an instantaneous Coulolnb 
int.eraction. No gauge was singled out: we have integrated over all gauges. 
The fonn of the final dynanlics (i.e transverse degrees + Coulolnb energy) 
was the consequence of choosing t = 0 hyperplane for quantization, or, in 
oth(~r words, singling out the t integration in the action appearing in the 
cUll plitnde eq. (10.1). The total alnplitude for a field is the path integral of 
a ! HiUl; f(~stly covariant quantity 

exp{i Jd.xL:(cp, A", etc)}� (10.3) 
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It is the splitting of the integration in (10.3) into time (the evolution pa
ralneter) and position variables (enumerating the degrees of freedom) which 
breaks the lnanifest Lorenz invariance of (10.3). On the level of canonical 
quantization it corresponds to ilnposing the commutation relations on hy
perplane t = O. What has been achieved here is the demonstration of the 
fact that for electrolllagnetic field this suffices for quantization without any 
gauge fixing. In this particular case we recover the results of quantization in 
AD = 0 gauge. We will show later that for non-abelian fields we will discover 
new, nontrivial way of quantizing gauge fields. 

11 Electromagnetic field on the light front 

We will quantize the electromagnetic field with the Lagrangian (8.2) which 
in the light front coordinates takes the form 

L - Jdx- d2x; [~(An"",)2 - A"',,,, AP,p 

+ Am ,; (AP,; +A; ,p) + i(AP,p)2 + AP,; A;'P 

. . 1· . 
+ A' nn A' 'P -2"A',J(Ai,i - Ai,i) 

+ A7n jP+APjm _Aiji} (11.1) 

when we have suppressed the arguluents of the field Ai =Ai(x+, x-, xi) and 
i = 1,2, we have also included the coupling to a conserved current jIJ. In order 
to silnplify the fOflllulae to follow we shall write the Fourier transform of the 
field AIJ with indices below and with the momentum dependence suppressed 

T

AI'(~ r) = 1 1 dkPd k AIJ(k)ei(kPxm-kixi) (11.2) 
, (27r )3/2 2-00 .L 

with 

A!~( k) = all + ibIJ 

= aIJ - ibIJ (11.3) 

'Nith the introduction of the notation 

= kP 

k _ [(k 1?+(k2?r/2 
(11.4) 

x 
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eq. ( , 1.1) t;. ves us Ute I~:i.Od(-' Lagrangian 

2 -x 2 2 • • 
Lq - 2(am + buJ + x(bma1' - amb1' ) 

+ am (k2ap - xkall) + bm (k2bp - xkbll ) 
1 2 . 2 • 

+ 2"(a1' + b1' ) - kapb\l + kbpiz lI 

+ x(allb - bllall) 

x(aJ.bJ. - haJ.) - ; (a~ + b~J 
+ aplm + b1'9m + am/p + bm 9p 

all/ll - bugH - aJ./J. - bJ..9J. (11.5) 

where we ha.ve a.lso used the Fourier cOlllponents of the current 

jJl(k) = I Jl + i9Jl (11.6) 

and introduced cOIllponents parallel (all) and perpendicular (aJ.) to t.he 2 
din1ellsional vector (k1 , k2 

). The dot lneans the XV derivative ("tillle" deriva
tive). The continuity equation for the current takes now fonll 

11' = x9m - k91l 

ih> = -xlm + kIll (11.7) 

The Lagrangian (11.5) looks and is considerably lllore cOlnplicatcd than its 
eqnal tillle counterpart (eq. 8.17,8.18). One cOlllponent only is uncoupled 
froll} the others, the Lagrangian for this perpendicular coolponent is 

k2 
• 2 2 

- x(aJ..bJ. - bJ.aJ.) - 2(aJ. + bJ.) 

aJ./J. - bJ.9J. (11.8) 

This is sinlply the Lagrangian for the scalar field analyzed in chapter 4 and 
5. it displays the halving of degrees of freedolll (aJ.. is conjugated to bJ.' cf. 
eq. 5.:3). Note also that the continuity equations (11.7) do not restrict 11. 
and 91.. 

The relnaining variables are coupled. The variables am and bm lack 
tlw tilne derivative: those are constraint variables and the analogue of the 
(~otllOlnb ga.uge at tl!e light front is the gauge 

Am =0 (11.9) 
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a fact known [18] but seldom used. The variables all and bll have their time 
derivatives entering linearly to the Lagrangian (11.5) as expected from light
front fOrlllalisn1 since this leads to the halving of degrees of freedom. The 
varia.bles ap and bp are the Inost surprising, since their time derivatives enter 
quadratically so, a priori, no halving of degrees of freedom is apparent. The 
canonical analysis would base on the gauge Am" = 0, which eliminates the 
constraint variables. However the resulting Lagrangian has still a large group 
of sYlnmetries corresponding to time independent gauge transformations; the 
variables a p , bp and all and bll enter asylnmetrically and, last not least, if the 
vector field is coupled to the Dirac field, important simplifications occur 
when AP = 0, as noted earlier. Again integrating out the constraint variables 
clarifies the situation cOll1pletely. After integrating out variables am and bm 

we are siluply left with 

k2- .. 2 2 
L - x(anbn - bnan.) - "2(an +bn } 

k k+ an(/1l - - Ip) +bn(911 - -9p)
x x 

I; +g~ 
(11.10)

2x2 

where we have introduced new variables 

k 
an - all + -ap

x 
k 

bn = bll + -bp (11.11) 
x 

It is seen that an. and bn. are the natural counterparts of aL, bL : they represent 
the other photon pola.rization. We have also obtained the light front CouIOlnb 
tel'ln: the last line of (eq. 10.10). The 1110st reluarkable is the coupling of 
an., bn. to the current: the coupling is only to the combination 

. k 'p
JII --J (11.12) 

x 

There is no couplin~ to pn cOIuponents, and in the case of Dirac field all the 
simplifications of AP = 0 gauge occur. Our procedure has therefore penuit
ted us to identify the correct dynalnical variables for quantization. VVe can 
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project out these variables froln the full field A~( k) by using 2 polarization 
vectors e~(A), ..\ = 1,2 

A.L(k) 
An(k) 

-
-

e~(1)A~(k) 

e~(2)A~(k) (11.13) 

where 

(11.14) 

TJ~ = (1,0,0,0) (11.15) 

and the on shell photon four 1110111entulu 

k~ = (k
2 

X k 1 k2
) (11.16)2x' , , 

we see that e~ (..\) are purely transverse 

TJ~e~(A) = k~e~(A) = 0 (11.17) 

We can express the projection operator 011 the physical degrees of freedom 
(the polarization SUlll) 

d~v(k) - ~ e~(..\)ev(A) 
'\=1,2 

n~kv +nvk~ (
- -g~v + 11.18)

TJOt 
kOt 

This is precisely what oue uses to define Feynmanrules [6}. Equation (Il.l8) 
has a spurious singularity at 71akOt = 0, i.e. whenk'P == 0. At this point 
relations (11.11) becolue also singular and the light front energy eq. 3.15 
beCOIl1eS infinite. Therefore it is an infinite energy endpoint problem. In 
the variational approach to field theory on the light front [21] this point 
is excluded. FrOln the point of view presented here, since aU quantities 
are taken at positiv~ k"P the singularity is of end point type. At the level 
of Feylunan graphs it lneans that this singularity is to be regulated by 
principal value prescription. 
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12� Yang-Mills gauge field, canonical 
treatment 

We will consider here, for sinlplicity the SU{n) Yang-Mills fields without 
quarks; when needed the generalization is immediate. The Lagrangian den
sity is 

r, = _~F~v Fa� (12.1)4 a ~v 

where, in addition to summation over Lorentz indices p., v additional sum
nlation over group index a is implied. We have by 'definition 

(12.2) 

The group index takes values a = 1,2··· (71. 2 -1) for SU(n), 9 is the coupling 
constant and f: e are structure constants of the SU(n) group defined in terms 
of (71. 2 

- 1) generators Ta, 

i[Ta" Tb] = - f~b Tc (12.3) 

We will use nlostly SU(2) as illustration, we have then 

fa be = £abc (12.4) 

where tabs is the totally antisYlnmetric symbol in 3 dimensions (for n = 2 
n 2

- 1 = 3). The Lagrangian density (12.1) is invariant under infinitesimal 
gauge transfonnations 

(12.5) 

where Aa(x) are (n2 
- 1) arbitrary functions. Since F/:v (eq. 12.2) is anti

synlllletric in p., II the tirue derivatives of A~::o do not enter the La.grangian: 
we have again constr~ints. The dynamical content is best discussed in the 
telnporal gauge 

A~=O(x) = 0 (12.6) 

This is a partial gauge fixing since (12.5) allows still time-independent gauge 
transfonnations. It is now easy to get the canonical Hamiltonian. The canon
ical IllOIuenta . or, 

a
t� (12.1)

1r = o(~) 
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are clearly given in tenns of tinle derivatives of the potentials. The canonical 
Hanliltonial1 density is 

1i _ 1r~(a~i)_L: 

1· .
1i = -(7r' 7r~ + B' B?') (12.8)2 a, a I 

where we have introduced 

(12.9) 

The theory can he silnply quantized, on the fornlal level, by imposing the 
COllll11utation relations 

[Ai, 7rtl = is:S; (12.10) 

The system has still an infinity of synlnletries corresponding to time inde
pendent gauge transfornlations whose generators are 

(12.11) 

i.e. we have a conservation law in every point of space 

(12.12) 

The generators thenlselves satisfy 

(12.13) 

Setting all Ga(x) to zero is obviously incoInpatible with the commutation 
relations (12.10). We have then to iInpose on the wave functional I t/J > that 
for every x we have 

(12.14) 

This condition will be preserved in tilne and is cOInpatible with relations eq. 
(12.1:3). It is often called "the Gauss law" and serves to reduce the number of 
degrees of freedoln at each point x froln 3(m2 -1) (Ai(x) are the dynamical 
variables) to 2(n2 

- 1). In the abelian case (electromagnetism) this eliminates 
the longitudinal degrees of freedonl. Thus presented the theory is very simple 
but one has to regularize it without destroying gauge and Lorentz invariance. 
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Changing to other gauges is best accomplished by using the Feynman 
path integral. This, as well known [23,24] introduces ghosts in some gauges. 
We present here the approach of Feynman in order to underscore the fact 
that standard quantization in other gauges is simply the change of variables 
in the path integral written in A~ = 0 gauge. The Feynman path integral in 
this gauge is 

Jexp {-~ Jd.xF:" F:~ } <5(A~(z, t))1J[A~(x, t)J (12.15) 

where o(Ao(z, t)) is a shorthand notation for 

II o(Ao(z, t)) 
(12.16)

a, z, t 

In the expression (12.15) the action is luanifestly gaugeinvariant. Integrat,ion 
11leaSUre 

V[A a ). = II dA a:::) (z t)dAa =2dAa=3 (12.17)
'" . ",Z,t '" . , '" '" 

is also gauge invariant, since in the transformation (12.5) we have a. trans
lation and a rotation in the group space and both transformations pre.serve 
the volu1l1e ele1l1ent (12.17).lt appears then that the only object in (12.15) 
which changes with gauge is the 8 functions (12.16). 

For illustration purposes let us transfonn eq. (12.15) to the Landau gauge 

a",A~ = 0 (12.18) 

The 0 eq. (12.16) get now an infinitely dinlensional Jacobian 

h(a AJ') == S(AO) ~(aJ,A~) (12.19)
'" a a ~(A~) 

The detenllillant in eq. (12.19) is difficult to conlpute directly since it involves 
a finite gauge transfonl1ation. The trick ~3] is to calculate it using infinites
inlal gauge transfonnations only. The idea is to use an indirect technique: 
COIllputing the change of both aJ,A~ and A~ under the saIne infinitesiinal 
gauge transfornlation 

_ A~ + aoAa + Eabc AbA~ 

== aJ'AB + aJ'a Aa

'" '" + EBbc Ab(aJ' A~) (12.20) 
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where Aa is the transform of Aa under the finite gauge transformation which 
transfornls Ag gauge to o~A~ gauge. By the rule of chain differentiation we 
have then 

(12.21) 

The second factor is a constant (i.e. field independent) since it is the Jacobian 
of a translation of A~ by ooAa; the second term in (12.20, first line) disappears 
because Ag = o. The first tenn is genuinely field dependent. It can be shown 
that it is exactly the result of an iiltegration over grassman (anticommuting) 
complex variables Pa{x,t) of a gaussian 

- JV(P.(z, t)) 

x exp GJd4x P:(8,,8"S.c - £.6cA~8,,)Pc } (12.22) 

Thus we have introduced new scalar Dirac fields to the path integral (12.15). 
Those are, of course, the faluous Faddeev-Popov ghosts. In general if we 
want to transfonn the gauge A: = 0 to a gauge 

f{A~) = 0 (12.23) 

we first expand to first order 

f(A~ + D"A") = f(A~) + 8~1~) D~6Adc (12.24) 

where we used the gauge derivative 

(12.25) 

and this leads to the replaceluent 

<5{f{A~)) 

x a ] { i J + [of b] } (12.26)V[P (x, t exp 2 d4xPa o{A~) D~ Pc 

In cases when of/8(A:) is field independent (e.g. A~ = 0 gauge) the inte
gra.tion over ~&(x, t) can be Blade independently of A:: we have a ghostless 
gauge. 
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T'llis trcatnlcnt is perfectly correct for pcrturbative expansions. In effect 
t1H~ path integral (12.15) lnust op~rate on states which fulfill the Gauss law 
(cf. eq. 12. 14). In the perturbative approach the state is usually the pertur
bative vaCUUlll which fulfills eq. (12.14). Stated differently, even after gauge 
fixing we have :3(n 2 - 1) variables in each point in space instead of 2(n 2 - 1) 
we have to choose appropriate "transverse" variables. In A~ = 0 gauge a 
popular choice is the Coulolllb fixing 

aj Aj = 0� (12.27) 

This choice is obviously correct for slnall A~: this is the usual transversality 
condition for abelian field. For nonperturbative approach eq. (12.27) presents 
a difficulty. As noted by Gribov [25] there are fields satisfying eq. (12.27) and 
eq. (12.6) which are gauge transfornl one of another, the so called Gribov 
copies. This problenl appears whenever the operator 

(12.28) 

ha,s zero eigenvalues 
L1Xb = 0 (12.29) 

where Xb has to have correct boundary conditions. The set of all A~'s which 
allow zero eigenvalue (eq. 12.29) is the Gribov horizon. Gribov has shown 
that there exist fields A~ being gauge transforms one of another which lie on 
both :;ides of the horizon. Worse still, Singer [26] has shown that this holds 
true for any reasonable generalization, hence recent attempts to ll10dify the 
path integral (12.15) to include only these A~'s which lie inside the Gribov 
horizon [27,28]. 

13� Yang-Mills gauge field without gauge 
fixing 

I will present here new results which follow from the method of chapter 9. 
In t.his case the treahncnt scenlS to be genuinely new and leads to expression 
wldeh, albeit tantaJil.ingly close to these obtained by Zwanziger (27); are 
nevertheless different. As noted by everyone in the field the obvious siulple 
path integral 

(13.1 ) 
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in llleaningless since there are directions in A:(z, t) space along which the 
exponent of (13.1) is constant giving as a result infinity. In my approach, re
call, one integrates first over constraints, i.e. the components which lack time 
derivative in the Lagrangian. Then one notices that some variables disappear 
frolll the Lagr,angjan and, of course, one does not integrate over them. The 
effective Lagrangian was therefore expressed solely in terms of physical vari
ables (e.g. in constant time electrodynamics the transverse variables). In the 
present case we shall follow exactly the same route The crucial observation 
is that the Yang-Mills Lagrangian eq. (12.1), although in general it contains 
the fields A~ up to quartic terms, the constraint fields (i.e. without. time 
derivative) appear at most quadratically. Therefore our idea of integrating 
over constraints is perfectly doable: the integral is a Gaussian. In the case 
of Yang-Mills fields the. use of Fourier components does not diagonalize the 
La.grangian eq. (12.1). So we have to use matrix notation. Recall that for 
a general quadratic fonn with coefficients Mii' i, i= 1 ...N and a constant 
vector bi we have 

expJdllfY 

(13.2) 

Let us discuss first the t = 0 case. For clarity of notation introduce 

(13.3) 

and the gauge gradient 

(13.4) 

The Lagrangian eq. (12.1) is then given in terms of electric fields 

aE~ 
•

= F.oJ 
. = A~ 

lIT 
- D~blt'b (13.5) 

and Illagnetic fields 
(13.6) 

where in our notation 

F.B. = A~. - A~. - g£abcA~A~ (13.7)13 . 3,1 1,3 1 J 
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so eq. (12.1) is sitl1ply 

.c = ~(EC! Elf - Blf B?) (13.8)2 ,t t, 

We notice ilnn1ediately that time derivatives and the fields epa occur in the 
electric field (eq. 1a.5) only. Furthermore the electric field depends on 'Po 
only linearly hence L is quadratic in epa. In order to integrate, at. each point 
in titue the anlplitude (13.1) it is therefore necessary to take into account 
electric field only 

I '" IV['P.(~'t)J exp { -~ I ~x(Ei En} (13.9) 

The exponent is now, at each t 

(13.10) 

By using eq. (13.2) we obtain 

I = Vet [Dto Did]-1/2 

X exp { -~ Id4XE:;(~, t)E:;(x, t)} (13.11) 

where the "transverse" electric field is defined 

Eai = ;lia _ D i [D t D ]-1 (Dted Ai) (13.12)tr ab k k be J d 

The field E:rc is transverse in the sense that it fulfills 

nt' Ebi == 0 (13.13)ab tr 

as easily seen fronl (13.12). 
We see that exactly as in abelian case the integration over constraints (<po 

fields) elitninated (712 - 1) variables at each point. The condition (13.13) is 
the natural generalization of the Coulolnb condition 

OiEi = 0 (13.14) 

of the electrOlnagnetic field. In contrast to usual treatment [23,28,27,29] 
where one itnposes (13.14) on the fields in order to eliminate the unphysical 
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variables, the fonnalisll1 presented here dictates the condition (13.13) which 
explicitly depends on A~ though the gauge derivative D~b. Similarly the 
usual Coulonlb gauge has the unsymnletrical Faddeev-Popov determinant 

(13.15) 

whereas in our treatnlent the relevant determinant is 

(13.16) 

The pa.ssage to Hanlilton function is facilitated by the fact that the operator 
appearing in eq. (13.12) is a projection operator. To see this notice first tha.t 
the gauge gradient eq. (13.4) is purely antihermitian and can therefore be 
diagonalized (its eigenvalues are purely imaginary). The eigenvalue equation 
for our operator is ( vi is the eigenfunction ) 

Di [DtD ]-tDti j \ i
ab k k be cd V d = ""Va (13.17) 

and by lllultiplying by Dl~ 

(13.18) 

So either .\ = 1 or .\ = 0, in the latter case v' fulfills a simpler equation 

(13.19) 

The kinetic part of our final Lagrange density is (cf. eq.13.11) 

1 EoiEaiLkin = 2' tr tr (13.20) 

By going to a basis which diagonalizes the operator (13.17) we derive the 
canonical Halniltonian density, 

II 1 cai ai 
no = 2'11'tr 7fCr (13.21) 

where 
oi ia D i [Dt D ]-1 (Dti j) (13.22)1rtr = 11' - ab k k bc ccf1f'd 
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and 7r
ia are variables canonically conjugated to Aia (cf. eq. 12.10 ). The final 

Haluiltonian density which, let us stress it once again, depends on transverse, 
i.e. physical variables, can be written in following form 

i iH ~ 2 [7ra 7r.a + Ba
i Ba 

i
] 

1( iDi )[DtD ]-l(Dti i) (13.23)'2 7ra ab k k bc cd 7rd 

The last tern1 elin1inates "longitudinal" variables and it can be written in 
tefll1S of gauge transfofll1 generators Go. (12.11) 

~co.[Dt D ]-lCb (13.24)2 k k o.b 

The effect of this tenn is zero on gauge invariant wave functionals, it is also 
gauge invariant. 

In the case of non-abelian fields we observe that our formalism forced us 
to use curvilinear coordinates Etr and Btr similar to those used in rigid body 
dynaulics. The other difference with the Coulomb gauge is that, although 
the non-abelian field carries charge, no explicit Coulomb interaction appears 
due to this charge. 

In the light front fonnalisIll the situation is somewhat more complicated. 
There are 3 types of variables 

(13.25) 

which is a constraint, A~ whose tilDe derivatives appear quadratically and 
A~, i = 1,2 whose tilDe derivatives appear linearly leading, to halving of 
degrees of freedoll1. In the abelian case the integration over Am restored the 
syIll1l1etry between AP and Ai. In the present case we have explicitly 

FlJv FlJv - 2Fp
m Fpm + 2Fpi Fpi 

+ 2Fmi Fmi + Fii Fii (13.26) 

Introducing gauge derivatives 

(13.27) 

and 
DC!'C = [8 {J + g&abc A ~] , ae 1 t (13.28) 
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we can write 

(13.29) 

and 
F·rJ. = Fij = D,!,b A~ - D~b A~ (13.30)

t) a I) ) t 

Notice that in eq's. (13~29 last line) and (13.30) neither time derivatives nor 
cp's appear. The Lagrange densi ty (12.1) is now 

(13.31) 

In: order the integrate the above expression over <pb it is judicious to make 
first a shift 

(13.32) 

We have now 

I: - ~X·[D~Dm]·6X6 - (F;.iDi6)X6 

Fa .[Ao - (D·D-t)ab AP)- ~F!"oFij (13.33)
mi· I'm b 4 I) a 

The integration over XG produces a Faddeev-Popov determinant 

(13.34) 

and a COUIOlllb energy ternl 

(13.35) 

The second line of eq. (13.31) relna.ins unchanged and is the new Lagrange 
density Notice that now all tinle derivatives Ai, AP appear linearly and 
that they are projected on a. 2 dimensional subspace by contraction with 
2-diruensional vector F:~,i' These results a.re therefore the generalization of 
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the abelian case studied in chapter 10. Compared with t = 0 approach no 
decisive siluplifications occur. The Faddeev-Popov determinant (13.25) is 

msOlnewhat easier to study since it contains derivatives over x only. Whereas 
in t = 0 case the Faddeev-Popov determinant can be studied only perturba
tively in the present case because eq. (13.25) depends only on one variable 
a WKB (seillidassical) analysis seems possible. 

14 Infrared region of non-abelian fields 

Our previous results can be analyzed on two extreme cases according to 
whether in the gauge transform eq. (11.5) dOlninate 

a) the gradient ternl ~1A 
vX", 

b) the non-abelian tenn 9 jabcAbA~ 

The first case is evidently ilnportant when the gradients are important: this 
the� high 1l101nentutn region of the theory. One can treat the non-abelia.n 
additions as perturbation; the transversality condition eq. (12.13) becomes 
the� usual Coulomb gauge, a situation often discussed in the literature [29]. 

The second and very interesting case is; b): the fields Af are large and 
slowly varying: this corresponds to the illfrared region of the theory which 

. we will discuss in the extrelue case of constant fields~ In this case we have 
inlportant siInplifications. The gauge "derivative" now becomes 

D'!C = g£abcA~'	 (14.1) 

The� Lagrangian is, as before 

(14.2) 

where we use the vector notation in the group space. We have now 

E i� - Ai - Diep (14.3) 

- Ai - gAi X ep (14.4) 

and 
(14.5) 
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The potential (i.e. the square of magnetic field) is now 

(14.6) 

This potential is quartic in fields and it depends on relative positions of 
vectors Ai only: it is invariant against global notations in group space. It 
is also highly anisotropic it attains its minimum (0) for all fields parallel to 
each other, . 

(14.7) 

The integration over <pB projects out the "longitudinal" part of the velocities 
Ai. We have . . 

DjA i = gA X Ai (14.8) 

(i.e.) this is proportional to the rotation as a whole of the 3 vect.orsA~ .. 
Therefore, ' . this case also, the integration over constraint eliminated the 
unphysical \ld.riables: the Euler angles defining the·notation of Lab frame to 
the body fralne. The whole Lagrangian depends only on absolute magJ}itude 
of the vectors Ai and their relative angles. This is also the case for the 
determinant eq. (12.16), which is now, explicitly 

A~ +A~ , -AxAy , -AzAz ] 
detlD i Di ]Bb = -At A 2 , A; + A~ , -. A 2A3 (14.9)

[ -At A 3 , -A2 A 3 , A; + A: 

It is a rather cOIl1plicated function of the fields. However it has two importa.nt 
properties: 

a) it is zero for parallel fields, i.e. fields fulfilling eq. (14.7) 

b) for non parallel fields it behaves as 7.6 where r is a order of magnitude 
of the fields. . 

To discuss the physical implications it is convenient to write the transition 
alnplitude after Wick rotation, i.e. t -+ it. We have then 

T 

u = JD[A.(t»)Det[D;D.)1f2exp { -~ l dt(Ef + Bf)} (14.10) 
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The detenninant is local so we can add its logarithm to' the exponent of 
(13.9). We obtain in this wayan effective potential 

YoJJ = ~Bi Bi - ~41n Det[D;D;] (14.11) 

The arbitrary constant A had to he introduced for dimensional reasOJ 8: it 
depends explicitly on the way we normalize the integration in (14.10). The 
appearance of a scale A is the well known dimensional transmutation {30]. 
The most itnportant fact about the effective potential (14.11) is that it has 
no Inore a nlininluln at Ai = 0 ! since the determinant then is zero. Our 
effective theory has not only correct variables but predicts also that 

<B'!'B'! >..J. 0 (14.12). . ..,.. 

Without Dlaking any detailed calculation we see immediately that it implies 
that 

(14.13) 

and is of the order of A4 • 

15 CONCLUSIONS 
,The Inethod of integrating out the constraint variables in the Feynman path 
integral is a powerful one. It has permitted us not only to find all previously 
known results in a simple way, but, in thecase of non abelian gauge theory, 
to write down explicitly the gauge invariant hamiltonian. This ca.n be of use, 
e.g., to a.nalyze the theory in strong coupling regime by the use of Ritz vari
ational lllethods. Prelin1inary. estiJnates indicate that in case of non-abelian 
ga.uge theories the vaCUUIll is spontaneously broken by infrared modes. 
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