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Introduction 

Let us consider a problem with, ostensibly, no time, a problem of thermo­

dynamic equilibrium involving black holes. Whatever the results of the ambitious 

programs described in this volume, it seems likely that black-hole entropy (Beken­

stein 1973) and its place in the larger structure of physics will play an important 

role in understanding the physical origins of time-asymmetry. Black-hole radiance 

(Hawking 1975) involves in a relatively concrete context many of the themes that 

have appeared repeatedly in this Workshop: quantum theory, gravity, statistical and 

thermal physics, and, perhaps, information theory in some not-yet-elear form. The 

nature of thermodynamic equilibrium involving black holes, and, more generally, in 

self-gravitating systems, must be formulated as precisely as possible, we believe, 

before non-equihorium processes involving gravity, with corresponding increase of 

entropy and appearance of time-asymmetry, can be described with confidence. For 

these reasons it is worthwhile to pursue a well-posed mathematical treatment of 

the equilibrium case. 

The present work began with a clarification (York 1986; Whiting and York 

1988) of two very different interpretations of the Euclidean Schwarzschild solution, 

either as a stationary configuration for the canonical partition function describing a 

physical black hole (Gibbons and Hawking 1977), or as an instanton characterizing 

black hole nucleation (Gross et 41. 1982). The question arose because of the belief 

that the relevant heat capacity derived from the partition function was always 

negative. However, it can have either sign, and this fact enabled a reconciliation 

of the two points of view. That work has progressed in a continuing program. of 

studies, part of which we shall now describe briefly. See Brown et 41. (1991a, 1991b) 

and references therein for details. 

Physical picture 

Gravitational thermodynamics has a number of characteristic features that 

arise from the long-range, unscreened nature of the gravitational interaction. Grav­

itating systems are never truly isolated in the traditional sense of thermodynamics. 
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Although ordinary systems are never actually perfectly isolated either, in practice 

this le~s to small and usually unimportant errors. In contrast, in gravitating sys­

tems the failure of perfect isolation has cmcial implications, leading to the more 

prominent role of boundary conditions and the use of finite systems. It should be 

noted that the use of finite systems, irrespective of gravity, already implies the in­

equivalence of the various statistical ensembles as well as possible mociifications of 

ordinary thermodynamic relations (Hill 1963, 1964; Horwitz 1966). 

Problems of gravitational thermodynamics have to be formulated globally be­

cause of the infinite range of the gravitational field, even though at a given spacetime 

event the principle of equivalence allows us formally to ignore gravity in writing the 

local thermodynamic laws of gravitating matter (apart from possible quantum cor­

rections depending on the curvature, which we shall not consider explicitly here). 

Thermodynamic properties of the gravitational field reveal themselves globally, 

or, altematively, quasi-locally, subject to definite boundary conditions. (We shall 

use the term "global" to include "quasi-local with definite boundary conditions" .) 

Black-hole thermodynamics is an extreme case of gravitational thermodynamics 

and this is where we shall focus attention in this discussion. Here the requirement 

of a global viewpoint is even more evident. One certainly cannot consider subdivid­

ing a black holer Many of the unusual features of black-hole thermodynamics can 

be expected to carry over to the case of massive gravitating systems that contain 

no black holes. 

Physical systems are, of course, quantum mechanical by nature, so to speak 

of a system as containing a black hole is to assume the system can be approximated 

reasonably well by a single classical configuration. In a "semiclassical" approxima­

tion, the system can be viewed as containing a black hole surrounded by radiation 

described by a non-zero renormalized stress-energy-momentum tensor < T II" >. 
We shall refer to this radiation as the "environment" of the hole, and assume that 

it extends to some (possibly large) radius roo The black hole plus environment make 

up the thermodynamic system to be studied. In this paper we focus on the case of 

thermodynamic equilibrium, which implies, in particular, maintaining appropriate 

3� 



boundary conditions at ro. We shall not refer to the radiation environment of the 

hole as a "heat bath", for this terminology brings to mind, misleadingly, a "heat 

reservoir" as in traditional statistical thermodynamics, whose function is to main­

tain a definite temperature in the system, as in a canonical ensemble. Once one 

sees that the radiation-filled environment of a black hole is not to be regarded as a 

heat reservoir, the argument that only the microcanonical ensemble for black holes 

can be stable (Hawking 1976; Gibbons and Perry 1978) loses its force (York 1986). 

The role of a heat reservoir in contact with the system at radius ro, if one is 

needed, is to maintain certain boundary conditions to the accuracy permitted by 

physical principles. The reservoir is not thought of as part of the system in this view. 

It can have a stress-energy tensor entirely different from that of the environment. 

As one example, meant to be illustrative of principle rather than representative of 

what is expected in the natural world, consider a heat reservoir for the black hole 

problem as a large hollow "steel ball" with inner radius r 0, suitably instrumented 

and equipped to maintain specified boundary conditions at roo H necessary, the 

thick shell could include "rocket ships" to support it against being ruptured and 

pulled into the black hole. In such a case the radial members of the reservoir 

would be in a state of tensile, rather than compressive, stress. The traditional 

view of the foundations of statistical thermodynamics would hold that the meta­

system, black hole plus environment plus reservoir, if regarded as an insulated 

(microcanonical) structure with fixed energy, angular momentum, etc., should be 

in a state of extremal entropy. H the system is found to be stable, then so should 

the meta-system. All our results are consistent with this view. 

The distinctions we have described above are required precisely because black­

hole thermodynamics is indeed global. Thus, even when equilibrium is assumed 

under the approzimation <TIAIl >= 0 between the horizon and the boundary radius 

ra, the space around the hole, which is classically a vacuum, is nevertheless part 

of the system because it has non-trivial properties. This point is especially clear 

when one considers a rotating black hole and the dragging of local frames in the 

space around it. The role of this effect in black-hole thermodynamics (Brown et ale 
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1991a, 1991b) will be described below. 

It is clear that an equilibrium system with <T 1''' >=1= 0 cannot have a gravi­

tational field that is asymptotically flat in spacelike directions, with bounded total 

energy, unless the system itself is finite, that is, spatially bounded, and is enclosed by 

a perfectly insulating (microcanonical) boundary B. The ordinary thermodynamic 

limit does not exist because as the boundary radius ro increases, the environment 

will eventually collapse onto the existing hole, thus forming a larger one. In consid­

ering a modified thermodynamic limit, one finds from rough estimates that E 5 rg,"oJ 

where E is the total energy of the system (Hawking 1976; Gibbons and Perry 1978). 

The equilibrium is stable only when most of the energy of the system is the black 

hole's mass, so the hole's environment is not suitable as a heat reservoir and, as we 

have stated, it is not considered as such. More precise calculations, including "back­

reaction effects, confirm these results qualitatively whenever ro is large compared 

to the gravitational radius of the black hole, which in turn is large compared to the 

Planck length (York 1985). 

The various canonical ensembles that can be defined are of great interest be­

cause they link statistical mechanics and quantum gravity through Feynman's pre­

scription for the partition function as a path integral in "periodic imagin8.ly time" 

(Feynman and Hibbs 1965). In these cases there is no "asymptotically flat spatial in­

finity" pertaining to the thermodynamic system because of the required intervention 

of a heat reservoir to maintain canonical boundary conditions. The heat reservoir, 

and the boundary conditions it maintains, represent the connection between the 

self-gravitating thermodynamic system and the rest of the universe. Thus, the pio­

neering effort of Gibbons and Hawking (1977) to implement the functional integral 

approach, using a canonical ensemble, was flawed by the use of asymptotically flat 

boundary conditions (ro = 00). As a result, they necessarily found a negative heat 

capacity that spoiled 'their approach to the- canonical ensemble. However, by using 

ro < 00 one finds that the heat capacity can also be positive (York 1986). To go a 

step further, one knows that in a canonical ensemble one's task is to find from the 

partition function the energy as a function of a given temperature, not to assume 
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it from the start. This was carried out for any"o by Whiting and York (1988), who 

used a stationary phase approximation. 

Thermodynamic equilibrium and gravity 

The spacetime associated with a self-gravitating system in thermodynamic 

equilibrium is time-independent in the sense that it possesses a timelike Killing 

vector field 8/at that can be either orthogonal to the "preferred" spacelike slices 

t = c01Ut4nt (static) or not (stationary), the latter case being associated with non­

vanishing angular momentum. In either case, such systems are spatially inhomo­

geneous. The temperature, "chemical potentials", and other "intensive" variables 

vary in space but not in time (Tolman 1930). This has very interesting implications 

for a system containing a black hole And for other &elf-gr4vit4ting &y&tem& 4& well. 

Gravity breaks the translational symmetry of space that is typically (implicitly) as­

sumed in standard thermodynamics. As a consequence of this symmetry-breaking, 

there does not exist an Euler relation (of degree one) relating the intensive and 

extensive variables. It is then not difficult to show that there is no Gibbs-Duhem 

formula relating variations of the intensive variables. This alters the usual "Gibbs 

phase rules". This point was apparently first appreciated, in the particular case 

when a Schwarzschild black hole and flat-space radiation constitute the system, by 

Wright (1980). However, the phenomenon is general for self-gravitating systems. 

The absence of Gibbs-Duhem relations means that variations of all the in­

tensive variables, as well as variations of the corresponding extensive variables, are 

linearly independent even when variations are restricted to comparison of equilib­

rium states. As a result, there is a global non-degenerate symplectic or canonical 

Hamiltonian structure associated with thermodynamically conjugate pairs in gen­

eral relativity, in contrast with the usual fiat space, fiat spacetime, or local formu­

lations of thermodynamics. Furthermore, this thermodynamical conjugacy follows 

directly from the action integral of general relativity (Brown et a.l. 1990; Brown and 

York 1992a). The conjugacy one obtains is that associated with the dimensionless 

Massieu potentials (Callen 1985), except that it is not degenerate. The Massieu 
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potentials are the usual assortment of "free energies" divided by leT and the en­

tropy divided by Boltzmann's constant le. Massieu potentials correspond to the 

gravitational action, with suitable boundary terms, divided by Planck's constant 1;,. 

As a consequence of the features described above, one has canonical conjugacy 

between the energy E and fJ = (leT) -1, between the angular momentum. J and pw, 
where w is an angular velocity, between the electric charge Q and Pt/J, where t/J is 

the electrostatic potential, etc. In general. relativity, all the traditional constants of 

motion, or "extensive" variables E, J, Q, ... are given by integrals over the closed 

spatial two-surface boundary of the system. Likewise, the conjugate "intensive" 

variables fJ, pw, Pt/J, ... are also defined by boundary data. The properties (1) 

non-degenerate symplectic structure, and (2) all thermodynamic variables defined 

as boundary data, enable a widening and strengthening of Feynman's idea of func­

tional integration as both a technical means of obtaining partition functions and a 

conceptual unifier of quantum and statistical physics. 

In gravity, for a completely isolated system, one can express the density of 

states v(E, J, Q, ... ) as a Lorentzian functional integral and, for a completely open 

system, one can express the partition func~ion Z(fJ, pw, Pt/J, ...) as a "Euclidean" 

functional integral (Brown and York 1992a). All other partition functions can be 

obtained systematically from either of these two. (In statistical thermodynamics 

without gravity, the partition function Z({J,{Jw,Pt/J, ...) for a completely open sys­

tem has been sta.ted not to exist (Prigogine 1950).) We believe that the Lorentzian 

"microcanonical functional integral" may well be a fundamental one through which 

stronger links joining gravity, statistical physics, "maximum. entropy", and the 

quantum can be forged. 

Rotating black hole 

Consider a rotating, stationary, axisymmetric black hole with metric 9 ~II given 

by 

(1) 

where the lapse function N, the shift vector Vi = (O,O,w) with i = T, 8, V', and the 
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spatial metric hi; of the slices of constant time depend only on r and 8. For later 

convenience, we work in a spatial coordinate system rotating with the horizon's 

constant angular velocity w:, with respect to the distant stars ("*"); thus w = 
w:, -w:(r, 8), where w: is the non-uniform angular velocity of the observers at rest 

in the "preferred" slices of constant time t. Because the angular Killing vector 818ep 

lies in these slices, these "Eulerian" observers (hydrodynamical terminology) have 

zero angular momentum per unit mass; hence, they are frequently called ZAMOs 

("Z"). This property follows from observing that their unit timelike four-velocity 

field is uP = N-l(1, _Vi) and that g(u,818cp) == ucp = o. 
The physical significance of the rotating spatial coordinates is that they are 

co-moving with the elements of the ttradiation fluid" environment that is required to 

equilibrate the black hole. That this environment must rotate rigidly with re~pect to 

the distQ,nt ~tQ,r~ at the rate w:, can be shown using local thermodynamic arguments 

(Brown and York 1992b) based on extremal entropy in the manner of Israel and 

Stewart (1980), or similarly to equations (4)-(6) (only!) in Zannias and Israel (1981). 

A quantum field-theoretic argument establishing this same rigid rotation was given 

by Frolov and Thome (1989). Because the environment cannot rotate with finite 

angular velocity for a too-large radius, the system's boundary B must lie inside the 

speed-of-light surface. Again, we see the necessity of using a finite system. 

The world lines of the elements of the environment are parallel to the time­

like "co-rotating" Killing vector 810t (Carter 1979). The unit four-velocity u#£ of 

the radiation elements is given by (818t)P = Nul' where N2 = -9tt. Local ob­

servers with four velocity field up are called "Lagrangian" observers because they 

are comoving with the fluid environment. They see a locally isotropic thermal dis­

tribution of quanta (Frolov and Thome 1989) and ~eem to be the natural observers 

to describe the equilibrium of a system containing a plack hole, in imitation of the 

usual local formulation of thermodynamic laws in general relativity. But because 

u[PV.,uCT] '# 0, there is no way for them globally to synchronize their clocks ("barber 

pole effect") and therefore there is no global time-slicing with respect to which they 

are at rest. Thus, while Lagrangian observers may seem "ideal" for local physics 
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and the "recognition" of equilibrium thermal properties, they are not actually suit­

able for defining global properties of the system, such as black-hole entropy and 

its changes. Consequently, the local temperature p-1 = f' they measure (Frolov 

and Thome 1989, Eq. (4.3» is not a suitable thermodynamic temperature for the 

system. (This implies that Zaslavskii's (1991) Lagrangian treatment of the rotating 

black hole is, in our view, unsatisfactory.) 

Using the thermodynamic arguments that establish "rigid rotation" , one also 

finds that PN-1 must be a constant; this is the Tolman (1930) result for the red­

shifting of Lagrangian temperature. For a system with a black hole, the constant 

is 2'11',,-1, where" is the surface gravity of the black hole in absolute units where 

G = 1;, = c = 1; = 1. What is the globally correct Eulerian or ZAMO temperature? 

Following Israel and Stewart (1980), define the inverse temperature four-vector 

p~ = Pfi.~, which is easily shown to satisfy Killing's equation. Define the spacelike 

velocity of the environment's elements with respect to the ZAMOs in ZAMO proper 

time: y~ = (0, Vi) with yi = N-1 Vi given by the quotient of shift vector by lapse 

function. Note that V~1£~ = 0 and 1£~ + y~ = N-1(1, 0). Then (see, for example, 

Smarr and York (1978» we have 

fi.~ = ,(1J,~ + V~) , (2)� 

p~ = Pfi.~ = (P,)1£~ + (P'Y)Y~ =p1£~ + Py~ , (3)� 

where 'Y is the local kinematical special-relativistic factor (1 - hi; yiy;) -1/2 =� 
-g(1£, fi.). From (3) one can identify the ZAMO-measured local proper inverse 

temperature as {1 = p,. This result is obtained by considering the Doppler effect for 

zero angular momentum (transverse) photons. The second term in (3) corresponds 

to the presence of a purely kinematically induced dipole "blue/red" longitudinal 

Doppler shift that a ZAMO would "see" as the radiation environment flows past 

(kinematically analogous to a determination from Earth of the 2.7K "isotropic" 

cosmic microwave background). From the definitions of N, N, and Vi, it is easily 

shown that N = ,N, from which we establish that the red-shift law for ZAMO­

measured temperature is 

(4) 
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The result (4) has a geometrical interpretation, as well as the direct physical one 

that at fixed ,. and 8, a ZAMO detects a lower temperature than a Lagrangian 

("moving") observer (7 > 1), except at the poles (9 =0, 11'). 

The geometrical interpretation is described in real Lorentzian-signature space­

time as an analog of the aging-of-identical-twins effect that is well known in special 

relativity. Fix,. and 8 (not at the north or south poles) and consider two identical 

twins: call them "Euler" and "Lagrange". Euler stays home while Lagrange follows 

a circular orbit at constant angular velocity w:, and returns home after the passage 

of P (physical period of trip) units of "universal" time t. The proper time duration 

of Euler's world line is, restoring ordinary units, 

(5) 

where p' is the total proper time for Lagrange's trip. Note that (3' > P': the stay­

at-home ZAMO ("inertial") twin Euler has aged more than Lagrange. The time (3' 

(in seconds) is converted formally to an inverse temperature (3 (in K -1) according 

to (3 ~ (3'k.",-l. Thus from (5) we recognize the anology between the ZAMO and 

Lagrangian temperatures and the Lorentzian "twin effect". 

The geometrical interpretation also can be associated directly with the com­

plexification N -+ -iN, V' -+ -iV', of the metric (1) whose corresponding action is 

used to obtain the stationary phase approximation to the partition function (Brown 

et ale 1991). (In another context, Mellor and Moss (1989) have also considered par­

ticular complex stationary black hole metrics.) In the complex geometry, in order 

to obtain an everywhere regular geometry, the slices defined by the scalar t are 

periodically identified with a period P given by 2?rc~-1 (~ contains the gravity con­

stant G) yielding a topology 52 x R2 for the complexified spacetime (Gibbons and 

Perry 1978; Gibbons and Hawking 1977). Multiplying (5) by kit -1, we obtain the 

temperature relation in terms of the proper lengths (in K -1) of the Lagrangian and 

Eulerian curves in the complex geometry. (The topology of the three-boundary 3 B 

of the complex spacetime is 52 X 51, where 52 is the topology of the axisymmetric 

two-boundary B. A Lagrangia.n curve in 3 B can be closed with the identification of 
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points (t, r, 8, ep) and (t +21r1C-1, r, 8, ep), and an Eulerian curve can be closed with 

the identification of (t, r, 8, ep) and (t + 211',,-1, r, 8, ep - 21r1C-1W). The difference 

is geometrically irrelevant because it amounts to a rotation of B along 8/8ep, which 

is an isometry of B.) 

Finally, let us point out a further aspect of characterizing the system by the 

ZAMO-measured temperature T = p-l at the boundary B. In the statement of 

the thermodynamic law of equilibrium change 

dS ={3 dE - {3w dJ + ... (6) 

for the system, the temperature will not be correctly identified without a corre­

sponding correct identification of w. Therefore, let us consider a process whereby 

energy is injected into the system from outside and through B such that the an­

gular momentum J is unaffected. For this to occur, the rp-eomponent of the four­

momentum per unit mass injected, wI" must vanish. Clearly, this means that 

(7) 

Therefore, the injection must be described by a four-velocity "aimed at the rotation 

axis" by the ZAMOs. Thus, the ZAMO-measured variables are singled out. 

That the angular velocity w:. of the system is spatially uniform while the 

"chemical potential" w depends on the location of B deserves comment. The former 

is necessary for maximum entropy of the system subject to conservation of total 

energy and angular momentum, while the latter refers to injection of matter from 

out&ide the system that conserves its total angular momentum but not its total 

energy E. 

In Brown et al. (1991a, 1991b), it was shown that the complexified action of 

general relativity singles out the proper ZAMO-measured boundary values p and 

w= N-1w at B, as well as their respective conjugates which are also boundary data 

at B. One also obtains directly the Bekenstein-Hawking value (A s /4)(kG-l1i,-1) 

for the black-hole entropy, where As is the area of the event horizon. The harmo­

nious relationships among the thermodynamics implied by extrema of the "classical" 
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action, the quantum principle, and applications of the maximum entropy principle 

are striking. Coupled with the fact that general relativity enables one to define 

all the microcanonical and canonical ensembles in terms of "black box" problems 

specified completely by boundary data and appropriate "actions", our results sug­

gest "general relativity as thermodynamics" and may imply that general relativity 

can be derived from some presumably deeper underlying framework such as string 

theory, information theory, or both. 

References 

Bekenstein, J.D. (1973) Black holes and entropy. Phy"icQ,l Review, D7, 2333-2346. 

Brown, J.D., G.L. Comer, E.A. Martinez, J. Melmed, B.F. Whiting, and J.W. York 

(1990) Thermodynamic ensembles and gravitation. Cltu"icQ,l Q,nd Quantum GrQ,vity, 

7, 1433-1444. 

Brown, J.D., E.A. Martinez, and J.W. York (1991a) Complex Kerr-Newman geom­

etry and black-hole thermodynamics. Pky"icQ,l Review Letter.s, 66, 2281-2284. 

Brown, J.D., E.A. Martinez, and J.W. York (1991b) Rotating black holes, complex 

geometry, and thermodynamics. In N onlineQ,r Problem.s in RelQ,tivity Q,nd Co.smol­

ogy, Eds J.R. Buchler, S.L. Detweiler, and J.R. Ipser, vol. 631 of the Annals of the 

New York Academy of Sciences, New York. 

Brown, J.D. and J.W. York (1992a) Formal structure of gravitational thermody­

namics. To be published. 

Brown, J.D. and J.W. York (1992b) Entropy, time, and temperature in the geometry 

of a rotating black hole. To be published. 

Callen, H.B. (1985) TkermodynQ,mic.s Q,nd Q,n Introduction to Tkermo.stQ,ti.stic.s, sec­

ond edition, John Wiley & Sons, New York. 

Carter, B. (1979) The general theory of the mechanical, electromagnetic and ther­
modynamic properties of black holes. In General Relativity, Eds S.W. Hawking and 

W. Israel, Cambridge University Press, Cambridge. 

Feynman, R.P. and A.R. Hibbs (1965) Quantum Mech,Q,nic.s and Path, Integrals, 

McGraw-Hill, New York. 

12 



•� 

Frolov, V. and K.S. Thome (1989) Renormalized stress-energy tensor near the 
horizon of a slowly evolving, rotating black hole. Phy,icQ,1 Review, 039, 2125­
2154. 

Gibbons, G.W. and S.W. Hawking (1977) Action integrals and partition functions 
in quantum gravity. PhyJica.l Review, 015, 2752-2756. 

Gibbons, G.W. and M.J. Perry (1978) Black holes and thermal Green functions. 
ProceedingJ of the ROyAl Society (London), A358, 467-494. 

Gross, D.J., M.J. Perry, and L.G. Yaffe (1982) Instability of flat space at finite 
temperature. Phy,icQ,1 Review, 025, 330-355. 

Hawking, S.W. (1975) Particle creation by black holes. CommunicQ,tion..s in MAth­

emAtiCAl Phy,icJ, 43, 199-220. 

Hawking, S.W. (1976) Black holes and thermodynamics. PhyJicAI Review, 013, 

191-197. 

Hill, T.L. (1963) ThermodynAmicJ of SmAll SyJtemJ, Part 1, W.A. Benjamin, New 

York. 

Hill, T.L. (1964) ThermodynAmicJ of SmAll SyJtemJ, Part 2, W.A. Benjamin, New 

York. 

Horwitz, G. (1966) Statistical mechanics of finite systems: Asymptotic expansions. 
I. JournAl of MAthemAtiCAl PhyJicJ, 7, 2261-2270. 

Israel, W. and J.M. Stewart (1980) Progress in relativistic thermodynamics and 
electrodynamics of continuous media. In GenerAl RelAtivity And GrAvitAtion. II. 

Plenum Press, New York. 

Mellor, F. and I. Moss (1989) Black holes and gravitational instantons. CIAJJicAl 

And QUAntum GrAvity, 6, 1379-1385. 

Prigogine, I. (1950) Remarque sur les ensembles statistiques dans les variables pres­
sion, temperature, potentiels chimique. PhyJicA, 16, 133-134. 

Smarr, L. and J.W. York (1978) Kinematical conditions in the structure of space­
time. PhyJicAl Review, D1T, 2529-2551. 

Tolman, R.C. (1930) On the weight of heat and thermal equilibrium in general 
relativity. PhyJicAl Review, 35, 904-924. 

13 



Whiting, B.F. and J.W. York (1988) Action principle and partition function for the 
gravitational field in black hole topologies. Ph.y,ical Review Letter" 81, 1336-1339. 

Wright, D.C. (1980) Black holes and the Gibbs-Duhem relation. Ph.y,ical Review, 
D21, 884-890. 

York, J.W. (1985) Black hole in thermal equilibrium with a scalar field: The back­
reaction. Phy,ical Review, D31, 775-784. 

York, J.W. (1986) Black hole thermodynamics and the Euclidean Einstein action. 
Phy,ical Review, D33, 2092-2099. 

Zannias, T. and W. Israel (1981) Local thermodynamics and stress tensor of the 
Hawking radiation. Phy,ic, Letter" 86A, 82-84. 

Zaslavskii, O.B. (1991) Canonical ensemble for rotating relativistic systems. 010.,­
,ical and Quo.ntum Gravity, 8, L103-L107. 

14� 



Discussion 

J .A. Wheeler: Your suggestion that general relativity may be derived someday 

from entropy or information-theoretic considerations is truly Inspiring. What do 

you foresee as the next step along the road? 

B~Y: Unlike what our questioner appears to be able to do, we do not feel able 
to "leap tall buildings in a single bound". We hope n~t to tum our attention to 

non-equilibrium. processes (dynamics) to see if the idea of "spacetime geometry as 

statistical thermodynamics" seems still to be valid. 

c. Teitelboim: There are "lower dimensional black holes" that come out of string 
theory. Have you looked at those from your point of view? 

B~Y: We have considered the possibility, but those two-dimensional black holes 

do not arise as extrema of some classical action in the usual way. It is therefore 

difficult to see how our methods, in which the classical action functional plays a 

central role, might be applied. 

J .B. Hartle: Do your results extend to the Weyl, static, axisymmetric, distorted 
black holes? 

B~Y: Yes. [See Geroch, R. andJ.B. Hartle (1982) Distorted black holes. Journal of 

Mathematical Phy&ic&, 23, 680-692.] We also expect to be able to treat stationary, 

axisymmetric, distorted black holes. We have not used any explicit properties of 

the Kerr metric in this discussion. Similarly, we have not used the Kerr-Newman 

fields explicitly in our referenced recent work, which includes the Maxwell field. 

R.W. Griffiths: Suppose there is a big star which blows up to form a black hole. 
Before the explosion I know how to find the total entropy in the part of the universe 
near this star-adding it up cubic meter by cubic meter. After the explosion I can 

calculate the entropy outside the black hole (or far away from it) as before.. If I 

then add in the entropy you calculate, has the entropy of this part of the universe 
gone up? 

B~Y: Yes. Bekenstein's "generalized second law", that the entropy of all the mat­
ter outside black holes, plus the entropy of black holes, is non-decreasing, appears 
to be valid when Hawking's results on black-hole radiance are taken into account. 




