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Abstract 

We study dynamical systems composed of a set of linearly coupled 
quadratic maps which, if uncoupled, would be on the Feigenbaum 
accumulation point. 

For two units we prove the existence of an infinite number of sinks 
for an open set of coupling parameters. In the limit of many units a 
mean field analysis also implies the stabilization in periodic orbits of, 
at least, a subset of the coupled units. 

Possible applications in the fields of control of chaos, signal pro
cessing through complex dynamics and as models of self-organization, 
are discussed. 
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1 Introduction 

In this paper we study dynamical systems composed of a set of linearly 
coupled quadratic maps 

Xi(t + 1) = 1 - J.L*{L Wij Xj(t)}2 (1) 
j 

with x E [-1,1], Lj Wij = 1 \fi and Wij > 0 \fi,j and J.L* = 1.401155.... The 
value chosen for J.L* implies that, in the uncoupled limit (Wii = 1, Wij = 0 
i =1= j), each unit transforms as a one-dimensional quadratic map in the 
accumulation point of the Feigenbaum period-doubling bifurcation cascade. 
The coupling constants Wij resembling the synaptic connections of a neural 
network, we call this system a Feigenbaum network. The system (1) has a 
rich dynamical behavior and linearly coupled systems of this type have been 
used in the past to model the dynamics of interacting populations[l] [2]. 

The quadratic map at the Feigenbaum accumulation point is not in the 
class of chaotic systems (in the sense of having positive Lyapunov exponents) 
however, it shares with them the property of having an infinite number of 
unstable periodic orbits. Therefore, before the interaction sets in, each ele
mentary map possesses an infinite diversity of potential dynamical behaviors. 
As we will show later, the interaction between the individual units is able 
to selectively stabilize some of the previously unstable periodic orbits. The 
selection of the periodic orbits that are stabilized depends both on the ini
tial conditions and on the intensity of the interaction coefficients W ij . As 
a result Feigenbaum networks appear as systems with potential applications 
in the fields of control of chaos, information processing and as models of 
self-organization. 

Control of chaos or of the transition to chaos has been, in recent years, 
a very active field (see for example Ref.[3] and references therein). Several 
methods were developed to control the unstable periodic orbits that are em
bedded within a chaotic attractor. Having a way to select and stabilize at 
will these orbits we would have a device with infinite storage capacity (or infi
nite pattern discrimination capacity). However, an even better control might 
be achieved if, instead of an infinite number of unstable periodic orbits, the 
system possesses an infinite number of periodic attractors. The basins of 
attraction would evidently be small but the situation is in principle more 
favorable because the control need not be as sharp as before. As long as the 
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system is kept in a neighborhood of an attractor the uncontrolled dynamics 
.itself stabilizes the orbit. 

The creation of systems with infinitely many sinks near an homoclinic 
tangency was discovered by Newhouse[4] and later studied by several other 
authors[5] [6] [7] [8] [9]. In the Newhouse phenomenon infinitely many attrac
tors may coexist but only for special parameter values, namely for a residual 
subset of an interval. Another system, different from the Newhouse phenom
ena, which also displays many coexisting periodic attractors is a rotor map 
with a small amount of dissipation[10]. 

In Sect. 2 we prove that with only two units and symmetrical couplings 
one obtains a system which has an infinite number of sinks for an open set of 
coupling parameters. Then, in Sect.3, we analyze the behavior of a Feigen
baum network in the limit of a very large number of units. Using a mean field 
analysis we show how the interaction between the units generates distinct pe
riodic orbit patterns throughout the network. The framework and motivation 
for studying chaotic (or chaotic-like) networks for signal processing and pat
tern recognition is then discussed, a simple example being presented in the 
Feigenbaum network setting. Finally, in SectA, we add a few conclusions and 
discuss some other systems, with similar behavior, which might be useful for 
practical designing purposes. 

A simple system with an infinite number 
of sinks 

Here we consider two units with symmetrical positive couplings (W12 

W21 = C > 0) 

Xl(t + 1) = 1 - /-L.. ((1 - C)Xl(t) + CX2(t))2 
(2)

X2(t + 1) = 1 - /-L .. (CXl(t) + (1 - C)X2(t))2 

The mechanism leading to the emergence of periodic attractors from a 
system that, without coupling, has no stable finite-period orbits is the perma
nence of the unstabilized orbits in a flip bifurcation and the contraction effect 
introduced by the linear coupling. The structure of the basins of attraction 
is also understood from the same mechanism. The result is: 
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Theorem: For sufficiently small c there is an N such that the system 
(2)� has stable periodic orbits of all periods 2" for n > N. 

Proof: 
The bifurcations leading to the Feigenbaum accumulation point at J.L .. 

are flip bifurcations. This means that, after each bifurcation, the orbit that 
looses stability remains as an unstable periodic orbit. Therefore, (for c = 0) 
at J.L = J.L .. the system (2) has an infinite number of unstable periodic orbits 
of all periods p = 2". 

The proof has two basic steps. First we need to prove that, for sufficiently 
small c =1= 0, these periodic orbits still exist in the system (2). Second, that 
for any such c, no matter how small, there is an N such that there is at 
least one stable orbit for all periods p = 2" with n > N. For both steps 
an important role is played by the instability factor, given by f(p)1 (xp ) at 
the fixed points xp of the p-iterated map. Therefore we will first find the 
behavior of this derivative for the periodic unstable orbits at J.L = J.L.. and 
c= O. 

Iterating once the Feigenbaum-Cvitanovic functional equation 

1 
- f

A 
0 f( -AX) = f(x) (3) 

and taking derivatives one concludes 

f(4)' (x) = / (;2) (4) 

Because A is the scaling factor that controls distances, if a fixed point of f(P) 

is located at x* the corresponding fixed point for f(4P) will be at x* A2 . Eq.(4) 
means that for the scaling function f, solution of the functional equation, the 
instability factor for all unstable periodic orbits is the same at J.L = J.L... The 
logistic function is not a solution of the functional equation, however it shares 
the scaling properties of this solution at J.L = J.L... Therefore the instability 
factor of the orbits at J.L.. will also converge to a fixed value. Numerically 
one finds this value to be around -1.6. The exact value is not important 
however, because what matters for the proof of our result is that it is a non
zero uniformly bounded value for all orbits. We may now proceed to the 
proof of the theorem. 

First step: Permanence of the periodic orbits for small c 

4 



From the fixed point equation 

x* = f(p) (x*)
IJ. ,c 

for a p-periodic orbit one obtains 

ax; = _ (Df}!.~c _1)-1 af}!.~~ (5)ac Dx ik ac 
Df{P)

From the result above one knows that, at c = 0, the Jacobian ;;,c is 
negative definite and bounded. Therefore, by the inverse function theorem, 
there is a c* > 0 such that for c < e* there are p-periodic orbits for all 
periods p = 2n . 

Second step: Stabilization of at least one orbit for all periods p = 2n with 
n> N(c) 

The stability of the periodic orbits is controlled by the eigenvalues of the 

Jacobian Jp = D~;),c in the fixed point of f~~~c. The map (2) is a composition 
of two maps II 0 h 

h : ( Xl ) -+ ( (1 - e)xl + eX2 )
X2 eXl + (1 - e)x2 

By the chain rule the Jacobian is 

with determinant 

p 

det Jp = (1- 2c)P(-2tL.)2p II xl(k)X2(k) (7) 
k::::l 

Because of the permanence of the periodic orbits, for small e, in the neigh
borhood of the original coordinates (those for e = 0) and the boundedness of 
the instability factor, the product of the last two factors in (7) is uniformly 
bounded for all p. Then for all sufficiently large p, Idet Jpl < 1. The question 
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is how this overall contraction is distributed among the two eigenvalues of 
Jp • 

For a periodic orbit of period p = 2n we define 

(8) 

For small c consider the linear approximation to the Jacobian Jp 

~p X(1)X(2) )(1 - pc)Xi~~ C~k=l l~ k+l~ 
( p (2) (1) 

C 2:k =1 Xl,kXk+l,p (1 - pc)Xi~ 

The eigenvalues are 

A± = !. (1 - pc) X(l) + X(2)2 l,p l,p 

1 (1 )2 (X(l) X(2»)2 2 ~p X(1)X(2) p (2) (1)± 2" - pc l,p - l,p + 4c ~k=l l,k k+l,p 2:k' =1 X l,k' X k' H,p 

(9) 
If the periodic orbit runs with the two coordinates Xl and X2 synchronized 
then 

A+ = Xl,p 

A_ = (1 - 2pc) X 1 ,p 

and the orbit being unstable for c = 0 it remains unstable for c # O. However 
if the two coordinates are out of phase by ~ steps the radical in Eq.(9) is 

~Q x(k) It.X(i)X(i + 1) .. x(i + ~ -1)1 
The existence of a superstable orbit for all periods p = 2n implies that 
at /1- = /1-* the product TI~=l x(k) has an odd number of negative-valued 
coordinates. Therefore the two eigenvalues are complex conjugate and, for 
small c, the contraction implicit in (7) is equally distributed by the two 
eigenvalues. Therefore for sufficiently large N all orbits of this type with 
p > 2N become stable periodic orbits. 0 

The attracting periodic orbits of the coupled system being associated to 
the unstable periodic orbits of the Feigenbaum cascade, it is clear that the 
basins of attraction will be controlled by neighborhoods of these orbits in 
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each coordinate Therefore one expects a checkerboard-type structure for 
the basins of attraction. 

Fig.l shows the structure of the basins of attraction of the orbits for 
c = 4 X 10-4 . We have used a mesh of 4000 x 4000, each point being an 
initial condition for the two units. The coupled system is allowed to evolve 
for 4 x 104 time steps after which the sequence is analyzed and its period 

212determined. Periods are detected up to Pmax = . The basins, labelled by 
the period of the orbits, are displayed using the color map in Table 1. The 
detected orbits have all periods from 25 to Pmax but some of the basins are 
so narrow that they cannot be seen in the figure. 

Period Colour Period Colour I 
24 lightred 29 cyan 
25 210red lightblue 

21126 yellow blue 
21227 lightgreen brown 

2/l green others darkgray 

Table I 

3 Feigenbaum networks with many units 

3.1 Mean-field analysis 

For the calculations below it is convenient to use as variable the net input to 
the units, Yi = 2: j WijXj. Then Eq.(I) becomes, 

N 

Yi(t + 1) = 1 - J.L* L Wijy](t) (10) 
j=l 

For practical purposes some restrictions have to be put on the range of 
values that the connection strengths may take. First, it is clear that for 
information processing (pattern storage and pattern recognition) it is impor
tant to preserve, as much as possible, the dynamical diversity of the system. 
That means, for example, that a state with all the units synchronized is un
desirable insofar as the effective number of degrees of freedom is drastically 
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reduced. From 

8Yi(t + 1) = -2fL.y(t)(Wii8Yi(t) + L: Wij8Yj(t)) (11) 
ji:i 

one sees that instability of the fully synchronized state implies 12fL.y(t)Wii I > 
1. Therefore, the interesting case is when the off-diagonal connections are 
sufficiently small to insure that 

(12) 

For large N, provided there is no large scale synchronization effect, a 
mean-field analysis is appropriate, at least to obtain qualitative estimates 
on the behavior of the network. For the unit i the average value < 1 
fl. Lj#i Wijy;(t) > acts like a constant and the mean-field dynamics is 

Zi(t + 1) = 1 - fLeff z;(t) (13) 

where 
(14) 

and 
fLi,ef f = fl. W ii < 1 - fl. L: Wiiy; > (15) 

j;t:i 

fLi,ef f is the effective parameter for the mean-field dynamics of unit i. From 
(12) and (15) it follows fl. Wii > fLi,eff > fl. Wii (2 - fl.). The conclusion is 
that the effective mean-field dynamics always corresponds to a parameter 
value below the Feigenbaum accumulation point, therefore, one expects the 
interaction to stabilize the dynamics of each unit in one of the 2n _ periodic 
orbits. On the other hand to keep the dynamics inside an interesting region 
we require fLi,eff > fL2 = 1.3681, the period-2 bifurcation point. With the 
estimate < y2 >= ~ one obtains 

(16) 

which, together with (12), defines the interesting range of parameters for 
Wii = 1 - L Wij . 

j#i 
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3.2 Feigenbaum networks as signal processors 

Recent studies of biological systems suggest that complex and chaotic dy
namics plays an important role in biological information processing[ll]. In 
the biological models the chaotic units are large interacting aggregates of 
neurons not the individual neurons themselves. It is therefore these aggre
gates that should be identified with the chaotic units in the mathematical 
models. 

In particular the evidence from the study of the mammalian olfactory 
system[12] [13] [14] [15] [16] is very interesting. The researchers that studied 
this system propose a strange attractor with multiple wings, each one being 
accessed depending on the initial conditions imposed by the external stimu
lus. However with one invariant measure associated to a unique attractor (no 
matter how many wings it possesses) we would expect the system to have a 
non-negligible probability to explore all regions, leading to unreliable pattern 
identification. It is probably better to consider that, to each external stim
ulus, corresponds a different invariant measure, a scheme that has recently 
been illustrated using simple Bernoulli units[17]. Whatever the exact dy
namical mechanism, schemes of this type where, from a low-intensity chaotic 
basal state, the system is excited into a different chaotic attractor, have a 
very high storage capacity due to the diversity of all possible dynamics and, 
on the other hand, display a very fast response time. The recognition time 
in the olfactory system (in the sense of the time needed to switch between 
two space-coherent patterns) being of the order of magnitude of the response 
time of individual neurons, it easy to conclude that a chaos-based mechanism 
is much more likely than the paradigm of attractor neural networks[18]. A 
recognition time of the same order of the magnitude as the cycle time is 
incompatible with the fixed point paradigm, but it is easy to understand in 
a chaos-based scheme. 

The Feigenbaum attractor is not chaotic, in the Lyapunov exponent sense. 
Nevertheless, as an accumulation point of period-doubling bifurcations it ac
cesses an infinite number of different periodic orbits and, in principle, is 
capable of processing a very large amount of information. As we have seen, 
a system of many such units, interacting through synaptic-type connections, 
is driven into periodic behavior by the coupling. The nature of the orbits 
reflects the pattern of synaptic connections and if these are obtained by a 
learning mechanism, through exposure to some external signal, the system 
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might act as a signal identifier. If, in addition, the external signal is made 
to modulate some of the inputs to the individual units, mechanisms of asso
ciative pattern recognition would be obtained. 

Let, for example, the Wij connections be constructed from an input signal 
Xi by a correlation learning process 

Wij -t W;j = (Wij + 17Xixj)e--Yfori # j 
(17)

Wii -t W;i = 1 - 2:#i Wij 

The dynamical behavior of the network, at a particular time, will reflect the 
learning history, that is, the data regularities, in the sense that Wij is being 
structured by the patterns that occur more frequently in the data. The de
cay term e--Y insures that the off-diagonal terms remain small and that the 
network structure is determined by the most frequent recent patterns. Al
ternatively, instead of the decay term, we might use a normalization method 
and the connection structure would depend on the weighted effect of all the 
data. 

In the operating mode described above the network acts as a signal identi
fier. For example if the signal patterns are random, there is little correlation 
established and all the units operate near the Feigenbaum point. Alterna
tively the learning process may be stopped at a certain time and the network 
then used as a pattern recognizer. In this latter mode, whenever the pattern 
{Xi} appears, one makes the replacement 

Wij -t W;j = WijXiXj for i # j (18)
Wii -t W;i = 1 - 2:#i Wij 

Therefore if Wij was # 0 but either Xi or Xj is = 0 then W;j = O. That is, the 
correlation between node i and j disappears and the effect of this connection 
on the lowering of the periods vanishes. 

If both Xi and Xj are one then W;j = Wij and the effect of this connection 
persists. Suppose however that for all the Wij's different from zero either 
Xi or Xj are equal to zero. Then the correlations are totally destroyed and 
the network comes back to the uncorrelated (nonperiodic behavior). This 
case is what is called a novelty filter. Conversely, by displaying periodic 
behavior, the network recognizes the patterns that are similar to those that, 
in the learning stage, determined its connection structure. Recognition and 
association of similar patterns is then performed. 
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A numerical simulation was made for a network of 100 units. During 
a learning phase a single binary pattern is presented many times and the 
network connections evolve according to the correlation learning method 
(Eq.(17)) and a normalization prescription. After this learning phase we 
display in Fig.2 the reaction of the network to several patterns which are 
presented to the network, in the sense of Eqs.(18). Presenting a pattern im
plies that the network connections change according to (17) and the system 
evolves from a random initial condition. As the system is sensible to the ini
tial conditions, we choose the same initial conditions for all patterns. Each 
presented pattern leaves a unique signature given by the set of periods to 
which each unit converges. The periods of each unit are measured after a 
transient delay of 2 x 104 time steps. 

In Fig.2 the first pattern that is presented to the network is the one that 
was memorized. The others are chosen in the following way: 

- the second is the complementary binary pattern to the one that was 
memorized. This pattern being non-correlated to the learned pattern, the 
network units become uncoupled and only very high periods are seen. 

- for the remaining patterns some bits are swapped (from °to 1) in the 
complementary pattern, forming new signals which are weakly correlated 
with the memorized one. The bit swapping structure is listed in Table II. 
The signature of the correlations is seen from the low periods that appear 
in some of the network units (Fig.2). The color map is the same as used in 
Sect. 2. 

pattern II correlated bits I 
memorized all 
1 none 
2 10,76 
3 10,20,76,89 
4 5,10,20,36,52,76,89,100 

Table II 
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4 Final remarks 

For its dynamical diversity and the selective stabilization effect of the cou
plings, Feigenbaum networks, both with few and with many units, seem to 
be a potentially interesting system for signal processing through complex 
dynamics and to model self-organization. 

As seen in Sect.2, the size of the basins of attraction of the sinks created 
by the coupling is controlled by the geometry of the pre-existing unstable 
periodic orbits and, as a consequence, are extremely small for large periods. 
It might therefore be useful for practical applications to be able to control the 
dynamics in a more efficient way. This implies departures from the simple 
linear coupling scheme of Eq.(I). For example we might use 

2 

X;(t + 1) = 1 - II. {X,(t) +t; W;jf(x;(t), Xj(t)) (Xj(t) - x;(t)) } (19) 

with 
f(x, y) = B(x)B(x - y) + B( -x)B(y - x) 

or the smooth version 

f(x, y) = ~ { 1 + tanh (~x) tanh (~(x - y)) } 

For small couplings this leads to a much larger shift to smaller values of the 
f..£i,e!! discussed in Sect.3. 

Alternatively we might think of using other maps, which also possess 
an infinite diversity of periodic behaviors. Consider for example a piecewise
linear dynamics for the units (x --1- (3x+a (mod.l)). For (3 > 1 the uncoupled 
dynamics is fully chaotic. However, through interaction, it is possible to 
select and stabilize an infinite number of periodic orbits. Consider a fully 
connected network with dynamics 

X;(t + 1) = (3 ( ~ W;jXj(t)) + '" (mod. 1) (20) 
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with Xi in the interval [0,1). For a large number of weakly correlated units 
a mean-field analysis as in Sect.3 leads to 

(21) 

where 
/3i,e!! = /3Wii (22) 

ai,e!! = a + /3 L WijXj (23) 
j:/:i 

If /3 > 1 the individual uncoupled units have an invariant measure absolutely 
continuous with respect to Lebesgue measure. However if /3i,e!! < 1 the 
dynamics of Eq.(21) has attracting periodic orbits of all periods, depending 
on the values of the parameters a e!! and /3e!! . The point of the periodic 
orbit with the smallest coordinate is obtained from[19] 

{3P) - (1 - /3f,e!!) P, (/3)(1 - i,e!! Xmin - ai,e!! (1 - (3. ) - P (24)
t,e!! 

where p is the period of the orbit and Pp(/3) is a polynomial in /3 

(25) 

where j (prime to p) is the jump number of the orbit and [n] denotes the 
integer part of n. 

Figure captions 

Fig.1 - Color coded basin of attraction periods for two units and c = 4 X 10-4 

Fig.2 - Color coded periods in a network of 100 units reacting to several 
patterns 
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