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Abstract 

Considering the time evolution of perturbations of the wave function along 

directions of the 6' type one obtains a notion of quantum sensitive dependence and 

quantum characteristic exponent resembling the corresponding classical quantities. 

These notions are proposed as a tool to <:haracterize quantum·chaos. 
J. 

From the study of some examples one concludes that quantum sensitive 

dependence and delocalization of the wave functions are independent questions. 

The numerical reversibility of classically chaotic quantum systems is discussed in 

the quantum sensitive dependence context. 
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1. Quantum sensitive dependence and characteristic exponents 

Chaos in classical mechanics is closely related to the notion of sensitive 

dependence on initial conditions, that is to the existence of at least one positive 

Lyapunov exponent. To attempt a similar characterization of quantum chaos, the 

notion of quantum sensitive dependence has been introduced1,2. This we recall briefly 

here. 

For some initial wave function 1/1(0), at t = 0, one considers an infinitesimal 

deformation 

"'(0) -+ "'6(0) = ",(0) + 6 .(0) (1.1) 

The separation in time of nearby initial conditions is then measured. by the expectation 

value of a· self-adjoint operator A 

~6( t) = (1P6(t ),A¢6(t» - (",(t),A¢(t» ~ 2 6 Re(~(t ),...(",(t» (1.2) 

We then s~y 'r!t(t~re is A - sensitive dependence at the state t/J if there is at least one. 

for which ~16:(O) is unbounded in time. Also, whenever the following limit exists 

AA.J. = lim T1 lnll Re(tP(T),A¢(T» II (1.3)
,'I' T-+oo 

it is called a A - quantum characteristic exponent at "'. Notice that with these 

definitions a quantum system may be A - sensitive depenfgt()fd the quantum 

characteristic exponent be zero, if the rate of growth of 11~6(~)11 is slower than 
exponential. 6 

H A is defined everywhere in Hilbert space, by the Hellinger-Toeplitz theorem it 

is a bounded operator. Hence if the vector ., that defines the deformation direction, 

belongs to the Hilbert space there cannot be any A-sensitive dependence along. and 

AA,tP =O. Therefore for deformation directions • in Hilbert space .A.-sensitive 

dependence is only possible if A is an unbounded operator. In contrast, for the classical 

notion of Lyapunov exponent, bounded. systems may have positive Lyapunovexponents 

even if the separation of the orbits is measured by a bounded varia.ble. This suggests 

that to obtain in quantum mechanics a notion resembling the classical Lya.punov 

exponent, tP should not be limited to Hilbert space vectors. We therefore generalize here 

the notion of .A. - quantum characteristic exponent to 
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(1.4)A.A,{~} = ~ ±~ InjIRe(~(T),.A~T»11 

where ?n is a sequence of functions that may converge to an element outside Hilbert 

space (in l' for example). 

To find what kind of deformation directions, in the space of functions, 

correspond to the classical notion of Lyapunov exponent, consider the definition of this 

exponent in terms of classical densities. We consider the case of one variable and then 

generalize to arbitrary number of variables. Let p(x) be the reference density for a 

system defined in the interval [a.,b] and Pn(x) a family of deformed densities 

Pn(x) - Pn(x) = £ '1n(x) (1.5) 

( J"Pn = Jp=l ). We now want to follow the separation in time of the two densities by 

computing the average value of the position 

(1.6) 

From the Frobenius-Perron operator3 fp(x) = ~p(f-lx)i Ilf f!1 II one obtains, by 
change of variables 1 (x)i I 

(~nx)k = f tk(x) {Pn(x) - p(x)} dx = £ f f'(x) '1n(x) dx (1.7) 

To obtain the Lyapunov exponent lim -k1 ~I fe'(Xo) II 
k-tOO 

from 

lim 1 lim In 
k-tOO k n 

(~x)k 
(~nx)o 

(1.8) 

one must now choose 

me'1n(x) = 6'(x - Xo) (1.9) 
Therefore to extract the Lyapunov exponent from the behavior of the densities the 

deformation direction no longer lies in Hilbert space. For higher dimensions the 

deformation directions to consider (again in 1') are directional derivatives of the 6. 

Notice that in (1.8) it is essential to consider first the limit in n and then the limit in k. 

This parallels the fact that in the classical definition of the Lyapunov exponent 

lim 1 lim In II d(Ax,k) II (1.10)
k-.oo k ~....o d(~,O) 
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the limit Ax...o must also precede the k-tOO limit. 

For quantum mechanics a similar modification of the initial probability density 

will be obtained if one considers the following deformations of the initial wave function 

,p .... 1/1 + C 0ic5(x - Xo) 
being understood that whenever necessary the calculations are performed with a 

sequence tPn of functions approaching the directional derivative of the delta.. Also the 

£....0 limit should be taken in such a way that terms of order (2 are negligible for all n. 

We now analyze some examples. 

2. The 4-dimensional Arnold's cat 

The, classical Arnold's cat4 is the following automorphism of the 2-torus 

(~,~) = f(Xl,x2) = (Xl +X2,XI +2x2) (mod. 1) (2.1) 
inducing in the covering plane R2 the linear mapping 

(2.2) 

The motion in the covering plane R2 or even in Sl x R is a simple transient motion with 

orbits flying away to infinity. It is the folding of both coordinates into a torus that is 

responsible for the mixing properties. 

IT one of the coordinates is interpreted as the configuration coordinate and the 

other as the momentum, the classical Arnold's cat is the time-one map of the following 

kicked Hamiltonian 

H x~ ~~( ) (2.3)= 2" - 2" L..J c5 t-n 
nEl 

The physical interpretation of this Hamiltonian is however crucial when one quantizes 

the theory. H it is interpreted as describing the motion of a periodically kicked particle 

living on a circle, then X2 (the conjugate momentum) is unbounded and the quantum 

theory has a transient absolutely continuous spectrum and no mixing properties. Hone 

imposes periodicity on X2 as well as on Xl' this has the effect of introducing a cut-off on 

momentum. When going to the quantum theory, in the same way as the periodic 

boundary conditions on Xl imply that only a discrete set of momenta are allowed, so the 
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x2-periodicity implies discreteness in Xl' The effective quantum. space is therefore 
2reduced to a grid of N- (fJ2 points. In general, quantization of a. system living in a 

continuous space does not, by itself, discretize the space. Periodicity in the conjugate 

momentum is therefore seen to be a condition which, when imposed in addition to 

quantization, naturally produces a quantum system qualita.tively different from the 

classical one. It is this cut-off in momentum that underlies the claimed failure of the 

correspondence principle in the work of Ford, Mantica and RistowS. 

There are however other physical interpretations of the Arnold's cat map. The 

classical map may be considered as the stroboscopic map of the Px =Px2 = 0 sector of 
1 

one of the following Hamiltonians 
2 2 

PXl PX2 ~ 
HI = 2"" + 2"" + x2 Pxl + Xl Px2 L.J c5(t-nT) (2.4a) 

nEZ 
2 2 

PXl PX2 { ~H2 = 2 + 2 + X2 Px1 + (Xl +X2) Px2 } L.J c5(t-nT) (2.4b) 
nel 

which describe (the small charge limit) of a charged particle constrained to move in the 

xl x2-torus under the influence of a tin1.e-dependent electromagnetic field. For the 

quantum theory of the Hamiltonian H2, Weigert6 has shown that for particular values 

of the kicking period T, the free evolution is the identity operator and the Floquet 

operator acting on the wave functions coincides with the classical evolution. 

Here, without making reference to any particular Hamiltonian, we simply specify 

a ~-dimensional Anwld'8 quantum cat as the quantum theory defined by the Floquet 

operator U 

(2.5) 

Eq.(2.5) defines a unitary evolution. Operating with Px- =~!!. ,the time evolution of 
1 1 UA-

the momenta is obtained and (2.5) completely defines a Juantum theory. Notice 

however that, except in special resonance conditions, the dynamics is different from the 

one associated with the Hamiltonians (2.4). 

The nth iterate of the map (2.2) and its inverse, in the covering space, are 

w - 2n+1 + w2n - 1 2n 2n 
_w- +w ]- n 1 [ (2.6&)f = {5 _w- 2n +w2n w-2n-l+w2n+l 
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2n_w2n +w- ] 
(2.6b) 

w2n - 1 +w- 2n+ 1 

1+~where (,J = -2- . 

Consider doubly periodic wave functions ,,(x) and a sequence of functions 4>n(x) 

approaching a directional derivative of the delta 

4>n(X) ... l o. 6(x - Xo) 
which may he represented in the basis {eiP. x1; Pt,P2 E Z}. Computing (Uk~ , xi Uk~) 

J4>n(f- k(x») xi v{f-k(x») d2x = Jf/>n(x) {(fl'x)i -mi(x,k)} ",(x) d2x 
The arguments of ~ and '" are computed using the matrices (2.6) mod.l. This is 

explicitly represented in the second integral where mi(x,k) is the integer to he 

subtract~ from (fl'x)i to obtain a value between zero and one. When Xo is a generic 

point that does not coincide with the discontinuities introduced by mi(x,k) and the 

sequence ~ tends to co. 6(x - Xo), the above integral is simply evaluated by 
~ J 

differentiation of (rx)i. Then 
Re(uk",-, Xl· Uk t/1) 21lim - lim In 't'Il - In w (2.7)

k-toOO k n-toOO Re(tPn, Xl· VJ) ("-to 

which coincides with the value of the classical Lyapunov exponent. 

3. Kicked motions on the circle and on the line 

The first Hamiltonian to be considered in this Section is 

H} = a p + V}(x) E 6(t -n) x E [0,1) (3.1) 
to which corresponds the classical map Z 

Xn+1 = xn +a Pn + 1 =Pn - V'(xn) (3.2) 
Models of this type have been used by several authors7-10 in the context of the theory 

of incommensurate crystals. The conditions on a and Vex) that correspond to point-like 

or to absolutely continuous spectrum of the Floquet opera.tor have been extensively 

characterized11. The Floquet opera.tor associated to (3.1) is 

U = e -a tx e -iVt(x) (3.3) 

which acts on the wave functions by 
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-i ~ Vt{x-jc.r) 

Uk ,p(x) = e j=O ,p(x-ka) (3.4) 

Both ,,(x) and V(x), in the above equation, are assumed to be periodically extended 

outside the interval [0,1). The computation of the matrix element 

(Uk5'(X-Xo),xUk,p(x») is straightforward and one obtains 

lim 1 In Re(Uk5', x Uk,p) = 0 (3.5)
k-.oo k Re(6', x ,p) 

Choosing other operators .A. to define the separation (1.2) of the wave functions, the 

result is similar. For example if .A. = - :; (the free kinetic energy) the matrix elements 

grow at most quadratically in time and the quantum characteristic exponent vanishes. 

This example also shows that the problem of localization or delocalization of the 

wave functions and quantum. sensitive dependence are different questions. Loca.liza.tion 

of the wave functions of time-periodic Hamiltonians is related to the nature of the 

spectrnm -of the Floquet operator, loca.Iiza.tioD corresponding to the point spectrum and 

delocal.ization (local decay) to the continuous spectrnm12,13. It is known11that, for the 

Hamiltonian (3.1), the spectrum of the Floquet operator may be either point-like or 

a.bsolutely continuous depending on c.r and V(x). However in both cases the quantum. 

characteristic exponent vanishes. The same situation is found for other kicked 

Hamiltonians. For example for the kicked rotator 

Ht = -2'::; + V2 (x) ~ S(t -n) x E [0,1) (3.7) 

with V2(x) =k cos(2rx) , it is known14 that for the situation of quantum resonance 

(c.r =~) the rotator energy grows quadratically in time for large times and the spectrum 

of the Floquet operator is continuous. However this does not necessarily imply non

vanishing quantum characteristic exponents. For example for the fundamental quantum 

resonance (c.r=integer) the evolution is simply 

Un,p(x) ... e - ink cos(2'Kx) ,p(x) 

and both the x - and :; - quantum characteristic exponents are zero. 

Let now the Hamiltonian (3.7) be defined on the whole line and V2(x) =~ ~, 
(1) 0), describing a free motion on the line with periodic harmonic kicks. In this case 

the Floquet operator is 
d2.7~ . c.r 

12r dx2U = e12 e

and the matrix element (Uk</>n, x Ukt/J) ... l (6', U-~Uk t/J) may be computed explicitly. 
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One obtains 

u- k x Uk = Ak x + Bk (-i ~) (3.8) 

with 
~l p 

= ~p~}~(1-~-P(~-Z)2 \~enO(l-~-P(~-z)2 
p-l 

= -~ L (k'(1_~-P(42_Z)2 
p odd pi 

where z =7 ~ 

The matrix element (6', U -lscuk t/J) is now obtained by differentiation of (3.8). 

One has two cases which correspond to the classical elliptic and hyperbolic situations. In 

the elliptic case (z < 4) 
Re(Uk6', x Uk1j7)1lim -k In = 0

k-.oo Re(15', x t/J) 

and the hyperbolic case (z > 4) 
k

lim 1 In Re(U 5', xUk",) = In Ill_~_~Z2 -zll 
k-.oo k Re(5', x t/J) 2 4 

which coincides with the classical results. The elliptic and the hyperbolic cases 

correspond15 respectively to point-like and to continuous spectrum. This is therefore a. 

case where the continuous spectrnm a.ppears together with positive quantum exponents 

although, as emphasized above, the two questions seem to be independent. On the other 

hand, in the examples that were studied, the quantum characteristic exponents are 

closely related to the corresponding classical quantities. Why is it then that the 

quantum dynamics of classically chaotic systems looks so different from the classical 

behavior. One possible reason is discussed in the next section. 

4. Numerical reversibility of quantum evolution 
The exponential separation of the orbits in classical chaotic systems implies that 

reversal of the time evolution cannot, in practice, be carried out in computer 

experiments. The numerically computed time evolution reproduces backwards the 

history of the system only for a short time, that is, the memory of the initial state is 

quickly lost because of the exponential amplification of the round off computer errors. 



For this reason the lack of numerical reversibility became to be thought of as the true 

mark of dynamical chaos. 

Numerical experiments16,17 on time reversal of the quantum evolution of 

classically chaotic systems have however shown that the evolution can be traced back to 

the initial state just by reversing the phases in the Fourier expansion of the wa.ve 

function. Furthermore, that reversibility is largely unaffected by a. sma.Il change in the 

pha.seJ before reversal. The discussion of quantum sensitive dependence in the preceding 

sections may shed some light into this question. In fact there is a remarkable difference 

between the effect of round off errors in the usual computer simulations of classical and 

of quantum systems. 

In simulations of classical systems one follows the phase-space orbits and the 

computer simulations essentially explore all directions in phase-space, both the stable 

and the Unstable ones (those with positive Lyapunov exponents). For quantum systems 

the simulations compute a finite number of Fourier coefficients of the wave function in 

some basis. Now, as we have seen above, exponential. growth of the matrix elements of 

bounded operators can only be obtained for deformations of the wave function along 

directions outside Hilbert space, namely of the 6' type. For a 6'(x - Xo) in the circle the 

n-th Fourier coefficient is i n e - inxo. The coefficient grows with the order of the 

Fourier mode and no finite tnmcation can correctly approximate 6'(x - JCo). An error in 

a computer simulation is an error in a finite number of Fourier modes, hence it is a 

deformation of the wave function along a direction inside Hilbert space. Therefore it is a 

deformation along a stable direction for which the characteristic exponent vanishes. 

Even if one considers unbounded operators (like the kinetic energy) to measure orbit 

separation in (1.2), it is found that the deformations along Hilbert space vectors; lead. 

in general at most to polynomial growth of the matrix elements in (1.3). Therefore there 

might be ..A. - sensitive dependence, according to the definition in Section 1, but the 

tP - characteristic exponent vanishes. 
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