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Sensitive dependence in quantum systems : Some examples and
results ‘
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Abstract

Considering the time evolution of perturbations of the wave function along
directions of the &’ type one obtains a notion of quantum sensitive dependence and
quantum characteristic exponent resembling the corresponding classical quantities.
These notions are proposed as a tool to characterize quantum chaos.

From the study of some examples one concludes that quantum sensitive

dependence and delocalization of the wave functions are independent questions.
* The numerical reversibility of classically chaotic quantum systems is discussed in

the quantum sensitive dependence context.
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1. Quantum sensitive dependence and characteristic exponents

Chaos in classical mechanics is closely related to the notion of sensitive
dependence on initial conditions, that is to the existence of at least one positive
Lyapunov exponent. To attempt a similar characterization of quantum chaos, the
notion of quantum sensitive dependence has been introduced!*2. This we recall briefly

here.

For some initial wave function %(0), at t =0, one considers an infinitesimal
deformation

¥(0) =+ 95(0) = ¥(0) + 5 4(0) (1.1)
The separation in time of nearby initial conditions is then measured by the expectation
value of a-self-adjoint operator A
Ag(t) = (95(t),Av5(t)) — (w(t),4¥(t)) = 2 & Re(g(t),Av(t)) (1.2)
We then say g.t (ttS) e i3 A — sensitive dependence at the state ¢ if there is at least one ¢
for which l}r&] Z% is unbounded in time. Also, whenever the following limit exists
)
= lim i Inl
Ag¢ = bm g lofRe(#(T),44(T))] (1.3)

it 1s called a A - quantum characteristic ezponent at ¢. Notice that with these

is slower than

definitions a quantum system may be A —sensitive depen Ai; ® d the quantum
characteristic exponent be zero, if the rate of growth of Kéﬁ)?l]
5(0) |

exponential.

If 4 is defined everywhere in Hilbert space, by the Hellinger-Toeplitz theorem it
is a bounded operator. Hence if the vector ¢, that defines the deformation direction,
belongs to the Hilbert space there cannot be any A —sensitive dependence along ¢ and
Mg = 0. Therefore for deformation directions ¢ in Hilbert space A —sensitive
dependence is only possible if A is an unbounded operator. In contrast, for the classical
notion of Lyapunov exponent, bounded systems may have positive Lyapunov exponents
even if the separation of the orbits is measured by a bounded variable. This suggests
that to obtain in quantum mechanics a notion resembling the classical Lyapunov
exponent, ¢ should not be limited to Hilbert space vectors. We therefore generalize here

the notion of A —quantum characteristic exponent to



A (o} = B lim, | Re(en(T),44(T))| (1.4)

where ¢, is a sequence of functions that may converge to an element outside Hilbert

space (in ¥ for example).

To find what kind of deformation directions, in the space of functions,
correspond to the classical notion of Lyapunov exponent, consider the definition of this
exponent in terms of classical densities. We consider the case of one variable and then
generalize to arbitrary number of variables. Let p(x) be the reference density for a
system defined in the interval [a,b] and py(x) a family of deformed densities

Pu(x) —pn(x) = €nq(x) (1.5)
( fpPn= fp=1). We now want to follow the separation in time of the two densities by

computing the average value of the position

(anx)y = [x (Fpn(x) - p(x)} dx (1.6)
From the Frobenius-Perron operz-).tor3 fp(x) = Zp(f 1 ) +1 one obtains, by
change of variables “ Pt~ "x); “
(anx)y, = [ (pal®) - p(x)} dx = ¢ [H(x) p(x) dx (L7)
To obtain the Lyapunov exponent }‘12;0 % ln" fkl(xo) “ from
.1 (Anx)y
i § vt =
one must now choose
ligg ma(x) = #(x—%o) 19)

Therefore to extract the Lyapunov exponent from the behavior of the densities the
deformation direction no longer lies in Hilbert space. For higher dimensions the
deformation directions to consider (again in ¥) are directional derivatives of the &.
Notice that in (1.8) it is essential to consider first the limit in n and then the limit in k.
This parallels the fact that in the classical definition of the Lyapunov exponent

(1.10)
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the limit Ax-0 must also precede the k-soo limit.

For quantum mechanics a similar modification of the initial probability density
will be obtained if one considers the following deformations of the initial wave function

¥ ¥ + € d.5(x—xo)
being understood that whenever necessary the calculations are performed with a
sequence ¢ of functions approaching the directional derivative of the delta. Also the
-0 limit should be taken in such a way that terms of order ¢* are negligible for all n.

We now analyze some examples.

2. The 4-dimensional Arnold’s cat
The. classical Arnold’s cat? is the following automorphism of the 2-torus
(x1,%0) = f(x1,%5) = (%1 +%,%; +2x;) (mod. 1) (21)

inducing in the covering plane R? the linear mapping

o[ 11
f:{l 2} (2.2)

The motion in the covering plane R? or even in S! xR is a simple transient motion with
orbits flying away to infinity. It is the folding of both coordinates into a torus that is

responsible for the mixing properties.

If one of the coordinates is interpreted as the configuration coordinate and the
other as the momentum, the classical Arnold’s cat is the time-one map of the following
kicked Hamiltonian

2

H=732- -’;lnzejza(t_n) (2.3)
The physical interpretation of this Hamiltonian is however crucial when one quantizes
the theory. If it is interpreted as describing the motion of a periodically kicked particle
living on a circle, then x, (the conjugate momentum) is unbounded and the quantum
theory has a transient absolutely continuous spectrum and no mixing properties. If one
imposes periodicity on x, as well as on x,, this has the effect of introducing a cut-off on
momentum. When going to the quantum theory, in the same way as the periodic
boundary conditions on x, imply that only a discrete set of momenta are allowed, so the



Xo-periodicity implies discreteness in x,. The effective quantum space is therefore
reduced to a grid of N%- (%)2 points. In general, quantization of a system living in a
continuous space does not, by itself, discretize the space. Periodicity in the conjugate
momentum is therefore seen to be a condition which, when imposed in addition to
quantization, naturally produces a quantum system qualitatively different from the
classical one. It is this cut-off in momentum that underlies the claimed failure of the

correspondence principle in the work of Ford, Mantica and Ristow®.

There are however other physical interpretations of the Arnold’s cat map. The
classical map may be considered as the stroboscopic map of the Px, = Px, = 0 sector of
one of the following Hamiltonians

2 2
Px Px
H, = T‘ + 72 + X2 Px, + X1 Px, n§e:l6(t-nT) (2.4a)
2 2
Px Px
H, = —2—1' + —22 +{Xg Px, + (Xl +x2) pxz} E :Zs(t"nT) (2‘4b)
ne

which describe (the small charge limit) of a charged particle constrained to move in the
X,X,-torus under the influence of a time-dependent electromagnetic field. For the
quantum theory of the Hamiltonian H,, VVeigert6 has shown that for particular values
of the kicking period T, the free evolution is the identity operator and the Floquet

operator acting on the wave functions coincides with the classical evolution.

Here, without making reference to any particular Hamiltonian, we simply specify
a 4-dimensional Arnold’s quantum cat as the quantum theory defined by the Floquet
operator U

¥(X1,Xz) = ¥(x1,%;) = ¢(f_1(x1,x2)) = U ¢(x;,x,) (2.5)

Eq.(2.5) defines a unitary evolution. Operating with Px, =% 6% , the time evolution of
the momenta is obtained and (2.5) completely defines a ciua.ntum theory. Notice
however that, except in special resonance conditions, the dynamics is different from the

one associated with the Hamiltonians (2.4).

The nth iterate of the map (2.2) and its inverse, in the covering space, are

w——2n+l+w2n—1 _u—2n+w2n

- 35 _w-—2n+u2n w-—2n-—1+w2n+1 (2.6a)



w2n+1+w—2n—1 —w2n+w—2n .
- E —-w2n+w—2n wzn-1+w-2‘n+1 (26b)

where w= 5

Consider doubly periodic wave functions y(x) and a sequence of functions ¢,(x)
approaching a directional derivative of the delta

¢n(x) ~» € 9 8(x —xo)
which may be represented in the basis {e]p‘ ; P1sP2 € Z}. Computing (Uk<1>n ) X; Uk¢)

Joalt750) % A E) dx = [onl0) (Fx);-miick)} wx) d

The arguments of ¢, and ¢ are computed using the matrices (2.6) mod.1. This is
explicitly represented in the second integral where mi(xk) is the integer to be
subtracted from (ka)l to obtain a value between zero and one. When x, is a generic
point that does not coincide with the discontinuities introduced by mi(x,k) and the
sequence ¢, tends to caj §(x —x,), the above integral is simply evaluated by
differentiation of (%‘"x)1 . Then

Re(Uksy, x; Uky)

= U2 -
R 9) | - ° ®1)

li 1
koo K

lim In l
n—o0
which coincides with the value of the classical Lyapunov exponent.

3. Kicked motions on the circle and on the line
The first Hamiltonian to be considered in this Section is

Hy, = ap + Vy(x) ) 6(t-n) x€[0,1) (3.1)

to which corresponds the classical map z
Xp+1= *nte Pp4+1=Po—V'(xn) (32)
Models of this type have been used by several authors’ 10 in the context of the theory
of incommensurate crystals. The conditions on a and V(x) that correspond to point-like

or to absolutely continuous spectrum of the Floquet operator have been extensively
characterized!1. The Floquet operator associated to (3.1) is

Uze Tdx o~iVi(x) (3.3)
which acts on the wave functions by



-1 E Vi(x-je)

Uk ¥(x) = e =0 ¥(x —ka) (3.4)
Both y(x) and V(x), in the above equation, are assumed to be periodically extended
outside the interval [0,1). The computation of the matrix element

(Uks' (x-x0) xUkal:(x)) is straightforward and one obtains
pe 1o Re(UXs, x Uky)| _
k—oo k Re(5' X "')

(3.5)

Choosing other operators A to define the separation (1.2) of the wave functions, the
result is similar. For example if A = _8 (the free kinetic energy) the matrix elements
grow at most quadratically in time and the quantum characteristic exponent vanishes.

This example also shows that the problem of localization or delocalization of the
wave functions and quantum sensitive dependence are different questions. Localization
of the wave functions of time-periodic Hamiltonians is related to the nature of the
spectrum of the Floquet operator, localization corresponding to the point spectrum and
delocalization (local decay) to the continuous spectn1m12’13. It is knownllthat, for the
Hamiltonian (3.1), the spectrum of the Floquet operator may be either point-like or
absolutely continuous depending on a and V(x). However in both cases the quantum
characteristic exponent vanishes. The same situation is found for other kicked
Hamiltonians. For example for the kicked rotator

H, = ——2—- + V,(x) E 5(t —n) x €[0,1) (3.7)

with V,(x) =k cos(2xx), it is knownl4 that for the situation of quantum resonance
(a= -g-) the rotator energy grows quadratically in time for large times and the spectrum
of the Floquet operator is continuous. However this does not necessarily imply non-
vanishing quantum characteristic exponents. For example for the fundamental quantum
resonance (a=integer) the evolution is simply

Uly(x) e—iD k cos(2xx) ¥x)
and both the x— and ax3 — quantum characteristic exponents are zero.

Let now the Hamiltonian (3.7) be defined on the whole line and V,(x) =% x2,
(y>0), describing a free motion on the line with periodic harmonic kicks. In this case

Y 18
U=CX2 2de2

and the matrix element (Uk¢n, x Uka/:) -€ (6’ , U™ kyyk ¢) may be computed explicitly.

the Floquet operator is



One obtains

U-kxuk = AL x + B (-i ) (3.8)
with ) o )
=3 D QOG- R Q0P EF
K , Bl
oy = -1 % (0-§F -0

where z =7 §

The matrix element (6’, U~ kyk qb) is now obtained by differentiation of (3.8).
One has two cases which correspond to the classical elliptic and hyperbolic situations. In
the elliptic case (z < 4)

1 Re(UXs', x Uky)|
im ¢ In ! Re(#, X 9) " =0

and the hyperbolic case (z > 4)

k k
1 | Re(uEs, x URy)| “ .
kﬂ“oo k lnl Re(#, x ¥) =In 1“5"‘]’4?"2

which coincides with the classical results. The elliptic and the hyperbolic cases
correspond15 respectively to point-like and to continuous spectrum. This is therefore a
case where the continuous spectrum appears together with positive quantum exponents
although, as emphasized above, the two questions seem to be independent. On the other
hand, in the examples that were studied, the quantum characteristic exponents are
closely related to the corresponding classical quantities. Why is it then that the
quantum dynamics of classically chaotic systems looks so different from the classical

behavior. One possible reason is discussed in the next section.

4. Numerical reversibility of quantum evolution

The exponential separation of the orbits in classical chaotic systems implies that
reversal of the time evolution cannot, in practice, be carried out in computer
experiments. The numerically computed time evolution reproduces backwards the
history of the system only for a short time, that is, the memory of the initial state is
quickly lost because of the exponential amplification of the round off computer errors.



For this reason the lack of numerical reversibility became to be thought of as the true
mark of dynamical chaos.

16,17 . time reversal of the quantum evolution of

Numerical experiments
classically chaotic systems have however shown that the evolution can be traced back to
the initial state just by reversing the phases in the Fourier expansion of the wave
function. Furthermore, that reversibility is largely unaffected by a small change in the
phases before reversal. The discussion of quantum sensitive dependence in the preceding
sections may shed some light into this question. In fact there is a remarkable difference
between the effect of round off errors in the usual computer simulations of classical and

of quantum systems.

In simulations of classical systems one follows the phase-space orbits and the
computer simulations essentially explore all directions in phase-space, both the stable
and the unstable ones (those with positive Lyapunov exponents). For quantum systems
the simulations compute a finite number of Fourier coefficients of the wave function in
some basis. Now, as we have seéen above, exponential growth of the matrix elements of
bounded operators can only be obtained for deformations of the wave function along
directions outside Hilbert space, namely of the & type. For a §(x—xo) in the circle the
n-th Fourier coefficient is i n e " '™©, The coefficient grows with the order of the
Fourier mode and no finite truncation can correctly approximate &(x —xp). An error in
a computer simulation is an error in a finite number of Fourier modes, hence it is a
deformation of the wave function along a direction inside Hilbert space. Therefore it is a
deformation along a stable direction for which the characteristic exponent vanishes.
Even if one considers unbounded operators (like the kinetic energy) to measure orbit
separation in (1.2), it is found that the deformations along Hilbert space vectors ¢ lead
in general at most to polynomial growth of the matrix elements in (1.3). Therefore there
might be A-—sensitive dependence, according to the definition in Section 1, but the
# — characteristic exponent vanishes.
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