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1 Introduction 

Computational Physics is, in a sense, like social science or politics. Social dis­
tortions cannot be solved by just throwing money at the problems. Likewise, in 
computational physics, very seldom can a problem be satisfactorily solved by just 
flooding it with GFLOPS. In both cases a careful formulation of the problem, 
a qualitative understanding and, at least, a good qualitative solution should be 
found before the large investment or the heavy numerics stage is reached. 

In computational physics one starts from a physical problem for which 
there is some general mathematical model. By. mathematical model I mean 
a set of differential equations, an operator relation in Hilbert space, etc. If the 
mathematical model cannot be solved exactly, an algorithm must be developed 
for the numerical or symbolic evaluation of the model. Notice however that, 
in general, an algorithm derived from the mathematical model solves not only 
our original physical problem but also all the physical problems compatible with 
the same mathematical model. Therefore, instead of using a general purpose 
algorithm, it is often convenient to devote some time to make the algorithm 
specific to the problem at hand. This has a good payoff in terms of computer 
time, simplicity and reliability of the algorithm. 

Once we have decided on an algorithm, the last step is to put it on a com­
puting machine. This step should also be taken with extreme care. Do not 
forget that, because of the finite memory, computers are finite-state machines, 
not Turing machines. For example: because of discretization no computer can 
ever be equivalent to a continuous differential equation and there are well-known 
examples where the discrete-time version is qualitatively different from the con­
tinuous one. Therefore the results coming from the computer should always be 
carefully controlled. This control may take the form of a convergence proof, an 
analytical error estimate or the agreement of the numerical results with known 
analytical solutions for some limit value of the parameters. 

In Sects. 2 and 3 of these lectures I will describe two computational problems 
which are handled following this methodology. The first concerns the problem of 
boundary layer control in fluid dynamics, a problem of great concern in aviation 
and submarine propulsion and the second deals with attempts to avoid the minus­
sign problem in Quantum Monte-Carlo simulations involving fermions. 

The important computational lesson to be learned from the boundary layer 
study is that, by specializing the fluid equations to the concrete physical prob­
lem, a considerable simplification is obtained. Then, instead of having to deal 
with time-consuming general purpose finite-element codes, results of comparable 
precision are obtained with simple and fast finite-difference implicit algorithms. 
Furthermore, the prior derivation of approximate analytical solutions, provides a 
good control on the numerical results and simple design formulas. 

For the minus sign problem in quantum Monte-Carlo the lesson to retain 
is that it is basically a representation problem. Therefore it cannot solved by 
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improving statistics with faster computers. The solution lies in finding a repre­
sentation that minimizes the effect or that eliminates it altogether. 

A second point that I would like to emphasize is that the role of the com­
putational physicist is not just to solve physical problems that require long or 
sophisticated computational techniques. It is also to develop (and make available) 
efficient tools which other scientists may use in their day to day numerical work. 
This concerns not only new tools for theoretical calculations, as discussed in Sect. 
6, but also the development of efficient algorithms for the analysis of experimental 
data. Let us not forget that Natural Sciences are experimental sciences and, in 
the hard job of decoding Nature, every bit of help is welcome. This is illustrated 
in Sections 4 and 5, which deal with methods to analyze non-Gaussian data and 
algorithms for particle track recognition. 

Last but not least, let me point out that the kind of approach towards com­
putational physics, that is advocated in Sects. 2 and 3, has as a side benefit the 
effect of democratizing computational physics, in the sense that many problems 
which by brute force methods are only accessible in the fastest parallel super­
computers, become feasible with far more modest computer means. This does 
not mean that high performance computing (HPC)[l] is not needed. Much to 
the contrary, the efforts to improve computer hardware and software should be 
vigorously pursued. What I mean is that the new developments in HPC, coupled 
with a careful and economical approach to computational physics, will allow us 
to solve even more difficult problems. 

Boundary layer control. A problem in fluid 
dynamics 

\Vhether a flow is laminar or turbulent, the effects of the viscosity of the fluid are 
greatest in regions close to solid boundaries. The region close to the boundary, in 
which the velocity varies from zero, relative to the surface, up to its full value, is 
called the boundary layer. The concept of boundary layer introduced by Prandtl 
in 1904, was a most significant advance in fluid dynamics, in the sense that it 
simplified the study by separating the flow in two parts: (1) the region where 
velocity gradients are large enough to produce appreciable viscous forces - the 
boundary layer itself - and (2) the external region where viscous forces are negligi­
ble compared to other forces. From the computational point of view the concept 
of boundary layer also plays a significant role because, rather than having to deal 
with time-consuming general purpose finite-element codes, results of comparable 
precision may be obtained by fast and relatively simple finite-difference implicit 
algorithms. 

When a fluid flows past a solid body, an airfoil for example, a laminar bound­
ary layer develops, in general only for a very small distance near the leading edge, 
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followed by a transition to a turbulent boundary layer. Nevertheless, because near 
the solid wall velocity fluctuations must die out, below the turbulent region there 
always is a laminar sub-layer which in general is very small (of the order of a 
micrometer). The transition from the laminar to the turbulent region is con­
trolled by the local Reynolds number, defined in terms of the effective width of 
the boundary layer. It also depends on the smoothness of the surface and on the 
external perturbations. The skin friction drag is proportional to the gradient of 
the longitudinal velocity at the solid boundary. Because of the mixing properties 
of the turbulent layer, the gradient in the laminar sub-layer is much greater than 
the gradient at a fully laminar layer. Therefore transition from a laminar to a 
turbulent layer greatly increases the skin friction drag. 

Because of the very large ratio between laminar and turbulent skin friction 
drag, much effort has been devoted to develop techniques to delay the transition 
as a means of decreasing fuel consumption and noise. Some of the active control 
techniques that have been proposed include suction of slow-moving fluid through 
slots or a porous surface, use of compliant walls and wall cooling (or wall heating 
for liquids). Injection of fast-moving fluid, on the other hand, is effective in 
avoiding separation but it increases turbulence. Most of these ideas are fairly old 
(see for example [2],[3]) however, in view of their interest for the applications and 
to obtain a more accurate characterization of the physical mechanisms, studies 
of boundary layer control using these aerodynamic methods are still, at present, 
being vigorously pursued (see for example [4] [5] [6] [7] and papers in [8]) 

Another class of techniques for active boundary layer control consists in acting 
on the flow by means of electromagnetic forces. Here different techniques should 
be envisaged according to whether the fluid is weakly conducting (an electrolyte 
like seawater or an ionized gas) or a good conductor (like a liquid metal). Pro­
posals for boundary layer control by electromagnetic forces are also relatively old 
and trace its origin at least to the papers of Gailitis and Lielausis[9], Tsinober 
and Shtern[lO] and Moffat[ll] in the sixties. Interest in these techniques has 
revived in recen t years and some more accurate calculations and experimental 
verifications have been carried out, mostly in the context of electrolyte fluids[12] 
[13]. 

Here I will be concerned with the flow of air along an airfoil when a layer 
of ionized air is created on the boundary layer region. I will assume that a 
stream of ionized air is injected through a backwards facing slot placed slightly 
behind the stagnation point (Fig.!) and the body force acting in the ionized 
fluid is a longitudinal (along the flow) electric field created by a series of plate 
electrodes transversal to the flow and placed inside the airfoil with the edges on 
the airfoil surface. The control of the boundary layer profile, to delay the laminar 
to turbulent transition, is in this example the physical problem. 
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2.1 The boundary layer equations 

Orthogonal curvilinear coordinates are used, with x parallel to the surface along 
the flow and y normal to the surface. If Kb is small (K denoting the curvature 
and b the boundary layer width) the conservation and momentum equations in 
the incompressible fluid approximation may be written 

(1 ) 

up (£::12-u u 1 - ___uu~- _uu~- 1 £::1- _ U ~2-)'u 
u £::1- + v a- = --=- £::1- -+- V ~-2 + £::1-2 + -=-O'e(x,y)Ex(x,y) (2) 

uX Y Pm uX uX uy Pm 

_ov _ov 1 a:p _(a2v 02V) 1 - (- -)E (__) (3)u £::1- +V £::1- = --=- £::1- +V £::1-2 + £::1;';"2 + -=-O'e x,y y x,y
uX uy pm uy uX uy pm 

U and vare the components of the fluid velocity field along the x and y directions. 
The tilde denotes quantities in physical dimensions to be distinguished from the 
adimensional quantities defined below. Eqs.( 1-3) are the mathematical model 
for our problem. 

Consider now typical values Lr , br, Ur, pr,Vr,O'r, Er as reference values for, 
respectively, the airfoil width, the boundary layer width, the fluid velocity, the 
fluid mass density, the kinematic viscosity, the fluid charge density and the electric 
field. Then one may define adimensional quantities 

(4 ) 

(5) 

v 0' 
V=-,O'=-, (6)

Vr O'r 
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In general RL » 1. Neglecting terms of order ~ and £- one obtains 
L r 

OU + ov = 0 (7)
ax ay 

ou ou 1 op 02u 1 
u- + v-a = ---0 + VW o 2 + ,-u(x,y)E:r:(x,y) (8)ox Y Pm X Y pm 

~~ = 1: ,u(x,y)E~(x,y) (9) 

where W = of;' = f{~r and, = L[;~rEr. Unless the electric field component 
r L r r r Pr 

normal to the airfoil is very large, one has ~ ~ 0 and the pressure term in the 
second equation may be expressed in terms of the fluid velocity U e far away from 
the airfoil 

OU Ou OUe 02U 1 
U- +V- = U e - + VW 2 +,-u(x,y)E:r:(x,y) (10)

Ox Oy ox OY Pm 

To take into account turbulence effects one should also replace in (10) the velocity 
fields u~nd v by U + u' and v + v', u' and v' being fluctuation fields with zero 
mean, u ' = 0, v' = O. The effect of the turbulent field on the mean flow is now 
obtained by taking mean values. In a two-dimensional turbulent boundary layer 
the dominant eddy stress is -U'Vi. Assuming the eddy shear stress -u' v' and the 
mean rate of strain ~~ to be linearly related 

I I ou 
-u V = t- (11 )oy 

one obtains finally 

(12) 

with 
.8=1+-

(.

(13) 
W 

being, in general, a function of y through the dependence of the eddy viscosity t .' 

on the local velocity field . .8 should be obtained from a turbulence model. 
To analyze the scaling solutions and for the numerical calculations of Sect.2.3 

define a stream function ?/J and make the following change of variables 

Ue )! y (14 ) (TJ = vw ~(x) 

1 
1); = (UeVw)· ~(x)J(x, TJ) (15) 
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81/J 81/J
'U = -, v =-- (16)

8y 8x 

The continuity equation (7) is automatically satisfied by (16) and one is left with 

8 (/3 82f ) t8~f82f t 28 'U e t 2 (olf8f 8f 82f) _ I '2() ( )E
x 
( )- - +.. - -+.. -+l" \-- - --- - r X (1 X,71 X,71

871 871 2 8x 871 2 8x', 8ryl 8x 871 8718x 'UePrr. .. 
. (17) 

This is now the only equation to be solved. It provides an accurate description of 
the boundary layer dynamics and, of course, is simpler than the full Navier-Stokes 
equation. It is therefore for this equation that an algorithm will be developed 
below. It turns out that it may be reliably solved by an implicit finite-difference 
method. 

Before dealing with the numerical solution of Eq.( 17), approximate analytical 
solutions are obtained[15]' which will serve as a. control for the numerical al­
gorithm. Also, approximate analytical solutions provide useful design formulas, 
something that numerical results cannot do. 

2.2 Scaling solutions 

We assume the electric field to be created by a series of plate electrodes along 
the z-direction, that is, transversa.l to the fluid flow. For this electrode geometry 
the mean electric field in the x-direction may be parametrized by 

-,- l( x) 
(18)Ex = g(x) I2(x) + y2 

where x and yare the adimensional coordinates defined in (4). Eo = ~l;) is the 
field at y = 0, controlled by the potential differences between the electro~es, and 
l( x) is of the order of the electrode spacing. For thin (laminar) boundary layers 
the field Ex may, with good approximation, be considered to be independent of y 
throughout the boundary layer width, as long as the appropriate charge density 
profile is chosen (see below). 

Ionized air is injected through a slot near the leading edge of the airfoil, be­
ing then carried along the airfoil surface by t.he flow, Because of this injection 
method the charge density is maximum at the airfoil surface, decreasing to zero 
at a distance that depends on the fluid dyna.mics and the injection regime. The 
dynamically-dependent charge density profile may be parametrized by the for­
mula 

'L . 
(1(x, y) = (10 1 - ~.)' (19) 

tie 
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A scaling solution of (17) is one for which 1 is only a function of 1]. Eq.(17) 
becomes 

")' • " 28ue I 2 (') l(x)(fJl +e e 11 +e -8 = --e (x)O'o 1- 1 g(x) [2() + e2 ( ) 2 (20)
x Pm tie X W X 1] 

with boundary conditions 

1(0)=/(0)=0 /(00)=1 (21 ) 

•
where, for simplicity, I have denoted l' == *and e= ~. 

Let the pressure be approximately constant for length scales L of the order 
of the airfoil, that is ~ ::::::: O. Let also fJ be a constant. This is the case for the 
laminar part of the boundary layer. Then the factorized nature of Eq.(20) implies 
that solutions exist only if 

(22) 

C1, C3 and C4 being constants. Therefore 

e(x) = viCI X + Cz 
g(x) = ~ (23) 

l(x) = VC4e(x) 

There are two physically interesting situations. The one with C1 =1= 0 Cz = 0 and 
the one with CI = 0 C2 =1= O. The first one corresponds to a boundary layer starting 
at x = 0 and growing with xt and the second to a constant width boundary layer. 
The first one corresponds to an equation 

/" ( 1]) + -2
1
1(1] ) /' ( 1]) + (1 - / (1] ) ) z~ 2 = 0 (24) 

<pz 1] 

with CI = fJ 1 Cz = 0 , '''1 = "/~oC3fl , tl'lz = lUGe. and the second to
T Pm VW T vw 

" (25) 

with C = 0 C ...J. 0 a = "/O'oc3fl b = Iucc•.
1 ,z T 1 !3Pm LlW 1 LlW 

In the first case one chooses Cz = 0 to obtain a boundary layer starting at 
x = O. The scaling hypothesis requires then an electric field that is singular at 
x = 0, y = 0 (Ex""" x-I). In any case this electric field solution is not very 
interesting for our purposes because it leads to a boundary layer growth of xt, as 
in the free force Blasius solution. Therefore it will be more interesting to consider 
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a small field free region in the leading edge of t.he airfoil and match the Blasius 
solution there with the constant width solution of Eq.(25). 

Gailitis and Lielausis[9] have also obtained a theoretical solution of constant 
width. However they consider a different force field distribution and no depen­
dence of the fluid charge density on the boundary layer dynamics. Therefore their 
boundary layer profile has a very different behavior. 

The solution of Eq.(25) is easily obtained by numerical integration [1 5]. Notice 
however that with the replacement 

4>(7]) = 1 - I' (7] ) (26) 

and choosing C4 = ~ , which is a simple rescaling of ~, Eq.(25) becomes the 
u. 

zero-eigenvalue problem for a Schrodinger equation in the potential a/(l + 7]2), 

(27) 

One may use the well-known WKB approximation to obtain 

(28) 

Eq.(28) is a very good approximation to the exact solution for a ~ 1. Fig.2 shows 
the effective boundary layer width as a function of a. The effective boundary layer 
width b* is defined here as the value of 7] at which the velocity u reaches 0.95 of 
its asymptotic value Ue. A very fast thinning of the boundary layer is obtained 
(several orders of magnitude) for a relatively short range of the a parameter. 
Fig.2 shows the variation of b* for small a. For large a (and small b*) one has 
the asymptotic formula 

c* ,..., 2.9957 
0_ va 

which is obtained from Eq.(28). 
If the longitudinal electric field Ex is assumed to be a constant (Eo) through­

out the boundary layer width, with the same charge profile, the solution is even 
simpler, namely 

(29) 

with ~ = .jC2 and 

h = ,c20"0Eo (30) 
/3u ePm 

Again, since ~ is a constant, this is not fully realistic because it leads to a constant 
width boundary layer. 
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For reference values of the physical quantities in Eqs.(4-6) we take 

Ur = 100 m S-1 

L r = 1 m 
Or = 10-3 m 

pr = 1.2 Kg m-3 (31) 
Er = 500 V cm-1 

(1r = 15 J.LC cm-3 

IIr = 1.5 X 10-5 m 2 S-1 

For these reference values, the adimensional constants wand /. defined after 
Eq.(9) are 

W = 0.15 
(32)

/ = 62.499 

For comparison we mention that in the classical force-free Blasius solution, 
and for these reference parameters, the v-coordinate y* corresponding to 8* (that 
is, the point at which .E... = 0.95) is 

tie 

y* = 1.55 X 10-3 vIX (33) 

Stability of a laminar boundary layer cannot be safely guaranteed for local Reynold 
numbers greater than about 1cr. Therefore requiring 

--. 
tieY 103RS = -_- ~ (34)II 

one obtains, for the reference parameters, fj* ~ 0.15 mm. Using (31) the conclu­
sion is that, for these parameters, the laminar part of a force-free boundary layer 
is only of the order of 1 em, just a tiny portion of a typical wing. 

Now we use the scaling solutions (29) and (28) to obtain an estimate of the 
effects of a longitudinal electric field. For the constant field case (29) from 

/ (0*) = 1 - e-o·,,;'h = 0.95 

and 
, . y. = 8*VCiJIIW = 0.15 

tie 

using (30) one obtains 
0"0 = 0.957 

That is, to insure a constant width boundary layer with local Reynolds number 
Rs = 103 (at the point where ti~ = 0.95), one needs a charge density 0-0 at y = 0, 
or, in physical units 
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For the variable field case (28) the estimate depends on the separation of 
the electrodes. Taking l(x) = 10, that is an electrode separation of the order of 
one centimeter, and the references values for all quantities except for the charge 
density (namely Eo = ~t;; = 1, U e = 1, etc.) one obtains C4 = 0.15, g(x) = 10, 
C3 = g(x)e(x) = 258.2, ...jC2 = e(x) = 25.8, and requiring 

y. = fJ·yIC2~ = 0.15 

f' (fJ*) = 0.95 

one finally obtains a = 39887.77 leading to 

(To = 0.957 

the same estimate as above. The large value of a that is obtained shows that the 
WKB expression (28) is a good approximation for physically interesting param­
eter values. On the other hand the fact that the same charge density estimate is 
obtained both in the constant-field and the variable-field cases, shows that it is 
realistic to consider the field as approximately constant throughout the laminar 
boundary layer width, as long as a variable charge profile is used. 

The above estimates were obtained using the reference values for the kinematic 
variables. For other values we have the following designing formula (in normalized 
units) 

i. 

E 0 9 UePm (35)(To 0 = . 57 10- 6 R~v 

2.3 Numerical results 

For the numerical solution of Eq.(17), with (T given by Eq.(19), I use an implicit 
finite-difference technique ([16] - [18]). Define F(x, 7]) by 

81 
F(x, 7]) = 87] (36) 

and 

(37) 

Then Eq.(17) becomes 

(38)
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The derivatives are replaced by finite-difference quotients with a variable grid 
spacing concentrated near TJ = 0, where F changes more rapidly. Let k > 1 be 
the ratio between two successive grid spacings in the q-direction. 

k =	 7]i+l - TJi 
7]i - 7]i-l 

Then 
( a2 F) = 2Fi±I.j± I + kFi±l,j_I-(I+k)Fi±I,j 

81/2	 i+lJ 6,2 

( 
8F) = Fi±I,j±l-k2Fi±l,j_I-(I-k2)Fi±I,i 
81/ i+1J	 AI , 

8F) = Fi±I,j-F i,j
( ax Hl,i Ax 

61 = 17i+l -17i +P(17j -17j-d 
2

62 = (17j+l -17j)2 + k(17j - 7]j_d

Substitution in Eq.(38) yields 

(39) 

with 
A· = ..1...+.!!.J..

) A2 AI 
2B). = -2(1+1.) _ adl-k ) + a +~ 

602 AI 2 Ax 
D. - 1l£. _ a)k2 

) - A2 ~ . 

Gj = a4 - a3X; 

The boundary conditions at TJ = 0 and 17 -+ 00 are known 

f(i, 1) = F(i, 1) = 0 
F(i,N) = 1 

where N is the largest label of the grid, in the 7]-coordinate, chosen to be suffi­
cien tly large. 

Because of the tridiagonal nature of (39) the solution in the line i + 1 IS 

obtained by the two-sweep method, the recursion relations being 

Fi +1,i = OJ Fi+ 1,j+l + {3j 

a. = _ Ai 
} Bj+DJCli-l 

(3.	 = - Gj+Dd3i-l 
) Bj+DiClJ-I 

with 0'1 = 0 and {31 = O. 
To start the integration process there are basically two methods. In the first 

the integration is performed from left to right in the x-coordinate with the grid 
extended to the left of the airfoil, where the flow is known. With the solution 
known in the line i, the coefficients Aj to Gi for Eq.(39) are computed at the 
point (i,j). Notice that f(i,j) is obtained by integration of the solution F. 

f(i,7]) = l1/F(i,Od( 
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The integration now proceeds along the lines, from left to right. After a complete 
pass the process is restarted using now, for the calculation of the coefficients Aj , 

Bj , D j and Gj, the old values of F at (i + 1, j). The process is repeated several 
times until the solution stabilizes. 

In the second method, which is the one we actually use, the integration process 
starts from an approximate solution. The scaling solutions derived before are 
particularly useful for this purpose. 

For the calculations we considered an electric field parn.metrized as in Eq.(18), 
namely 

u,/~ 

E- = E. IIW 
~. C u,{2 t2(X), 2 

"w + '" 1] 

with u~2 = 666.66 which corresponds to I = la, tie = 1 and l/W = 0.15. Notice 
that for these parameters, as pointed out before, the electric field has only a small 
variation throughout the boundary layer region. For the scaling function we take 
e( x) = -IX and consider fJ = 1. Then all results depend only on the variable S 

1 I
S = ~oEo 

62.499 tiePm 

(5 = 1 when all quantities take the reference values). 
In Fig.3 we ~how a contour plot of the numerical solution for J' (x, 1]) (= :J 

when S = 0.6. From the x-dependence of the numerical solutions we may com­
pute the effect of the electric field in extending the laminar part of the boundary 
layer. By defining, as before, the length of the laminar part as the x-coordinate 
corresponding to a local Reynolds number of 103 and denoting by Xo (~ = 0.95)u, 
the force-free value we obtain for the ratio 

x
17=­

Xc 

the results shown in Fig.4. For S = (j we obtain the Blasius solution and as we 
approach S = 0.957, corresponding to the scaling solution, the ratio diverges. The 
matching of the results in the force-free and the scaling limits is a good control 
of the numerical algorithm. A general conclusion from the results in Fig.4 is that 
not much improvement is obtained unless one is able to obtain ionization charge 
densities of the order of the reference "alue crr • 

3 Stochastic ground state simulations 

3.1 Quantum Monte-Carlo and the sign. problem 

Numerical simulation is an important technique for many systems of physical im­
portance in Condensed Matter Physics, which cannot be solved exactly. Among 
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the numerical simulation methods, Quantum Monte-Carlo plays a predominant 
role. It is used both to compute expectation values of operators and to estimate 
the ground state wave function. For extensive reviews see [19], [20]. 

Expectation values. The worldline method 
The aim is to compute 

1< A >= -TrAe-fjH (40) 
Z 

where 

Z = Tre-fjH = L < i1le-fjHli1 > (41) 
it 

with f3 = A 
For each given Hamiltonian H and observable A, Eq.(40) is the mathemati­

cal model for the physical problem, which is the calculation of the expectation 
value for A. 

To compute the partition function Z, the interval (0, (3) is divided into L 
subintervals of length 6.r = ~ 

Z '" . I -A-r'HI' , I -A-rHI' . I -A-rHI' (42) = LJ < tl e tL >< tl e tL-I > ... < t2 e tl > 
i 1 ,.· .. ,i L 

Then, the Hamiltonian is split into diagonalizable pieces 

(43) 

and Trotter's formula[21] 

(44) 

is used to obtain 

Z ~ L < i 1 lUlli 2L >< i2L IU2 Ii zL-I > ... < izlUzh > (45) 
i 1 , ... ,i2L 

where U = e-A-rH; . The sum (45) is now computed by importance sampling, 
that is, one generates a sequence of distributions {il(k) ... izL(k)} , k = 1,2,3, ... 
with probabilities 

(k) = < i l (k)IU1 Ii2L(k) > ... < i z(k)IU2 Ii l(k) > (46) 
P I:it ..... i < i1 lUlli 2L > ... < i 2 1Uzji l >n 

The distributions are, for example, selected by the heat bath algorithm. For 
each allowed move in the worldlines one computes the ratio R of the new and the 
old numerators in Eq.(46) and the new configuration is accepted with probability 
P = RIO + R). 

14 



The above description applies to the computation of the partition function. 
To compute expectation values of operators three different cases have to be con­
sidered: 

(i) Operators that are diagonal in t.he occupation number representation: We 
simply average over the intermediate states after statistical equilibrium is at­
tained. 

(ii) Non-diagonal operators A conserving particle number within a two-~ite 

block: .Decompose A = Al + A2 and compute < i",IAtUdi"'+1 >. 
(iii) Operators that do not conserve the particle number: The calculation now 

involves disconnected world lines a.nd is more delicate[22]. 
In simple cases, for example for a one-dimensional chain of' spin-polarized 

fermions with nearest-ne:ghbo r interactions 

lIN 
H = -t 2:(e;Ci + e;+ICi) + V2;:(ni - 2)(ni+1 - 2) = ~ Hi,i+1 (47) 

I 1 1=1 

( ni = e;Ci ), choosing the splitting 

H1 = L H"i+l H2 = L Hi,i+! (48) 
i odd I even 

all terms in Eq.(45) are positive. Tnerefore the interpretation of the quantities 
p(k) as probabilities is consistent. Unfortunately for higher dimensional cases the 
situation is not so favorable. 

Projector Monte-Carlo 
For the ground state (T -> 0, fJ -> 00) the computation of the partition 

function is unreliable because ~ = £becomes very large. Instead one may use 
the fact that the quantity 

TEoe-THI'ljJ >= e- flo >< O!'ljJ > + L e-T(En-Eo) ~ (49) 
l )n>O 

tends to a constant times the ground state when l' -> 00, provided < Ol~' ># O. 
Therefore, using Trotter's formula to compute e-TH jtjJ > , we obtain a numerical 
estimate of the ground state. As initial state ItjJ > it is convenient to choose 
a reasonable approximation of t.he ground state, for example a variational wave 
function. 

The (minus) sign problem 
If not all the terms in Eq.(45) are positive, their interpretation as probabilities, 

for the importance sampling calculation, is not straightforward. We may ;;;till 
write 

< A >= ~ Tr( AP) = _T_r(,-A-,-'_P-,-'s-,-ig,-n_P-=--) = _<_1sign P > IPI (50)
Z Tr(IPlsignP) < sIgn? >IPI 

15 



and use IPI as a probability for the Monte-Carlo simulation. However at low 
temperature the weight of the positive and negative terms is such that both the 
numerator and the denominator are small quantities. Therefore, because of the 
statistical errors, the evaluation of < A > turns out to be quite unreliable. 

The physical origin of the sign problem 
In the projector Monte-Carlo method, for example, the quantity 

1/J-r = e--rH \4>-r=0 > 

tends to the ground state when T -+ 00. The ~eights that are used for the 
statistical sampling are proportional to the wave function 1/J-r' However we know 
that, for fermions, 1/J-r cannot be positive for all configurations. Decompose the 
wave function into positive and negative parts 

At low energies both 1/J: and l/J; have non-vanishing projections on the "hard­
core" bosonic ground state. Hence, at low temperatures, the simulation spends 
most of the time below the actual energy of the fermionic ground state (Fig.5). 
These configurations have to be cancelled in the sum, hence the minus signs. A 
similar effect is found in frustrated spin systems. 

One therefore sees that at low temp ratures the Quantum Monte-Carlo method 
is quite unreliable and a need is felt for alternative simulation methods or ways 
to circumvent the sign problem. It is also clear that faster computers are not the 
solution because, more than a problem of statistics, the real issue is that we are 
trying to obtain a small quantity from the difference of two large quantities. 

The sign problem is representation-dependent because, had the exact eigen­
states of the Hamiltonian been known, then all Boltzman weights in Eq.(46) 
would have been positive. It is therefore important to be able to estimate the 
decay rate of the average sign for each specific representation without having 
to perform massive Monte-Carlo calculations[23]. For a review of techniques to 
counter the effects of the minus sign problem, in the context of the auxiliary-field 
quantum Monte-Carlo method, see Ref.[24]. Here I will discuss an attempt to 
avoid this problem by the construction of a stochastic process associated to the 
ground state[25]. 

3.2 Ground state processes 

The ground state and the Euclidean dynamics of a quantum system are uniquely 
associated to a stochastic process. Let p and G be the unique invariant measure 
density and the generator of the stochastic process, such that 

(51 ) 
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is the Hamiltonian operator of the physical system. Then pi is the (zero energy) 
ground state, i. e. Hpi = 0 [26] [27]. From the representation T = exp{ -tG} 
for the operator semigroup 

(Ttl) (x) = j P(t,x,dy)f(y) (52) 

associated to the transition functions of the Markov process, it follows that the 
Euclidean correlations of the theory (Schwinger functions) are obtained from the 
stochastic correlations of the process. The stochastic process may therefore be 
used to study the dynamical properties of the quantum system. 

Existence of a process with unique invariant measure insures the existence 
of a Schrodinger picture for the quantum system and stochastic tecnniques like 
the theory vf small random perturbations of Wentzell and Freidlin[28] [29), may 
be used to obtain rigorous non-perturbative results, in general not accessible 
through functional analytic methods[30] [31]. The stochastic process involved in 
this construction is a dassical stochastic process which happens to have p = 1</>12 
as its invariant measure and generates a set of Euclidean correlations. It should 
not be confustd with the quantum probability[32] [33] process associated to real­
time quantum evolutions. 

This stochastic formulation of quantum systems has, in the past, been used 
mostly for boson systems. Here I will concentrate on methods which are also ap­
propriate for fermion systems. In the occupation number representation, fermion 
systems appear associated to jump processes which, for boson systems, are char­
acteristic of non-local interactions. Because of the formal similarities I will first 
review the construction of the stochastic process for non-local interactions[27] 
[34]. 

Let H be an Hamiltonian operator and ¢>(x) its (real) lowest energy eigenstate 
(which is adjusted to zero energy by the addition of a constant to H). 

h
2 J 

with V(x,y) real finite and V(x,y) = V(y,x). 
From (51) one obtains for the generator of the ground state process with 

invariant measure p = </>2, 

(H</» (x) = - 2m 6.</>(x) +U(x)¢>(x) + cflyV(x,y)¢>(y) = 0 (53) 

(GJ) (x) = (~ :</>\7) f + 2~ 6.f - *J(ry</>-l(x)V(x, y)</>Cy) {f(y) - f(x)} 

(54) 
Consider now the general differential Chapman-Kolmogorov equation 

OtP(xtjzt') = - \7 . {b(x, t)p(xtlzt')} + ~ Lt,; 8x7;xj {ajj(x, t)p(xtlzt')} 
(55)

+ f dny {W(xly)p(ytlzt') - W(yjx )p(xtlzt')} 

17
 



for which the generator GI = lim~t1o (T4it-n is 

1 f)2 J(GI) (x) = b(x, t)Y'xI(x) +2"aij OXiOXjI(x) + £l'lyW(ylx) {I(y) - I(x)} (56) 

Comparing Eqs. (54) and (56) one concludes that the ground state process asso­
ciated to the non-local Hamiltonian in Eq.(50) has drift, diffusion coefficient and 
jumping kernel, respectively 

b = !!:.. Y' 4> (57) 
m 4> 

11, 
aii = -Sij (58) 

m 

1
W(ylx) = -h4>-l(x)V(x, y)4>(y) (59) 

Notice the association, in processes ruled by non-local interactions, of diffusion 
and jumping. This will also be typical of processes involving bosons and fermions. 

Likewise, if the state space of an Hamiltonian is spanned by a discrete set 
{If>} of basis states one sees, by analogy with (59), that the jumping process 
with kernel 

I I1 1 
W(J1f ) = -hRe{ < J' 14> > < I IHII >< 114> >} (60) 

has invariant density p(J) = I < 114> > 1
2 as may easily be checked from the 

stochastic equation 

OtP(J) = L {W(JIj')p(f) - W(j'IJ)p(J)} (61 ) 
j' 

Notice that in this equation the kernel is defined only up to terms const.xSj,f" 
In the Eqs. (57-60) the drift and the jumping kernel are both functions of 

the ground state wave function 4> which, in general, is not known for a given 
Hamiltonian. It is however possible to formulate the dynamical problem in such 
a way that the drift and the jumping kernel are obtained directly without having 
to solve the equation H4>(x) = >'o4>(x) for the lowest eigenvalue >'0. Let 4>0 be 
some initial state non-ortho~onal to the ground state. Then, in the t -t 00 limit, 
the solution 4>t =exp{ -kHt J 4>0 of the Euclidean equation 

hOt4>t(x) = -H4>t(x) (62) 

converges to the ground state. Namely exp{ k>'ot}4>t -t 4>. Defining 

bt = !::.-
m 

Y'cPtcPt " Wt(Ylx) = -h4>11 1 (x)V(x,Y)cPt(Y) (63) 

18 



where 4>t is a solution of the Euclidean equation (62), one obtains evolution 
equations for bt and Wt(ylx) 

8tWt(Ylx) = Wt(Ylx) Jdnz {Wt(zly) - Wt(zlx)} + 
tWt(ylx) {2U(x) - ';:b;(x) - yo. bt(x) - 2U(y),+ ';:b;(y) + \7. bt(y)} (65) 

As 4>t converges to the ground state, the solutions of Eqs.(64) and (65) converge 
to the drift and jumping kernels associated to the ground state process. Therefore 
these quantities may be obtained directly by iteration of these equations, without 
having to solve the Schrodinger equation. In the same way, for the pure jump case 
a.ssociated to the discrete basis {If> 1representation, one obtains the (Euclidean) 
evolution equation 

8t/{tUIJ') = L KtUI.r') {J{t(glJ) - /{t(glJ')} (66) 
9 

for the quan ti ty 

(67)/{tUIJ') = -* < r~4>/ > < J'IH!f >< 114>1 > 

the jUITlping kernel being 

Starting from an initial Wo, consistent with (67), this equation converges in 
the t -t 00 limit to the jumping kernel of the ground state process. We may start 
for example from 

1
vi/oUlf)

I

= -h"Re < flHlf
I 

> 

which corresponds to consider the initial 4>t to have the same projection on all 
basis states. Although Eq.(66) by itself contains no explicit dynamical informa­
tion on the interaction potential, it is able to generate the ground state kernel 
because it preserves under time evolution all the information introduced by the 
initial condition, namely 8t {WtU'i,f)WtUIJ')} = O. That is, what Eq.(66) does 
is simply to balance the transition probabilities to make them consistent with an 
invariant measure while, at the same time, preserving the information about the 
Hamiltonian that is supplied by the initial condition. 

For a many-body quantum system, because the number of possible states is 
very large, the Euclidean equations (66) are a very large system. If the inter­
actions are short-range, a possible solution is to make the iteration on a small 
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cluster simulation of the system to obtain an approximation of the ground state 
stochastic kernels. In favorable cases[35] a good analytical approximation may 
also be obtained from Eq.(66) or frorn Feynman integral approximations to the 
ground state[36]. These kernels may then be used to obtain the correlation func­
tions by simulating the process in a much larger lattice. The simulation uses Eqs. 
(55)	 and (61) or the corresponding stochastic differential equations. 

Expectation values of observables for the process X t defined by the stochastic 
equations are the quantum expectation values in the ground state 

E{A(Xt)} =JA(x)p(x)dx = J</>(x)A(x)</>(x)dx = (</>',A</» (68) 

The multi-time correlations of the stochastic process are the Euclidean correla­
tions of the quantum system. For example 

E{A(XdA(Xo)} = J(TtA)(x)A(x)p(x)dx = J </>2(x)A(x) (e-k(,p-IH,p)A) (x)dx 

= (</>, Ae-kHA</» 
(69) 

and similarly for the general n-point correlation function. 
Assume that one chooses to compute the stochastic kernels in a basis {If>} 

that diagonalizes the observable A for which one wishes to obtain the correlation 
functions. Then, the calculation above also shows that, in such an "adapted 
occupation number basis", there is no essential difference in the procedures to be 
used for boson or for fermion systems. In particular the fermion" sign problem" 
is avoided in this algorithm. The price one pays is to have to solve the auxiliary 
Euclidean equation (66). 

In Ref.[25] this method was applied to the Hubbard model and in Ref.[35] 
to a modified pairing model. Figs. 6 and 7 show some results for the local 
antiferromagnetic correlations n a and pairing n p as a function of hole doping 
Xh, in the Hubbard model (U = 1, t = 1). The general conclusion is that local 
antiferromagnetic correlations are not destroyed by hole doping and that the 
Hubbard model, by itself, is not able to explain hole pairing. 

4	 Handling non-Gaussian data. Characteristic 
function and large deviations 

4.1	 Non-Gaussian data and the neural computation of the char­
acteristic function 

The aim of principal component analysis (PCA) is to extract the eigenvectors of 
the correlation matrix, from the data. There are standard neural network algo­
rithms for this purpose[37] [38] [39] [40]. However if the process is non-Gaussian, 
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PCA algorithms or their higher-order generalizations provide only incomplete or 
misleading information on the statistical properties of the data. 

Let Xi denote the output of node i in a neural network. Hebbian learning[41] 
is a type of unsupervised learning where the neural network connection strengths 
W ij are reinforced whenever the products x jXi are large. The simplest form is 

(70) 

Hebbian learning extracts the eigenvectors of the correlation matrix Q 

(71) 

but, if the learning law is local as in Eq.(70), all the lines of the connection ma­
trix W ij converge to the eigenvector with the largest eigenvalue of the correlation 
matrix. To obtain other eigenvector directions requires non-local laws. These 
principal component analysis (PCA) algorithms find the characteristic directions 
of the correlation matrix (Q)ij =< XiXj >. If the data has zero mean « Xi >= 0) 
they are the orthogonal directions along which the data has maximum variance. 
If the data is Gaussian in each channel, it is distributed as a hyperellipsoid and 
the correlation matrix Q already contains all the inform<.~tion about statistical 
properties. This is because higher order moments of the data may be obtained 
from the second order moments. However, if the data is non-Gaussian, the PCA 
analysis is not complete a.nd higher order correlations are needed to characterize 
the statistical properties. This led some authors[42] [43] to propose network:3 with 
higher order neurons to obtain the higher order statistical correlations of the data. 
An higher order neuron is one that is capable of accepting, in each of its input 
lines, data from two or more channels at once. There is then a set of adjustable 
strengths W ijl , W ijli2 , ... , Wi)I"'}"" n being the order of the neuron. Netvmrks with 
higher order neurons have interesting applications, for example in fitting data to 
a high-dimensional hypersurface. However there is a basic weakness in the char­
acterization of the statistical properties of non-Gaussian data by higher order 
moments. Existence of the moments of a distribution function depends on the 
behavior of this function at infinity and it frequently happens that a distribution 
has moments up to a certain order, but no higher ones. A well-behaved prob­
ability distribution might even have no moments of order higher than one (the 
mean). In addition a sequence of moments does not. necessarily determine a prob­
ability distribution function uniquely[44]. Two different distributions may have 
the same set of moments. Therefore, for non-Gaussian data, the PCA algorithms 
or higher order generalizations may lead to misleading results. 

As an example consider the two-dimensional signal shown in Fig.S. Fig.9. 
shows the evolution of the connection strengths Wll and W12 when this signal 
is passed through a typical PCA algorithm. Large oscillations appear and fi­
nally the algorithm overflows. Smaller learning rates do not introduce qualitative 
modifications in this evnlution. The values may at times appear to stabilize, but 
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large spikes do occur. The reason is that the seemin ly .armlesg data in F'g,8 is 
generated by a linear combination of a Gaussian with the following distri utio 

(72) 

which has first moment, but no moments of higher order, 
To be concerned with non-Gaussian processes is not a pure academic exer­

cise, because in many applications adequate tools a.re need to ana yze such 
processes. For example, processes without higher order moments, in particular 
t ose associated with Levy statistics, are prominent in complex processes such 
as relaxation in glassy materials, chaotic phase diffusion in Josephson junctions 
and turbulent diffusion[45] [46] [47]. Moments of an arbitrary probability distri­
bution may not exist. However, because every bounded and measurable function 
is integrable with respect to any distribution, the existence of the characteristic 
function f( a) is always assured[44], 

ia zJ(o:) = Jeia·:t:dF(x) =< e . > (73) 

Ci and x are N-dimensional vectors, x i the data vector and F(x) its distribution 
function. The characteristic function is a compact a d complete characteriza.tion 
of the probability distribution of the signal. If, in addition, one wishes to descri e 
the time correlations of the stochastic process x(t), the corresponding quantity 
is the characteristic functional[48] 

(74) 

where e(t) is a smooth function and the sea 301' product is 

(x,e) = Jdtx(t)e(t) (75) 

Jl(x) being the probo.bility measure over the sample paths of the process. 
In the following I will descr'be an algor' hm t.o c e t.he charo.cteristic 

function from the data, by a learning process[49]. The main'dea :s that, in tl :­
end of the learning process, one has a neural etwcrk which is a representa ion 
of the characteristic function, This network is then available to provide all the 
required information on the probability distribution of the data being analyzed. 

Suppose we want to learn the characteristic function J(a) of a one-dimensional 
signal x(t) in a domain a E [0'o, aN] . The a-domain is divided in N intervals by 
a sequence of values 0'0, at, 0'2, ... , aN and a network is constructed with N + 1 
intermediate layer nodes and an output node (Fig, 10). 

The learning parameters in the network are the connection strengths WOi and 
the node parameters 0i' The existence of the node parameter means that the out­
put of a node in the intermediate layer is OiXi(a), Xi being a non-linear function. 
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The use of both connection strengths and node parameters in neural networks 
makes them equivalent to a wide range of other connectionist systems[50] and 
improves their performance in standard applications[40]. The learning laws for 
the network in Fig. 10 are: 

OJ(t + 1) = OJ(t) + ,(cosajx(t) - OJ(t)) (76)
WOi(t + 1) = WOj(t) + 17 L:j ((}j(t) - L:k WOk(t)Xk(aj)(}k(t)) (}i(t)xjlaj) 

,,17 > O. The intermediate laver nodes are equipped with a radial basis function 

(77) 

where in general one uses O"j = 0" for all i. The output is a simple additive 
node. The learning constant, should be sufficiently small to insure that the 
learning time is much smaller than the characteristic times of the data x(t). If 
this condition is satisfied each node parameter OJ tends to < cos aix >, the real 
part of the characteristic function f( a) for a = ai. The Woi learning law was 
chosen to minimize the error function 

2 

f(W) = ~ L (()j,.- L WOk(t)Xk(a;)lh) (78) 
2 j k 

One sees that the learning scheme is an hybrid one, in the sense that the node 
parameter OJ learns, in an unsupervised way, (the real part of) the characteristic 
function f(aj) and then, by a supervised learning scheme, the WOi's are adjusted 
to reproduce the OJ value in the output whenever the input is a•. Through the 
learning law (76) each node parameter ()j converges to < cos aiX > and the 
interpolating nature of the radial basis functions guarantees that, after training, 
the network will approximate the real part of the characteristic function for any 
a in the domain lao, aN]. A similar network is constructed for the imaginary part 
of the characteristic function, where now 

(79) 

For higher dimensional data the scheme is similar. The number of required nodes 
is Nd for a d-dimensional data vector 7(t). For example for the 2-dimensional 
data of Fig.8 a set of N2 nodes was used (Fig.II). Each node in the square 
lattice has two inputs for the two components a1 and 0'2 of the vector argument 
of fed). The learning laws are, as before 

()(jj)(t + 1) = B(jj)(t) + ,(cos d(jj).X'(t) - B(ij)(t))� 
WO(jj)(t + 1) = WO(ij)(t)+� 

+17L:(kl) (()(kl)(t) - L:(mn) Wo(mn)(t)x(mn)(d(kl))()(mn)(t)) O(jj)(t)X(ij)(d(kl))� 
(80) 
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he pair (ij) denotes the position of the node in the square lattice and the radial 
basis function is 

-171 - 71 (ij) 12/2q~ij) 
-t e 

(81 )X(ij) ( a) = ---1--+--1"""'2-­
2q" e- 71 - a (1,1) / llcl)

l.J( kl) 

Two networks are used, one for the real part of the characteristic function, and 
another for the imaginary part with, in Eqs.(80), cos Ci(ij).7(t) replaced by 

sin Ci(ij).~(t). Figs,12a-b show the values computed by the algorithm for the 
real and imaginary parts of the characteristic function corresponding to the two­
d'mensional signal in Fig.8. On the left is a plot of the exact characteristic 
function and on the right the values learned by the network. Iil this case we 
show only the mesh corresponding to the Oi values. One obtains a 2.0% accuracy 
for the real part and 4.5% accuracy for the imaginary part, The convergence of 
the learning process is fast and the approximation is reasonably good. Notice in 
particular the slope discontinuity at the origin which reveals the non-existence of 
a second moment. 

For a second example the data was generated by a Weierstrass random walk 
with probability distribution 

(82) 

and b= 1.31, which is a process of the Levy flight type. The characteristic func­
tion, obtained by the network, is shown in Fig. 13. Taking the log( -log) of the 
network output one obtains the scaling exponent 1.49 near a == 0, close to the 
expected fractal dimension of the random walk path (1.5). 

These examples test the algorithm as a process identifier, in the sense that, 
after the learning process, the network is a dynamical representation of the char­
a.cteristic function and may be used to perform all kinds of analysis of the statistics 
of the data. 

4.2 Large deviation analysis of experimental data 

Whenever large fluctuations are observed in a process, there is a feature of the 
data which has to be carefully considered. This is the d viation from the average 
values of the process that arise from the finite size of the samples, Trained to 
think in terms of Gaussian or Poisson processes, some physicists live under the 
impression that the deviation from asymptotic (average) values, coming from the 
finiteness of the samples, is a minor well-controlled effect. Think however, for a 
moment, about a data set {x n } where each point X n is generated by the multi­
plication of 1000 numbers, each one being either zero or four with probability ~. 

The expectation value (or asymptotic average limn-+oo en = ~ 2:7=1 Xi) of the data 
is 21000 

, a huge number. However if an experimental approach is taken, without 
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prior knowledge of the nature of t.he process, the result might be quite different. 
Generating for example the" data" on a computer and analyzing it according 
to well-established experimental standards, even with statistics unmatched by 
most current physics experiments, I bet that the result would be zero (and with 
negligible error bars). 

Incidentally, if this multiplicatively generated data set seems far too removed 
from any physically relevant. problem, just remember that random multiplicative 
processes are thought to be good models for turbulent events, fluctuations in 
multiparticle production, etc. 

Large deviation theory is the set of results that studies deviations from the 
asymptotic averages when the sample is finite (as it always is in experimental 
physics). If we are interested in measuring an observable, it is the expectation 
value or asymptotic average that we want to obtain. Large deviations from this 
value are, in this sense, exceptional events. vVhat large deviation theory tells us 
is how probable exceptional events are. 

4.2.1 A summary of large deviation theory 

Large deviation theory is the study of fluctuatio:1s away from the limit values 
given by the law of large numbers, that may be observed in empirical statistics, 
due to the finiteness of the sample. 

In probability theory one has a space of elementary events 0, a probability 
measure P and a set F of measurable subsets of events. Consider now a sequence 
(On,Fn,Pn) of probability spaces and a sequence of random vectors (vector-valued 
random functions) en(w) {w E On} with values in a metric space Y. 

Assume that en tends to a limit point Yo when n -+ 00 (law of large numbers). 
Define the following sequence of probability measures Qn on the Borel sets of Y 

(83) 

The existence of the limit en -+ Yo implies that On {A} -+ 0 if Yo is not in the 
closure of A. 

The sequence Qn of probability measures is said to have a large deviation 
property (LDP) if there is a sequence an ---t 00 an E N and a function f(y) : Y ---t 

[0,00] such that: 
(a) f(y) is lower semicontinuous (i. e. Yn -+ Y ~ lim inf llYn) ~ l(y)) 
(b) I(y) has compact level sets (i. e. {y E Y: I(y)::; L} compact VL E R) 
(c) limn_oo sup a1n logQn{FJ ::s -1(F), F closed. limn_oo inf a1n logQn{G} ~ 

I(G), G open; where I(F) = inf flY), y E F. 
These two limits are usually represented by the symbol ::=::, namely 

(84) 
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Furthermore, if I(intA) = I(clA) then 

lim 2- log Qn {A} = -I(A) (85)
n-+oo an 

I now list a few large deviation theorems that are useful in the applications 
Theorem 1 If the function I exists for a sequence {an} then it is unique. 
Theorem 2 If Qn(dy) x exp( -anI(y))dy on Y then I(Y) = O. 
Theorem 3 (Obtaining the deviation function from the free energy (or pres­

sure)) 
Let Wn be random vectors with scaling constants an' If the following limit 

exists 

c(t) = lim log EPn{exp(t, Wn)}, t E Y (86)
71-00 

and if c(t) is differentiable, then the deviation function in 

1
Q,,(dx) = Pn{-W" E dx} x exp (-anI(x)) dx 

an 

is the Legendre transform 

I(x) = sup{tx - c(t)} 
lEY 

EPn denotes the expectation value in the probability space (nn,Fn,Pn) and ...LWnan 
plays the role of the random vector ~n in the large deviation definition. The 
method proposed here for the large deviation analysis of the data is based on this 
result. 

Theorem 4 (Laplace- Varadhan method) If Qn(dy) X exp( -an!(y))dy on Y and 
f .s a function f : Y ~ R , then 

lim J...logjexp{anf(y)}Q!l(dy) = sup{f(y) - I(y)} 
n-oo an yEY 

Theorem 5 (Conimetion principle) Let 'l/J be a continuous mapping 'l/J : Y ~ 

W. If Q71(dy) x exp( -anI(y))dy on Y then 

on \--V, with 

J(z) = inf{I(y): Y E Y,'l/J(y) = z} 

and if z is not in the range of 'l/J then J(z) = 00. 

Theorem 6 Let Qn(dy) X exp( -anI(y))dy on Y ,f: Y a continuous bounded 
function and 
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Then 

with 

If(y) = I(y) - j(y) -l~f {I(z).- j(z)} 

This theorem is useful\ for example, to obtain finite volume Gibbs states, where 
the exponential factor is exp{ -j3Hn (w)} and the function j(y) is obtained isolat­
ing the leading an term in the finite volume energy -Hn(w) = anj(cn(w))+o(an). 

# Levels of description of statistical systems and large deviation 
levels 

Let a statistical phenomenon be described by a sequence of values of a random 
varia ble X 

... X-2X-IXOXIX2'" 

which takes values in a space Y. Y j~ called the state space and the space of se­
quences Yz is called the path space. The statistical properties of the phenomenon 
may be described at three different levels: 

(1) By the expectation values of observables 

(87) 

(2) By probability measures on the state space Y 

p(dy) = P{X j E (y, y + dy)} (88) 

(3) By probability measures on path space Yz. These may be constructed by 
defining the probabilities prE} on cylinder sets 

(89) 

The finite sample versions of the expectation vaiues\ tht probability on state 
space and the probability on path space are: 

(a) The mean partial sum 

(90) 

(b) The empirical measure 
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1 n 

Ln(w, A) = -2: 8x ;(w)(A)� (91) 
n ;=0 

A being a measurable set in Y. 
(c)� The empirical process 
To define a measure in Yz out of a finite sample, the sample is repeated 

infinitely many times in the future and the past generating an element X(n, w) 
in Yz. Then the empirical process is 

1 n-l , 

Rn(w, E) = - L 8<r;X(n,w){E}� (92) 
n i=O 

where (J' is the shift operator and E a cylinder set in Yz. 
The large deviations of mean partial sums are called level 1 large deviations 

(L.� D.) . The large deviations of the empirical measure are called level 2 L. D. 
and� the large deviations of the empirical process are called level 3 L. D. 

Examples 
Levell L. D. 

Qn( dx) = P{n- 1 Sn E (x, x + dx)} >::: exp( -nI(x ))dx (93) 

For a Gaussian process 

21 x� 1 
p(dx) = ~exp(--2)dx,one has I(x) = -._x2 (94)

V 21r(J'2 2(J' 2(J'2 

and for 

1 1 
p:::.: -81 + -8 1� (95)2 2 ­

the deviation function is 

l(x) = ~(1 - x) log(l - x) + t(1 + x) log(1 + x), Ixl :::; 1 

(96 )
= 00, Ixl> 1 

Level 2 L. D. 

Qn(dv) = P{w: Ln(w,.) E dv} >::: exp (-nl(2)(v,p)) dlJ (97) 

For independent identically distributed (Ll.D.) random vectors 

(98) 
= 00. otherwise 
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and if the state space Y is finite Y = {I, 2, ... , r} 

/(2)(II,p) = 2:i:::1 IIi log (;-) , if II ~ P 

(99) 
= 00, otherwise 

(the symbol << means" absolutely continuous with respect to") 
Level 3 L. D. 

Qn(dP) = Pp{w : R,..(w, .) E dP} x exp ( -nI(3)(p, Pp))- dP (l00) 

The finite dimensional marginals of a probability measure in yZ are defined by 
restriction ~o cylinder sets pinned down at a finite number of points. 

(101) 

(102) 

etc. Then for the empirical process the one-dimensional marginal 

(103) 

gives the empirical measure, the two-Jimensional marginal 

(104 ) 

the empirical pair measure, etc. 
Denote by TraP the a-dimensional marginal of' P. Then for independent 

identi<:ally distributed (Ll.D.) random vectors 

(105 ) 

and 

/(3)(p, Pp ) = lim !.../(l)(TraP,TraPp )
/ 

(106) 
0-+00 a 

Large deviation theory was formulated in its modern form by DOl1sker and 
Varadhan and developed and applied in several domains by many authors. Here 
I have put together a minimum set of results which might be useful for the 
large deviation analysis of experimental data and simple theoretical models. For 
further results and applications refer to the standard references[51] [52] [53]. 
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4.2.2 Large deviation analysis of experimental data 

There a e several ways to analyze a set of da a points from the point of view 
of large devia.tions. One ma.y for example look in a small domain (v ,v + dv) in 
probability space and find for each sample size n the number of times that the 
empirical measure falls in that interval. The rate of variation of the logarithm 
of that number with n gives the deviation function at v. This s ould of course 
be repeated for other small domains in probability space to obtain the deviation 
function throughout the space of probability measures. This method has the 
shortcoming that, each time the analysis is perforrped, only a small amount of 
the available data is used and the statistics is poor. 

A better method[54] is to construct the free energy 

c(t) = lim ~logEPn{exp(t,Wn)}, tEY (107)
n ...... oo n 

and obtain the deviation function from the Legendre transform 

I(x) ::: sup{tx - c(t)} (l08) 
lEY 

Of ourse in ( 07 the limn ...... oo is estimated from the approach to the largest 
possible ava'lable sample, 

When a deviation function is either obtained from the data or conjectured in 
some other way, a consistency check is provided by the fact that the deviation 
function is the deviation function of its own distribution 

(109) 

This follows from he contraction principle (theorem 5) using as the function 
tb. This property is useful, for example, to check whether the relative entropy 

I r = t Vi log (Vi.) (110 ) 
i=l Il, 

(11 being the empirical measure comp·.Jted for the largest possible sample) is a 
good guess for the deviafon function. Recall that the relative entropy coincides 
with the deviation fa etion if the events are independent, 

A simple example shows how the large deviation analysis provides insight on 
the statistical structure of the data. A multiplicative process {Xn } was con­
structed with expectation value 1, i, e. 

lim ~Wn = 1 
n-oo n 
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(by the law of large numbers) and used to generate data sets which are then 
analyzed for large deviations. This is done by constructing a numerical approx­
imation to the free energy and its Legendre transform. Figs.14 shows a typical 
sets of 104 events (bin width= 10-6 ). The sample average in this set is 0.285, very 
far from the asymptotic value. From a simple examination of the distribution of 
the data it wou.ld be hard to guess that one is so far away from the real average 
value of the process. 

For the numerical computation of the free energy the data is divided into k 
slices of length n, such that k x n equals the total number of data points and one 
considers 

(Ill ) 

where 
;'fl.+n-1 

Wj") = L X& 
&=jn 

A numerical estimate of the limit (107) is obtained by increasing n and decreasing 
k maintaining the product fixed. In practice this should stop at a level where 
there still is a sufficient number of data slices to have reasonable statist.ics in the 
estimation of E{exp(t, Wn )} . In this example we stop at k = n = 100. Once the 
free energy is computed the Legendre transform is easily computed from (108). 

Figs.15 and 16 show the numerical estimates for the free energy and the devi­
ation function obtained from the data in Fig.14. Recall that the exact deviation 
function should have a unique minimum at the average value of the process. In­
stead, the function that is obtained, has a. large flat minimum region. This shows 
that the sample average cannot. be guaranteed to be close to the actual average 
value. It could be anywhere in the flat region or above. The solid conclusion 
therefore is that there is insufficient data to make any statement about the aver­
age value of the process. This conclusion which comes out very clearly from the 
examination of the deviation function might indeed be very difficult to reach from 
the data distribution itself. There is nothing magic in this result. It is simply 
the effect of the exponential sum in (111) which, as soon as t becomes positive, 
emphasizes large events, whenever they exist, and makes c(t) grow for t >0. 

This example concerns level-l large deviation properties. For level-2 and 
level-3 the method is similar, choosing for W n the appropriate random vector 
associated to the slicing of the data. 
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5� A method fo fas track recognition in high­
energy colliders 

The new generation of experiments in high energy physics will have to deal with 
an unrivalled wealth of informa.tion, which has 0 be treated in an extremely 
small amount of time (e.g. 15 ns for the LHC). This means that data analysis 
and track recognition will be a quite complex problem in the LHC, both on-line 
and off-line. Massive parallelism is compulsory and neural-like algorithms have 
been proposed in this context[55]. Most papers that adopt this type of algorithm 
tend to follow an approach in which the connections between the units in the 
neural architecture are adaptable. This approach is only necessary when very 
little is known about the function relating the data set to the features we want to 
detect. If we have some prior knowledge about the function, we may eliminate all 
(or almost all) adaptability in the network and define an architecture that repre­
sents the desired input-output mapping. This is, of course, of primordial interest 
when one seeks to implement the feature detector in hardware. This approach 
lecl to a cellular automat& spot reduction technique for particle recognition in 
e.m. ca.lorimeters[56] and Cherenkov detectors (RICH) [57]. In Ref.[58] a simple 
cellular automata algorithm was developlGd to recognize a large number of spirals 
in a given pattern. The a gorithm may be implemented as a massively parallel 
architecture, t e conned' DS between the units being non-adaptable. The algo­
rithm works remarkably well, consider'ng its simplicity, and opens the possibility 
of track recognition even at the on-line level. 

# The method of spiral reconstruction 
Most detectors propos d for the LHC use a strong magnetic field applied 

paranel to the detector axis. Thio;; means that the part'cles will follow spiral tra­
jectories in the detector, '.viL pitch angle and dia eter depending on momentum 
(and, of course, on the magnitude of the applied magnetic field, which is assumed 
~o be uniform). To reconstruct a spiral one needs the coordinates of four points, 
at most. Less than four pints are ne ded however, if one assumes that a po'nt 
in the spira! i fixed, that is the interaction point, and that the spiral axis is 
along the magnetic field. Of course it might happen that a particle travels some 
time before it deca s (a B meson, for instance, may travel a few millimeters) but 
let us, for the moment, assume that all spirals stem from a single point. Since 
the spiral axis is known, only two points are needed to determine all the spiral 
para eters. Thus, one hits the folIo .j g se of equations fo the spiral 

x = ~ (cos t./> - cos (wt + </J)) 
y = ~ (sin (wt + </;) - sin 1» 

z = vozt 

where Va is the initial speed of the particle and w = 1 is the cyclotron frequency 
for a particle of charge q and energy E in a magnetic field of strength B. In terms 
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of the coordinates of two points on a given spiral (using cylindrical coordinates, 
see Fig.17) one has the following set of equations 

, 
~ = b = 2(0__zO') 

tP = - <P = ! (- zi:' +0+0') 
!!ll..L. - a - T 

W - - 2sin(9-'I') 
, ' a� - ._-,-T.,-_ 

- .: sin(O' -.p) 

In the case considered here, all spirals are assumed'to have the same origin and 
therefore, for two points (r, 0, z) and (r', 0', z'), a = a' is a consistehcy condition. 
However, if it is assumed that the origin of the spirals has a random position 
on the beam axis (this will he the case in the LHC, a problem that, will have to 
be dealt with to solve pile-up events[59]) the a and a' equations may be used to 
determine this position. 

For every pair of hits in the detector there is a point in the three-dimensional 
parameter space (a, b, tP). From the pairs that belong to the same spiral a cluster 
of neighboring points is reconstructed in parameter space. Of course there are also 
combinations of hits taken from different. spirals, but the corresponding points in 
parameter space do not accumulate in a cluster, they rather yield a diffuse cloud. 
Notice that it is neither necessary nor advisable to take all possible pairs of points 
in the data set in order to reconstruct the spirals. This would lead to a waste 
of computer time because of the combinatorics. Only neighboring points have 
to be considered. Applying the spot-reduction technique described in Ref.[56] to 
the parameter space (a, b, 1./J) one eliminates the isolated points and, at the same 
time, finds the center of gravity of the clusters. The spot-reduction algorithm 
has two separate phases: first it makes two or three partial weight transfers and 
then two or three total weight transfers. In this way the centre of each individual 
cluster is singled out with good precision. 

Fig.IS shows some results with the algorithm applied to a set of spirals. As 
may be seen, the reconstruction is quite succ::essful considering the simplicity of 
the algorithm. The time consumption of th~ fl.lgorithm grow like N2, N being the 
number of hits in the detector (which may be subdivided into multiple indepen­
dent sectors). The execution speed in the spot-reduction algorithm is independent 
of N (if implemented on a parallel machine). Hence the algorithm is in nrinciple 
much faster than a conventional road-finder type algorithm, where the computer 
time grows like a factorial. Also, with growing track multiplicity, the probabil­
ity of failure of such an algorithm increases with a consequence degradation in 
reconstruction efficiency. However, in the algorithm described here, it suffices to 
increase the number of cells into which one divides the parameter space. This 
does not affect the execution time. 
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6 Adaptive Mo te Carlo integration 

The need to integrate functions with (integrable) singularities occurs frequently 
in numerical work. For simple functions and one-dimensional integrals, standard 
techniques of truncation of the interval, change of variables, subtraction of the 
singularity, etc., are applicable[60] [61]. However, for multidimensional integrals 
and when the functions are so complex that their behavior is essentially unknown, 
it is convenient to use an integration procedure that automatically adapts itself 
to the rate of variation of the integrand at each point. 

An algorithm (RIWIAD)[62] of Monte-Ca.rlo integra.tion with automatic in­
terval adaptation for multidimensional integrals has been developed by several 
authors[63] [64] [65] and used in many applications. The RIWIAD algorithm is 
appropriate to handle integrals with singularities lying on the boundary of the 
integration volume, which is taken to be the unit hypercube. In each iteration 
the algorithm computes the variance in the slices of the integration volume as­
sociated to the subintervals in each integration axis, that is, for the n'th interval 
in the i'th axis 

(112) 

In the following iteration the interval sizes are adapted (with a fixed number of 
points per interval) to ensure that regions of higher variance will have a higher 
density of sampling points. From the very nature of the algorithm it follows 
that, in general, it handles well integrands with singularities (or fast rates of 
variation) lying on hyperplanes perpendicular to the integration axis. However if 
the singularity hyperplanes lie obliquely to the axis (skew singularities) not much 
improvement is to be expected from interval adaptation. 

To construct an alg rithm that handles skew singula ities, the obvious brute 
fora method would be to keep in store, from iteration to iteration, the infor­
mation about the subintervals and variances O"n! ..•nd in all subvolumes of the 
integration domain (instead of just in the hyperslices perpendicular to each axis) 
and adapt the number of points in each subvolume accordingly. Notice however 
that, if m is the number of intervals in each axis, the number of subvolumes 
grows as m d whereas the number of hyperslices grows only as m x d, with the 
dimension d. Thus, for high dimensions and a fine interval division, this method 
is too demanding in memory requirements. This is the reason why, in RIWIAD, 
the interval adaptation method is preferred. 

The program TSAIR (two-step adaptive integration routines)[66] contains two 
algorithms that handle satisfactorily skew singularities or fast rates of variation 
in skew hyperplanes and keep the memory requirements at the same level as 
RIWIAD. All integrations to be executed by the program should be normalized 
to the unit hypercube. 

# ALGORITHM 1 
In this algorithm one aims at obtaining minimal variance, for a fixed total 
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number L of sampling points. If ·)ne allows the number of points in each subvol­
ume to vary, the problem consists in minimizing the function 

(113) 

by variation of Ln with the subsidiary condition 

(114) 

L n is the number of sampling points in the subvolume Vn , N is the total number 
of subvolumes and 

X n = (p) - (f) ~ (115 ) r, 

is the second order moment of the function in the subvolume n. Applying the 
Lagrange multiplier method, the result is 

(116) 

What the algorithm does is to start with a certain number of iterations where it 
proceeds to interval adaptation as in RIWIAD. The number of such iterations is 
never smaller than a number chosen by the user and supplied as data. After these 
iterations, if the variance is still decreasing at a rate faster than a certain amount 
(10%), the algorithm continues, automatically, to make interval adaptations until 
this limi t is reached. 

Starting with the last of the fixed RIWIAD iterations the program computes, 
and keeps in memory, the va.lue L~=l Vn ~. Once the interval adaptation step 
is completed, the program switches to a second step where the interval structure 
is kept fixed and the number of points per subvolume Ltl is allowed to vary to 
approach the optimum value of Eq.(116). However, to apply Eq.(116) one needs 
information on Vn~ for each subvolume and, as discussed above, to keep these 
values from iteration to iteration would overburden the memory requirements. 

The procedure that is used is the following: each time the program starts 
sampling inside a subvolume, it first computes a small number y of points. Using 
these points an estimate for L n is then obtained from Eq.(116). If the estimate for 
Ln is larger than the number y of points already sampled, the computer samples 
an additional Ln - y points (up to a maximum of Z fixed by the user). Otherwise 
it skips to the next subvolume. The algorithm combines interval adaptation and 
a variable number of points per subvolume with essentially the same memory 
requirements as RIWIAD. 

# ALGORITHM 2 
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The point of view in this algorithm is the computation of the integral for a 
specified variance with the minimum possible number of points. The ma.thema.t­
ical problem to be solved is the minimization of the fu etion 

N 

L = 2: Ln 
n=l 

with subsidiary condition 
N V2 

(72 = l:: n X n 
n=l L n - 1 

By variation of Ln and the Lagrange multiplier method the result is 

- L:~1 Viy'Xi Tl ~ 1Ln� - 2 YnyX n + (117) 
(7 

In this algorithm a uniform interval division is used. In the first iteration one 
computes the integral, the variance and also the sum L:~1 ViVXi . On the sec­
ond and last iteration, by the same method as described for Algorithm 1, one 
computes an estimate for VnyIX: using the first few points sampled in each sub­
volume. From this estimate and Eq.( 117) Ln is then computed and the rest of 
the necessary points sampled in the subvolume n. 

For illustration Fig.l9 shows the behavior, from iteration to iteration, of al­
gorithm 1 applied to the function 

f(x, y) = -log {Ix - yl·lx - 11·ly - 1j·12x + y - 21·I~x + y - il} 
which possesses both skew singularities and singularities in lines perpendicular 
to the axis. The upper plot shows the variance normalized for the same number 
of points per iteration. As expected, in the first few iterations, one obtain 
so e improvement (I"V 6%) with interv 1 adaptation. However, after the third 
iteration, no further improvement is observed. After the fifth iteration the interval 
adaptation ceases, the second phase of algorithm 1 becomes active and a new 
significant improvement in the variance ('" 24%) is obtained. The lower plot 
displays the number of sampled points per iteration. After the fifth iteration this 
number is no longer fixed. However it is seen that it deviates very little from the 
value used in the interval adaptation step. This is a good chec on the reliability 
of the method used to estimate the quantities VnyIX:. 
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Fig.l An airfoil transversal cut showing ionized air injection, suction pump 
and plate electrodes. 
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width scaling solution. 
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Fig.5 The physical origin of the sign problem 
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Fig.6 Local antiferromagnetic correlations in the Hubbard P.1odeI 



O. 05 ~-r-----"--"-,--- - I 

0.045 

0.04 

0.035 

0.1)3 

a. 
c: 0.025 

0.02 

0.015 ­

0.01 

0.005 

o� 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
xh 

Fig.7 Pairing correlations in the Hubbard model 



Fig.8 A two-dime:1sional test signal 
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Fig.9 Evolution of the connection strengths ~Vll and ~V12 in a PCA network 
for the data in Fig.8 



Fig.IO Network to learn the char'l.cteristic function of a scalar process 

\ 

Fig.II Network to learn the characteristic function of a 2-dimensional signal 



Fig. \ 2a _ Real part o( the characteri'tiC (unction (or the data in Fig. 

8 1and the me'h o( 9, value' (right1obtained by the network. 
(left 

Fig. _ Imaginary 
12b 

part o( the characteristiC 8(unction (or the data in Fig. 

(le(t) and the me,h o[ 0, values (right) obtained by the network 
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Fig.13a Chara.cte["istic funct'on for the \Veierstrass random walk (b;::LSl) 
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Fig.13b log(-log) of the characteristic function f(a) for the Weierstrass ran .. 
dom walk (b= 1.31 ) 
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Fig.14 Set of IG4 events or' a multiplicative process with < X >= 1. Sample 
a.vera.ge=O.285. Bin width 10-6 . 
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Fig.16 Deviation function estimated from the data in Fig.14 
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Fig.17 Definition of the variables used for the track reconstruction algorithm 



Fig.18 A typical reconstruction example using the track reconstruction algo­
rithm. The upper plot represents the yz projection and the lower plot the xy 

projection. The dots correspond to the points used for the reconstruction and 

the full lines to the reconstructed spirals 
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